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asymptotic approximation formula for the vanilla Euro-
pean call option price. A class of multi-factor volatility
models has been introduced which are driven by two dif-
fusions, one fluctuating on a fast time scale and another
one fluctuating on a slower time scale. It has been shown
that it is possible to combine a singular perturbation ex-
pansion with respect to the fast scale with a regular per-
turbation expansion with respect to the slow scale. This
again leads to a leading term which is the Black-Scholes
price with a constant effective volatility.

Following the multi-factor stochastic volatility model in
[7] and in [3], we consider the family of stochastic volatil-
ity model, where St is the underlying price, Yt evolves as
an Ornstein-Uhlenbeck (OU) process, and Zt follows an-
other diffusion process. Given the risk neutral probability
measure P

∗, the stochastic volatility model is described
with the following equations:
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t ) are independent standard Brownian

motions with instant correlation coefficients ρ1, ρ2, and
ρ12 such that ρ21 < 1, and ρ22 + ρ212 < 1, whereas St is
the underlying stock price process with the risk free rate
equal to r. The volatility process σt is driven by two
factors; Yt and Zt. As stated in [3] the risk neutral prob-
ability measure P

∗ is determined by the market prices of
volatility risk captured in Λf and Λs, which are assumed
to be bounded and independent of the stock price S. The
driving processes for Yt and Zt are mean reverting around
their long run mean mf and ms, respectively when Λf

and Λs are equal to zero. The mean reversion rate for Yt

and Zt are α > 0 and δ > 0 respectively, where Yt is fast
mean reverting on a short time scale 1/α and Zt is slowly
varying on a long time scale 1/δ (i.e. α−1 < 1 < δ−1).
The time scales of Yt and Zt are given as 1/α and 1/δ with
the “vol-vol” parameter equal to νf

√
2α and νs

√
2δ, with

long run distribution of OU process given as N(mf , ν
2
f )

and N(ms, ν
2
s ) as prototypes of more general ergodic dif-

fusions. Following Fouque and Han [3], in the numerical
computations we use the the asymptotic theory in the
mean reversion regime where α → ∞, δ → 0.

Let H(ST ) denote the payoff from an European call op-
tion, which is a function of the final stock price ST . Hence
under the risk neutral measure P

∗ the no arbitrage price

is given by the conditional expectation of the discounted
payoff given the current levels of (St, Yt, Zt):

P (t, x, y, z) = E
∗

[
e−r(T−t)H(ST )|St = x, Yt = y, Zt = z

]
.

(5)
The crude Monte Carlo estimate of the option price is
given by

P (t, x, y, z) ≈ 1

N

N∑
k=1

e−r(T−t)H(S
(k)
T ), (6)

where S
(k)
T is the price at maturity found by the kth sim-

ulation using the Euler discretization of the process, and
N is the total number of simulations.

2.1 Option Price Approximations

An approximation under the two-factor stochastic volatil-
ity model is given by Fouque et al. [4] using the asymp-
totic expansion theory. Asymptotic expansion theory can
be applied by introducing the parameter ε = 1/α. Hence,
both ε and δ are small quantities such that 0 < ε, δ << 1.
We use a singular expansion about ε and a regular expan-
sion about δ. By applying the Feynman-Kac formula to
(5), the formula for P ε,δ can be obtained as given in [4]
with the price dependent on ε and δ. The pointwise price
approximation is

P ε,δ(t, x, y, z) ≈ P̃ (t, x, z),

where
P̃ = PBS(σ̄) + (T − t)× (7)
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with an accuracy of order (ε| log ε| + δ) for call options.
The price PBS(σ̄) is the homogenized price which solves
the Black-Scholes equation

LBS(σ̄) = 0 (8)

PBS(σ̄)(T, x) = H(x), (9)

where σ̄ is called the effective volatility and is defined by

σ̄2 =< f2(., z) > . (10)

The brackets are used to denote the average with respect
to the invariant distribution N(mf , ν

2
f ) of the fast factor

(Yt). The parameters (V0, V1, V2, V3) are
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where σ̄′ denotes the derivative of σ̄. The function φ(y, z)
is the solution of the Poisson equation

L0φ(y, z) = f2(y, z)− σ̄2(z).

Equation (7) gives us two approximations. The first is

the actual solution P̃ and if we ignore all terms of order√
ε,

√
δ or higher we get the first order approximation

PBS(σ̄). It should also be noted that if a higher order
approximation is desired it is possible to redo the asymp-
totic expansion keeping more terms to get a higher order
approximation, but the approximation will be much more
complicated than the already complicated P̃ .

Table 1: Parameter values for our numerical experiments
S0 Y0 Z0 K T r mf ms nf ns

55 -1 -1 50 1 1 -0.8 -0.8 0.5 0.8

ρ1 ρ2 ρ12 Λf Λs f(y, z) Δt N

-0.2 -0.2 0 0 0 exp(y + z) 0.01 5000

3 Quasi-Monte Carlo (QMC) Method

The general problem for which QMC methods have been
proposed as an alternative to the MC method is multidi-
mensional numerical integration. One might consider the
QMC method as the deterministic version of the Monte
Carlo simulation. Convergence of the MC estimator is
based on the central limit theorem, whereas in the QMC
method a deterministic upper bound for the error is given
by an upper bound.

The idea of QMC method is to use a more regularly dis-
tributed point set, so that a better sampling of the func-
tion can be achieved. An important difference with the
MC method is that the point set PN is deterministic.
A detailed discussion of these methods can be found in
Niederreiter [19]. The use of more “regular” or “uniform”
points in the QMC method means these sequences satisfy
certain uniformity conditions. A commonly used measure
for uniformity of a QMC sequence is the star discrepancy
D∗(PN ) of a point set PN , which looks at the difference
between the volume of a rectangular box aligned with
axes of [0, 1)s and having a corner at the origin, and the
fraction of points from PN contained in the box, and then
the maximum difference over all such boxes. Typically,
a point set PN is called a low discrepancy sequence if
D∗(PN ) = O(N−1 logs N). For a function of bounded
variation in the sense of Hardy and Krause, the integra-
tion error |I − Î| is in O(N−1 logs N) when we use a low-
discrepancy sequence in the integration (see Niederreiter
[19] for details).

The convergence rate for QMC method by using low-
discrepancy sequences suggests that if the dimension of
the integration is high the advantages of QMC might be
lost or more precisely QMC methods will require a very

large sample size when the dimension s is high. However,
we should note that our error analysis in QMC method
is based on an upper bound for the error and for some
problems with smooth integrands the observed conver-
gence rate might be much faster than the convergence
rate of the upper bound. There are several studies in the
literature showing this phenomenon some examples can
be found in [1], [10], and [15].

3.1 Faure Sequence

In this subsection we describe the generation of a com-
monly used quasi-Monte Carlo sequence, namely Faure
sequence. Faure sequence has certain advantages for the
valuation of high dimensional integrals, which leads to
the efficient algorithms for the computation of complex
financial derivatives. Applications of the Faure sequence
in complex financial derivatives can be found in [12].

To compute the nth element of the Faure sequence, we
start by representing any integer n in terms of the base
b,

n =

m∑
j=0

a1jb
j. (15)

The first element of the Faure sequence is given by reflec-
tion about the decimal point as before,

φ1
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The remaining elements of the sequence can be found
recursively. As also explained in Joy et al. [12], given
ak−1
j (n) the next term can be written as
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where Ci
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j!(i−j)! . Hence, to generate the next di-

mension in the sequence we multiply with the generator
matrix, which is the upper triangular matrix with entries
as the binomial coefficients,⎛
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Hence, the rest of the points can be generated by,

φk
b (n) =

m∑
j=0

akj (n)b
−j−1, 2 ≤ k ≤ d. (18)

We can represent the nth element of the d dimensional
Faure sequence by,

φn = (φ1
n, ..., φ

d
n).



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Mersenne Twister

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Faure Sequence

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Linear Scrambled Faure Sequence

Figure 1: Two dimensional projection of the gener-
ated points from Mersenne Twister, Faure Sequence and
Scrambled Faure Sequence (d1 = 1, d2 = 2, base = 2)
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Figure 2: Two dimensional projection of the gener-
ated points from Mersenne Twister, Faure Sequence and
Scrambled Faure Sequence (d1 = 5, d2 = 40, base = 41)

Example 1 The following table displays the first ten el-
ements of the Faure sequence.

Construction of the Faure sequence

n a0(n) a1(n) a2(n) φ1
n φ2

n φ3
n

1 1 0 0 1/3 1/3 1/3
2 2 0 0 2/3 2/3 2/3
3 0 1 0 1/9 4/9 7/9
4 1 1 0 4/9 7/9 1/9
5 2 1 0 7/9 1/9 4/9
6 0 2 0 2/9 8/9 5/9
7 1 2 0 5/9 2/9 8/9
8 2 2 0 8/9 5/9 2/9
9 0 0 1 1/27 16/27 13/27
10 1 0 1 10/27 25/27 22/27

3.2 Randomized Quasi-Monte Carlo

Quasi-Monte Carlo is based on the use of deterministic
low discrepancy sequences with nice uniformity proper-
ties. However, for two main reasons often we are inter-
ested in using the randomized version of these sequences.
First reason is the convenience of using confidence in-
tervals while preserving much of the accuracy of pure
quasi-Monte Carlo. Thus, randomized quasi-Monte Carlo
method seeks to combine the best features of Monte Carlo
and quasi-Monte Carlo methods. Secondly, there are set-
tings in which randomizing a low discrepancy sequence
actually improves accuracy. An important result show-
ing that the root mean square error of integration using
a class of randomized nets is O(1/N1.5−ε), whereas the

error without randomization is O(1/N1−ε) for smooth in-
tegrands. Even though Owen’s [18] result is restrictive in
terms of pricing financial derivatives it is an important ex-
ample to show that randomization can take advantage of
the smoothness of the integrand which quasi-Monte Carlo
alone cannot achieve. Discussion on improving accuracy
through randomization of low discrepancy sequences can
be found in Hickernell [11], Matousek [14], and L’Ecuyer
and Lemieux [13].

It is often useful to randomize QMC point sets for the
purpose of error analysis. Two desirable properties that a
given randomization should have are: (i) each point in the
randomized point set should have a uniform distribution
on the s-dimensional hypercube; (ii) the uniformity of the
original point set should be preserved.

Owen’s scrambling method is computationally demand-
ing. Matous̆ek [14] introduced an alternative scrambling
approach which is not only efficient but also satisfies some
of the theoretical properties of Owen’s scrambled nets and
sequences. In Owen’s scrambling is given in [18] and in
Ökten and Eastman [16]. Instead of Owen’s scrambling
method we prefer to use the computationally less costly
Matousek scrambling method (see Glasserman [9] for de-
tails on scrambling quasi-Monte Carlo sequences).

As well known, quasi-Monte Carlo methods have
better convergence rate, at least asymptotically, of
O(logd N/N), whereas Monte Carlo methods have con-
vergence rate of O(N−1/2), where N is the sample size
or the number of simulations. In many problems we do
not have analytical formulas, this increased the popular-
ity of quasi-Monte Carlo methods and special softwares
has been designed for this purpose. Low discrepancy se-
quences are deterministic, hence we get a single estimate
of the result. This is a drawback for QMC method, since
having many estimates of the unknown quantity we can
construct confidence intervals. Furthermore, the deter-
ministic error bound due to Koksma-Hlawka inequality
is not computationally feasible for most of the problems.
Therefore, computing the standard deviation and con-
structing a confidence band for our estimates is quite
desirable in a quasi-Monte Carlo simulation. To ad-
dress this drawback of quasi-Monte Carlo methods, re-
searchers introduced randomized versions of quasi-Monte
Carlo methods, where we still have the good uniformity
properties of low discrepancy sequences but also a statis-
tical error analysis is available. A good discussion can be
found in L’Ecuyer and Lemieux [13] and in Ökten and
Eastman [16].

Estimate

I =

∫
[0,1)d

f(x)dx (19)



using sums of the form

Q(qu) =
1

N

N∑
n=1

f(q(n)u ) (20)

where qu is a family of d-dimensional low-discrepancy se-
quences indexed by the random parameter u.

Matous̆ek [14] proposes a linear digit scrambling method,
by multiplying the generator matrix of a low discrepancy
sequence by a random matrix for which entries consisting
of 0, 1, 2, ..., b− 1 and adding a random vector 
U in mod
b. This method is easier to implement compared to the
full scrambling, and for the jth permutation it is applied
to the digit aj by a simple choice of πj given by

πj(aj) = hjaj + gj (mod b) (21)

where hj ∈ {0, 1, 2, ..., b− 1} and gj ∈ {0, 1, 2, ..., b − 1}
are random integers.

Another choice is given by

πj(aj) =

j∑
i=1

hijaj + gj (mod b) (22)

which is used to generate the Generalized Faure sequence.
Here, again the arithmetic is done in mode b, where
gj and hij are selected at random and uniformly from
{0, 1, 2, ..., b − 1}. In matrix notation, we can write the
same expression as

π(a) = HTa+ g

where HT is nonsingular lower-triangular matrix with
random entries. Matous̆ek [14] shows that scrambling
methods both in Equations 21 and 22 preserves the net
property.

In Figure 1 we plot the first two dimensions of a two
dimensional uniform sequence. The first plot coming
from the uniform random number generated by Mersenne
Twister pseudo-random number generator. The second
and third plots belong to the Faure sequence and its linear
scrambled version. On Figure 2 we plot a two dimensional
projection of a 40 dimensional sequence for the first 500
forty dimensional vectors. Figure 2 shows that when we
plot dimension 5 versus dimension 40 coming from these
40 dimensional vector of points, Faure sequence starts to
show linear patterns. These linear patterns are undesir-
able in an integration problem since the “good quality” of
the Faure sequence is lost as the dimension gets higher.
On the same figure, the third plot shows that the lin-
ear scrambled Faure sequence still preserves most of the
uniformity of the Faure sequence at higher dimensions.
Therefore, scrambling a low-discrepancy sequence such
as the Faure sequence gives us the chance to deal with
high dimensional problems without losing the nice fea-
tures of the original low-discrepancy sequence.

4 Numerical Results

The multi-stochastic volatility model discussed is applied
to the vanilla European option pricing problem with the
given parameter values in Table 1. This problem is used
for both testing the effectiveness of importance sampling
with tilting parameters derived from the Black-Scholes
model and asymptotic approximation methods. Fur-
thermore, randomized quasi-Monte Carlo sequences are
tested in this high dimensional problem. As given in
Table 1 Δt = 0.01 and T = 1, thus we have 100 time
increments (T/Δt) in each simulated path of the process,
requiring the use of 300 dimensional quasi-Monte Carlo
sequence at each sample path. Thus, the dimension of
the problem is very high for expecting good performance
from the quasi-Monte Carlo simulation. For the crude
Monte Carlo, results are obtained using the Mersenne
twister pseudo-random number generator. For generating
the normal deviates Box Muller transformation is used as
discussed in [17].

In our numerical experiments we used the digit scram-
bling given Equation 21 and linear scrambling given in
Equation 22.

Table 2: European Call Option RMSE: MC versus
RQMC
Sample Size MC Linear Scr. Matousek Scr.

1000 0.0560 0.0151 0.0171
5000 0.0282 0.0043 0.0037
10000 0.0190 0.0020 0.0019

The randomized quasi-Monte Carlo method is then ap-
plied to our vanilla European call option pricing problem
under the two factor stochastic volatility model. Room
mean squared error (RMSE) results show that the best
performer is Matousek scrambled Faure sequence at sam-
ple sizes 5000 and 10000. At a sample size of 1000 lin-
ear scrambled Faure sequence performed best. By us-
ing the scrambled Faure sequence we observed factors of
improvement around 6-10 compared to the crude Monte
Carlo variance. Overall, both scrambling methods were
superior to the crude Monte Carlo estimator with small
differences between two scrambling methods.

5 Conclusion

In this study one of the popular randomized quasi-Monte
Carlo methods, namely scrambled Faure sequence is dis-
cussed and applied to the pricing of a European call op-
tion problem in a multi-factor stochastic volatility set-
ting. In numerical experiments, we compared crude
Monte Carlo and randomized quasi-Monte Carlo estima-
tors. The two factor stochastic volatility used in this
study is described in [4]. Numerical findings show that
both linear and digit scrambling methods for the Faure



sequence outperforms the crude Monte Carlo estimator
by offering significant reductions in the variance.
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