
 

 
Abstract— We present a methodology of parametric objective 
function coefficient programming for large linear 
programming (LP) problem. Most of current parametric 
programming methodologies are based on the assumption that 
the optimal solution is available. Large linear programming 
problems in real-world might have millions of variables and 
constraints, which makes it difficult for the LP solver to return 
the optimal solutions. This paper extends the traditional 
parametric programming methodology by considering features 
of the large LP problems. By considering the tolerance of 
infeasibility and introducing a step size to deal with degeneracy 
of the problem, the parametric objective function coefficient 
linear programming of large LP problem can be conducted 
while the optimal solutions are not available. Experiment 
results of LP problems with different scales are provided.  
 

Index Terms—linear programming, large problem, simplex-
based, parametric programming 

I. INTRODUCTION 

inear programming(LP) is widely used in the industrial 
system. Analyzing impact of parametric setting on the 

solution of interested variables is helpful to the 
improvement of the model and the explain-ability of the 
solution. A lot of trial-and-error to obtain the desired 
solution by changing parameters is time consuming, while 
sensitivity analysis[1] and parametric programming can help 
about this. 

The simplex-based parametric programming methodology 
was first provided by Gass and Saaty [2] in 1955. By taking 
advantage of the iterations in simplex algorithm, this 
methodology tries to find the parametric interval in which 
the current optimal basis stays optimal. Degeneracy could 
not be handled in this methodology. New approaches like 
interior point based [3], [4], support sets based [5] 
methodology were proposed in the last decades. The concept 
of optimal partition was introduced into the interior point 
based parametric programming. Most of them are based on 
the assumption that strictly complementary solution is 
available. However, it’s hard for LP solver to get the 
optimal solution of large LP problems because of the time 
and precision limitation, so that those parametric 
programming methodologies are no longer applicative.  
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This paper extends the traditional simplex based 
parametric programming methodology to adjusting the 
objective function coefficient parameters of the large LP 
problem. The main idea to conduct the parametric 
programming is to preserve the current optimal basis, 
optimal partition or support set [5] while the parameters are 
changing. We provide a new definition of the optimal of the 
current optimal basis in the parametric programming 
iterations.  

II. PROBLEM DEFINITION 

  The linear programming problem can be defined as: 
 
Min C୆X୆ ൅ C୒X୒   
 

Subject to  ቄ
A୆X୆ ൅ A୒X୒ ൑ B
LB ൑ X ൑ UB

                                 (1) 

Where 
C୆/C୒: The objective function coefficient of decision 
variables in/out of the basis 
A୆/A୒: The constraint coefficient matrix of decision 
variables in/out of the basis 
B:  The right hand side value vector 
LB/UB: The lower bound/upper bound of decision variable 
vector X 
X୆/X୒: The decision variable vector in/out of the basis 
B/N  A set contain the indices of variable in/out of the basis 

Given the parameter θ, the objective function coefficient 
can be denoted by C ൌ C0 ൅ funሺθሻ, where C0 is the current 
objective function coefficient and the funሺθሻ here presents 
the perturbation vector. The parametric programming on 
objective function coefficient will observe the behavior of 
solution with respect to the change of θ. 
 

III. SIMPLEX BASED PARAMETRIC PROGRAMMING  

   In this section, we introduce the simplex based parametric 
programming. The reduced cost for non-basic variables in 
the optimal solution of this problem can be defined as:                           
RC୨ ൌ C୆A୆

ିଵA୨ െ C୨   j ∈ N                                              (2) 
Introducing θ  into the reduced cost function yield:  
RC୨ሺθሻ ൌ ሺC୆ ൅ funሺθሻ୆ሻ A୆

ିଵA୨ െ ሺC୨ ൅ funሺθሻ୨ሻ      

ൌ ሺC୆ A୆
ିଵA୨ െ C୨ሻ ൅ ൫A୆

ିଵA୨funሺθሻ୆൯ െ funሺθሻ୨   
j ∈ N                                                                                    (3) 

We restrict the objective function coefficient to be a linear 
function of θ. The function of the coefficient can be denoted 
as Cj ൅ Cj

′ ൈ  θ , j ∈ ሼB,Nሽ, we have  
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 RC୨ሺθሻ ൌ ሺC୆ A୆
ିଵA୨ െ C୨ሻ ൅ ሾቀC୆

′ A୆
ିଵ
A୨ቁ െ C୒

′ ሿ ൈ θ, j ∈

ሼB, Nሽ                                                                                  (4) 
RC୨ሺθሻ can be simplified as: 
a୨ ൅ b୨ ൈ θ, j ∈ ሼNሽ                                                             (5) 
Where  
a୨ ൌ ሺC୆ A୆

ିଵA୨ െ C୨ሻ, j ∈ ሼNሽ                                          (6) 

b୨ ൌ ቀC୆
′ A୆

ିଵ
A୨ቁ െ C୒

′ , j ∈ ሼNሽ                                         (7) 

a୨: The reduce cost of the non-basic variables in the current 
optimal solution. 
b୨:  The variation of reduced cost by increasing one unit of θ 
based on the current basis. 

The interval of the θ in which the current optimal basis 
remains optimal is determined by keeping the reduced cost 
of non-basic variables non-negative: RCjሺθሻ ൒ 0 . 

The lower bound and the upper bound of θ in which the 
current optimal basis will stay optimal are denoted by LBP1 
and UBP1, respectively.  

LBPଵ ൌ ቐ
max ൬െ

ୟౠ

ୠౠ
൰ , when b୨ ൐ 0

െInf, when ∄b୨ ൐ 0
， j ∈ ሼNሽ                                                 

UBPଵ ൌ ቐ
max ൬െ

ୟౠ

ୠౠ
൰ , when b୨ ൏ 0

Inf, when ∄b୨ ൏ 0
， j ∈ ሼNሽ                 (8) 

This methodology works well only if the LP model is 
non-degenerate and the optimal solution is available. 

If the LP model is non-degenerate, we would have 
LBP1 ൏ 0  and UBP1 ൐ 0  , since aj ൐ 0  in the non-
degenerate minimizing problem. So that we have LBP1 ൏
UBP1 and a new interval in which the current basis will 
keep optimal of the parameter is obtained. 

But if the problem is dual degeneracy [6], the reduced 
cost for some of the non-basic variables might be zero. So 
we might have  LBP1 ൌ UBP1  ൌ 0   , which means the 
current basis will remain optimal only if the parameter keeps 
the current value.  

There are several features for large LP problem: 
1) It’s hard to have both the primal infeasibility and dual 

infeasibility equal to zero in the final basis because of 
the time and precision limited, which means that the 
optimal solution is usually not available.  

2) Based on the point above, Solution within certain 
tolerance is acceptable and same extent of accuracy loss 
is allowed.  

In large-scale LP problems, there might be invalid 
reduced costs or bound violations for some variables when 
the LP solver reaches its optimum.  There is actually a gap 
between the optimal solution and the final solution returned 
by LP solver. It is hard to find a parameter interval, in which 
the solution will keep optimal by this methodology.  

 

IV. PARAMETRIC PROGRAMMING ALGORITHM FOR LARGE 

LP MODEL 

Considering the problems above, we provide a 
methodology to conduct parametric programming on large 
LP problem by extending the methodology above. In this 
methodology of parametric objective function coefficient 
linear programming, selective pre-processing is conducted 

to remove the fixed variables and redundant constraints of 
the LP model before the parametric programming.  Primal 
and dual infeasibility are used as criterions of the optimal of 
the LP model in the calculation of the parameter intervals. In 
order to move forward in the parametric programming 
calculation, a step size variable is introduced. If stalling is 
encountered, we will change the current parameter value by 
the step size in order to skip the stalling point.  
 

A. Pre-processing  

  Pre-processing is used to simplify the problem. The size 
of problem after pre-processing is reduced by aggregating 
variables and constraints, eliminating redundancy and so on.   

Taking advantage of pre-processing seems like a good 
idea to reduce the number of degenerate variables and the 
size of LP problem since some of the degeneracy of the 
model might be caused by the redundant constraints. 
However, pre-processing picks out redundant constraints 
and variables; these constraints and variables are redundant 
in the original LP model, but they might not be redundant in 
the LP model with changed parameters. The change of 
objective coefficients has no impact on the fixed variables 
the redundancy of constraints. Then fixed variables and 
redundant constraints can be ignored when we change the 
objective coefficients. 

 

B. Parametric objective function coefficient 
Programming  

In the traditional simplex based parametric objective 
coefficient programming, the parameter interval is 
determined by ensuring the reduced cost still satisfy the 
optimal condition, so that the current  basis will stay optimal 
in the whole interval. But there might be some invalid 
reduced cost in the final optimal solution of the problem 
returned by the LP solver.  Here we redefine the optimum of 
the solution. It’s reasonable to take the max reduced cost 
infeasibility (MRCI or dual infeasibility) as the validation 
the optimum of the optimal basis in the last iteration in 
parametric objective function coefficient programming 
because of the three points below:  
1) The primal infeasibility for the current basis will keep 

the same no matter how we vary the parameters in the 
objective function coefficient. 

2) By keeping the MRCI no greater than the current 
optimal solution, we would have both of the primal 
infeasibility and dual infeasibility no greater than the 
value returned by the LP solver in the last parametric 
programming iteration. 

3) There is at least one parameter value (the current 
parameter value) meets the infeasibility tolerance. 

We take the MRCI as the criteria to determine if the 
current solution can be accepted as the optimal solution in 
the parametric objective function coefficient linear 
programming.  

Here CBV
′  and CNV

′   are objective coefficient increment for 
basic and non-basic variables by increasing one unit of θ. 

To be simple, we assume that the objective coefficient is a 
linear function of θ . θ  begins with zero. The objective 
coefficient can be expressed as: 



 

Cj ൅ Cj
′ ൈ  θ , j ∈ B ∪ N   

Define the amount of the parameter increment as UPW 
and the step size for skipping stalling as PS. Similar 
algorithm can be employ while the parameter decreases. 

 
 
 

 

Step1:  Do selective preprocessing to remove the fixed 
variables and redundant constraints. Standardize the model.  

Primal problem:  
     Min:CX 

Subject to:ቄ
AX ൌ B
X ൒ 0

                                                       (9) 

Dual problem:  
Max:BY 

Subject to:   ATY ൑ C                                         (10) 
Step2:  Optimize the problem and calculate the aj and  bj 

in (6) and (7).  Go to step 4. 
Step3:   Solve the problem with LP solver starting with 

the current basis and the new objective coefficient, and get 
the new optimal solution,  aj  and  bj in Cjሺθሻ. 

Step4:  If the reduced cost meets the optimal condition, 
calculate the upper bound: UBP1 in (8). Else go to step5. 

A new interval is obtained; 
                                    

UBP ൌ ൜
MaxሺUBP1,UPWሻ,    UBP1 ൐ 0

PS,         UBP1 ൌ 0
                        (11) 

If θ is equal to  UPW , the parameter reaches the upper 
bound we provided,  then stop, else go to step6  

Step5: Calculate the max reduced cost 
infeasibility  ሺMRCIሻ  for all the dual constraints for the 
current optimal basis. 

MRCI ൌ

൝
max ሺAj

TYെ Cjሻ  when ∃ሺAj
TYെ Cj ൐ 0ሻ,   ∈ ሾ1, ሿ

0,when ∄ሺAj
TYെ Cj ൐ 0ሻ,   ∈ ሾ1, ሿ

     

(12) 
If we keep the current basis, the max reduce cost 

infeasibility might change with respect to the change of 
parameter. The dual constraints can be denoted by:  
ATሺai ൅ bi ൈ θሻ ൑ C0j ൅ θ ൈ Cj

′ , i ∈ M , j ∈ N                  (13) 
The dual infeasibility of some constraints might increase 

while some might decrease when the parameter value is 
increasing. What we have to make sure is that the Maximum 
dual infeasibility for the current basis is within the tolerance 
Tol  or no less than the current value Cur_MRCI  in the 
parameter interval.  

The upper bound and lower bound of θ can be fixed as 
follows:  
MRCI ൌ max ሺTol ,Cur_MRCI  ሻ   

min ൬൫  C0j െ  ATai൯ ൅ ቀCj
′ െ b

i
ቁ θ൰ ൒ െMRCI,  

 when  ATሺai ൅ bi ൈ θሻ ൐ C0j ൅ θ ൈ Cj
′ , j  ∈ N            (14) 

                 

LBP2 ൌ ൞
maxቆ

   ିMRCIିሺC0jିATaiሻ

Cj
′ିb

i

ቇ ,when ∃Cj
′ െ b

i
൐ 0

െINF,when ∄Cj
′ െ b

i
൐ 0

 (15)                                         

                 

UBP2 ൌ ቐ
min ൬

  ିMRCIିሺ C0jିATaiሻ

Cj
′ିbi

൰ ,when∃ Cj
′െbi ൏ 0

INF,when ∄Cj
′ െ b

i
൏ 0

   (16) 

 

UBP ൌ ൜
MaxሺUBP2,UPWሻ,UBP2 ൐ 0

PS,UBP2 ൌ 0
                    (17)           

If  UBP is equal to UPW, the parameter reaches the upper 
bound we provided, then stop, else go to step6 
Step6: Increase the objective coefficient C୨ through 
C୨ ൌ C୨ ൅ UBP ൈ C୨

′                                                            (18)        
UPW ൌ UPWെ UBP                                                        (19) 
 

V. NUMERICAL EXAMPLES 

We take the CPLEX as the LP solver and conduct 
parametric programming on the supply chain linear 
programming problems with different size by changing the 
same weight. 

The experiments provide two of the decision variable 
values we interested in while the weight which impacts the 
objective function coefficient of multiple variables is 
increasing from the current value to the target value. 

The parameters of the three models in experiments are 

provided in Table I. Fig.1 to Fig.3 provide the solution of 
two decision variables: ݔଵ, ଶݔ  and the corresponding 
infeasibility. 

From the solution of the three models above, the dual 
infeasibility and primal infeasibility of the final solution 
returned by the LP solver are increasing while the size of the 
model is increasing. Since the parameter intervals are 
determined by making sure the primal and dual infeasibility 
no greater than the last solution returned by the LP solver.  
In each interval without using the step size, the dual 
infeasibility and primal infeasibility will keep no greater 
than the infeasibilities in corresponding parameter interval 
provided by the second part of figures above. 

The step size set to 100, which is much less than the total 
interval length (gap between target weight and current 
weight). In this algorithm, the decision variable values and 
infeasibilities are undefined in the parameter intervals in 
which the step size is using. 
 
 

TABLE I 
EXPERIMENTS PARAMETERS 

 

Parameter Model1 Model2 Model3 

Variable 
number 

33848 
 

935905 
 

1469151 
 

Constraint 
number 

24866 
 

651597 
 

1234558 
 

Current 
weight 

1.00E+09 
 

1.80E+09 
 

0.9 E+08 
 

Target 
weight 

1.40E+09 
 

2.00E+09 
 

1.50E+09 
 

Max dual 
infeasibility 

5.96E-07 
 

1.22E-04 
 

3.46E-05 
 

Max primal 
infeasibility 

9.09E-12 
 

9.09E-12 
 

3.53E-05 
 

Step Size 100 100 
 

100 
 

 



 

 
Fig. 1(a)  Solutions of ݔଵ,                                                                ଶ of Model 1ݔ

 
Fig. 2(b)  Primal and dual infeasibility of Model 2

 
Fig. 1(b)  Primal and dual infeasibility of Model 1 

 
Fig. 2(a)  Solutions of ݔଵ,  ଶ of Model 2ݔ

 
Fig. 3(a)  Solutions of ݔଵ,  ଶ of Model 3ݔ

 
Fig. 3(b)  Primal and dual infeasibility of Model 3 

 



 

VI. CONCLUSION 

Parametric programming can provide the behavior of 
related decision variables values with respect to the 
variations of the parameter. For the large linear 
programming problems, the traditional parametric 
programming theory could not be applied to problem 
directly since the optimal solution is not always available. 
By considering the tolerance of infeasibility, we employ the  
parametric objective function coefficient programming on 
large linear programming problems. Step size is introduced 
to deal with the degeneracy. If stalling is encountered 
because of degeneracy, some of the parameter intervals will 
be discrete.  
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