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Abstract—We focus our study to formulate two different types
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I. INTRODUCTION

STUDY with nonlinear programming problems is an
interesting research topic for recent researchers in the

field of mathematical programming. One of the application
of nonlinear programming is to be maximized or minimized
ratio of two functions. Ratio optimization is commonly called
fractional programming. Minimax optimization problems has
been of considerable interest in the past few years due
to some important applications in the design of electronic
circuits, game theory, economics, best approximation theory,
engineering design, portfolio selection problems etc. For
the theory, algorithms and applications of some minimax
problems, the reader is referred to [1]. In the last two decades,
several authors have shown their interest in developing
optimality conditions and various duality results for minimax
fractional programming problems dealing with differentiable
case in [2-9] and nondifferentiable case in [10-16].

Liu and Wu [3, 5], considered the following fractional
minimax problem

(P) Minimize ψ(x) = sup
y∈Y

f(x, y)
h(x, y)

subject to g(x) ≤ 0,

where Y is a compact subset of Rm, f(., .) : Rn×Rm → R,
h(., .) : Rn × Rm → R are C1 mapping on Rn × Rm,
g(.) : Rn → Rp is C1 mapping on Rn, f(x, y) ≥ 0 and
h(x, y) > 0.

They established sufficient condition for (P) and derived
duality theorems for three different dual models under
(F, ρ)-convexity/invexity assumptions. Lai and Lee [11]
constructed two types of dual models for nondifferentiable
case among the models considered in [3, 5] and proved
duality relations involving pseudo/quasi-convex functions.
A Mond-Weir type dual of (P) for nondifferentiable
case considered in Ahmad and Husain [14] and further
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appropriate duality results are proved involving generalized
convex functions. Jayswal [16] proposed three types of dual
models for (P), in which one of the model constructed in
[14] and proved duality theorems under α-unvexity.

In recent few years researchers are working with various
second-order dual models for (P). Husain et al. [6] con-
structed two types of second-order dual models for (P) and
obtained duality relations using the η-bonvexity assumptions.
These models were further generalized by Hu et al. [7]
by introducing an additional vector r and proved duality
results for η-bonvex functions. Recently, Sharma and Gulati
[8] and Ahmad [9] established duality relations for two
types of second-order dual models of (P) under α-type
I univex/generalized convex functions. In this paper, we
formulate two different types of second-order dual models
of (P) for nondifferentiable case and further derive duality
results for involving the functions to be (F, ρ)-convex.

II. NOTATIONS AND DEFINITIONS

Consider the following nondifferentiable minimax
fractional programming problem:

(P1) Minimize ψ(x) = sup
y∈Y

f(x, y) + (xTBx)1/2

h(x, y)− (xTDx)1/2
subject to g(x) ≤ 0,

where Y is a compact subset of Rl, f(., .) : Rn ×Rl → R,
h(., .) : Rn × Rl → R are twice continuously differentiable
on Rn × Rl and g(.) : Rn → Rm is twice continuously
differentiable on Rn, B and D are n × n positive
semidefinite matrix, f(x, y) + (xTBx)1/2 ≥ 0 and
h(x, y) − (xTDx)1/2 > 0 for each (x, y) ∈ J × Y , where
J = {x ∈ Rn : g(x) ≤ 0}.

For each (x, y) ∈ Rn ×Rl, we define

J(x) = {j ∈M = {1, 2, ...,m} : gj(x) = 0},

Y (x) =
{
y ∈ Y :

f(x, y) + (xTBx)1/2

h(x, y)− (xTDx)1/2

= sup
z∈Y

f(x, z) + (xTBx)1/2

h(x, z)− (xTDx)1/2

}
,

K(x) =
{

(s, t, ỹ) ∈ N ×Rs+ ×Rls : 1 ≤ s ≤ n+ 1, t =

(t1, t2, ..., ts) ∈ Rs+,
s∑
i=1

ti = 1, ỹ = (ỹ1, ỹ2, ..., ỹs), ỹi ∈



Y (x), i = 1, 2, ..., s
}
.

Let Rn be the n-dimensional Euclidean space and X ⊆ Rn.
Now, we need the following definitions in sequel:

Definition 2.1 ([9,15]) A functional F : X ×X ×Rn 7→ R
is said to be sublinear with respect to the third variable if
for all (x, z) ∈ X ×X,
(i) F (x, z; a1 + a2) 5 F (x, z; a1) + F (x, z; a2), for all

a1, a2 ∈ Rn,
(ii) F (x, z;αa) = αF (x, z; a), for all α ∈ R+ and for all

a ∈ Rn.
The definition of F -convexity in nonlinear programming

was first introduced by Hanson and Mond [17]. Another
definition of convexity called ρ-covexity was given by
Vial [18]. Motivated by these concepts, Preda [19] first
considered (F, ρ)-convexity for multiobjective programs.
Zhang and Mond [20] extended the class of (F, ρ)-convex
functions to second order (F, ρ)-convex functions and
proved duality results for Mangasarian type and Mond-Weir
type multiobjective dual problems.

Definition 2.2 A twice differentiable function ψi over X is
said to be second-order (F, ρi)-convex at u on X , if for all
x ∈ X , there exists vector r ∈ Rn, a real valued function
di(., .) : X ×X → R and a real number ρi such that

ψi(x)− ψi(z) +
1
2
rT∇xxψi(z)r = F (x, z;∇xψi(z)+

∇xxψi(z)r) + ρid
2
i (x, z).

Lemma 2.1 (Generalized Schwartz inequality) Let B be a
positive semidefinite matrix of order n. Then, for all x, w ∈
Rn,

xTBw ≤ (xTBx)1/2(wTBw)1/2.

The equality holds if Bx = λBw for some λ ≥ 0.

Following Theorem 2.1 ([10], Theorem 3.1) will be
required to prove strong duality theorems:

Theorem 2.1 (Necessary condition) If x∗ is an optimal solu-
tion of problem (P1) satisfying x∗TBx∗ > 0, x∗TDx∗ > 0,
and ∇gj(x∗), j ∈ J(x∗) are linearly independent, then
there exist (s, t∗, ỹ) ∈ K(x∗), λ∗ ∈ R+, w, v ∈ Rn and
µ∗ ∈ Rm+ such that

s∑
i=1

t∗i {∇f(x∗, ỹi) +Bw − λ∗(∇h(x∗, ỹi)−

Dv)}+
m∑
j=1

µ∗j∇gj(x∗) = 0, (1)

f(x∗, ỹi) + (x∗TBx∗)1/2 − λ∗(h(x∗, ỹi)−

(x∗TDx∗)1/2) = 0, i = 1, 2, ..., s, (2)
m∑
j=1

µ∗jgj(x
∗) = 0, (3)

t∗i ≥ 0, (i = 1, 2, ..., s),
s∑
i=1

t∗i = 1, (4)

wTBw ≤ 1, vTDv ≤ 1, (x∗TBx∗)1/2 = x∗TBw,

(x∗TDx∗)1/2 = x∗TDv. (5)

In the above theorem, both matrices B and D are positive
semidefinite at the solution x∗. If either x∗TBx∗ or x∗TDx∗

is zero, then the functions involved in the objective function
of problem (P1) are not differentiable. To derive necessary
conditions under this situation, for (s, t∗, ỹ) ∈ K(x∗), we
define

Zỹ(x∗) = {z ∈ Rn : zT∇gj(x∗) ≤ 0, j ∈ J(x∗),

with any one of the next conditions (i)-(iii) holds}.

(i) x∗TBx∗ > 0, x∗TDx∗ = 0

⇒ zT
( s∑
i=1

t∗i

{
∇f(x∗, ỹi) +

Bx∗

(x∗TBx∗)1/2
−

λ∗∇h(x∗, ỹi)
})

+ (zT (λ∗2D)z)1/2 < 0,

(ii) x∗TBx∗ = 0, x∗TDx∗ > 0

⇒ zT
( s∑
i=1

t∗i

{
∇f(x∗, ỹi)− λ∗

(
∇h(x∗, ỹi)−

Dx∗

(x∗TDx∗)1/2

)})
+ (zTBz)1/2 < 0,

(iii) x∗TBx∗ = 0, x∗TDx∗ = 0

⇒ zT
( s∑
i=1

t∗i {∇f(x∗, ỹi)− λ∗∇h(x∗, ỹi)}
)

+

(zT (λ∗2D)z)1/2 + (zTBz)1/2 < 0.

If in addition, we insert the condition Zỹ(x∗) = φ, then the
result of Theorem 2.1 still holds.

III. DUALITY MODEL I

In this section, we consider the following dual problem
to (P1):

(DM1) max
(s,t,ỹ)∈K(z)

sup
(z,µ,w,v,p)∈H1(s,t,ỹ)

F (z),

where F (z) = sup
y∈Y

f(z, y) + (zTBz)1/2

h(z, y)− (zTDz)1/2
and H1(s, t, ỹ)

denotes the set of all

(z, µ, w, v, p) ∈ Rn ×Rm+ ×Rn ×Rn ×Rn satisfying
s∑
i=1

ti{(∇f(z, ỹi)+Bw)(h(z, ỹi)−(zTDz)1/2)−(∇h(z, ỹi)−

Dv)(f(z, ỹi)+(zTBz)1/2)}+
s∑
i=1

ti{(h(z, ỹi)−(zTDz)1/2)

∇2f(z, ỹi)− (f(z, ỹi) + (zTBz)1/2)∇2h(z, ỹi)}p

+
m∑
j=1

µj∇gj(z) +∇2
m∑
j=1

µjgj(z)p = 0. (6)



m∑
j=1

µjgj(z)−
1
2
pT
( s∑
i=1

ti{(h(z, ỹi)− (zTDz)1/2)

∇2f(z, ỹi)− (f(z, ỹi) + (zTBz)1/2)∇2h(z, ỹi)}+

∇2
m∑
j=1

µjgj(z)
)
p ≥ 0 (7)

wTBw ≤ 1, vTDv ≤ 1, (zTBz)1/2 = zTBw,

(zTDz)1/2 = zTDv. (8)

If the set H1(s, t, ỹ) = φ, we define the supremum of F (z)
over H1(s, t, ỹ) equal to −∞. Let

φ1(.) =
s∑
i=1

ti[(h(z, ỹi)− zTDv)(f(., ỹi) + (.)TBw)−

(f(z, ỹi) + zTBw)(h(., ỹi)− (.)TDv)]

Theorem 3.1 (Weak Duality) Let x and (z, µ, w, v, s, t, ỹ, p)
are feasible solutions of (P1) and (DM1) respectively. As-
sume that f(., ỹi) + (.)TBw and −h(., ỹi) + (.)TDv are
second-order (F, ρi) and (F, ρ′i)-convex, i = 1, 2, ..., s,
respectively at z. Also let gj(.) be second-order (F, γj)-
convex at z, j = 1, 2, ...,m and
s∑
i=1

ti

{
(h(z, ỹi)− (zTDz)1/2)ρid2

i (x, z)+(f(z, ỹi)+

(zTBz)1/2)ρ′i(d
′
i(x, z))

2

}
+

m∑
j=1

µjγjc
2
j (x, z) ≥ 0. (9)

Then

sup
ỹ∈Y

f(x, ỹ) + (xTBx)1/2

h(x, ỹ)− (xTDx)1/2
≥ F (z).

Proof Suppose to the contrary

sup
ỹ∈Y

f(x, ỹ) + (xTBx)1/2

h(x, ỹ)− (xTDx)1/2
< F (z). (10)

Since ỹi ∈ Y (z), i = 1, 2, ..., s, we have

F (z) =
f(z, ỹi) + (zTBz)1/2

h(z, ỹi)− (zTDz)1/2
. (11)

From (10) and (11), we have

f(x, ỹi) + (xTBx)1/2

h(x, ỹi)− (xTDx)1/2
≤ sup
ỹ∈Y

f(x, ỹ) + (xTBx)1/2

h(x, ỹ)− (xTDx)1/2

<
f(z, ỹi) + (zTBz)1/2

h(z, ỹi)− (zTDz)1/2
.

⇒ [(h(z, ỹi)− (zTDz)1/2)(f(x, ỹi)+ (xTBx)1/2)−

(f(z, ỹi) + (zTBz)1/2)(h(x, ỹi)− (xTDx)1/2)] < 0

As ti ≥ 0, i = 1, 2, ..., s, t 6= 0 and ỹi ∈ Y (z), from above,
we have

s∑
i=1

ti[(h(z, ỹi)− (zTDz)1/2)(f(x, ỹi) + (xTBx)1/2)−

(f(z, ỹi) + (zTBz)1/2)(h(x, ỹi)− (xTDx)1/2)] < 0 (12)

This together with Lemma 2.1 and (8) give

φ1(x) =
s∑
i=1

ti[(h(z, ỹi)−zTDv)(f(x, ỹi)+xTBw)−

(f(z, ỹi) + zTBw)(h(x, ỹi)− xTDv)]

≤
s∑
i=1

ti[(h(z, ỹi)− (zTDz)1/2)(f(x, ỹi) + (xTBx)1/2)−

(f(z, ỹi) + (zTBz)1/2)(h(x, ỹi)− (xTDx)1/2)]

< 0 = φ1(z)

Hence,
φ1(x) < φ1(z) (13)

Since f(., ỹi)+ (.)TBw and −h(., ỹi)+ (.)TDv are second-
order (F, ρi) and (F, ρ′i)-convex, i = 1, 2, ..., s, respectively
at z and gj(.) is second-order (F, γj)-convex, j = 1, 2, ...,m
at z. Therefore, we have

f(x, ỹi)+xTBw−(f(z, ỹi)+zTBw)+
1
2
pT∇2f(z, ỹi)p

≥ F
(
x, z; {∇f(z, ỹi) +Bw +∇2f(z, ỹi)p}

)
+

ρid
2
i (x, z), (14)

−h(x, ỹi)+xTDv+h(z, ỹi)−zTDv−
1
2
pT∇2h(z, ỹi)p

≥ F
(
x, z; {−∇h(z, ỹi) +Dv −∇2h(z, ỹi)p}

)
+

ρ′i(d
′
i(x, z))

2 (15)

−gj(z)+
1
2
pT∇2gj(z)p

≥ F (x, z; {∇gj(z) +∇2gj(z)p}) + γjc
2
j (x, z) (16)

Multiplying (14) by ti[h(z, ỹi)− (zTDz)1/2] and (15) by
ti[f(z, ỹi) + (zTBz)1/2] , i = 1, 2, ..., s and then summing
up these inequalities and using (8) and sublinearity of F , we
get

φ1(x)−φ1(z)+
{

1
2
pT

s∑
i=1

ti{(h(z, ỹi)−(zTDz)1/2)∇2f(z, ỹi)

−(f(z, ỹi) + (zTBz)1/2)∇2h(z, ỹi)}
}
p

≥ F
(
x, z;

s∑
i=1

ti{(∇f(z, ỹi)+Bw)(h(z, ỹi)−(zTDz)1/2)−

(f(z, ỹi) + (zTBz)1/2)(∇h(z, ỹi)−Dv) + ((h(z, ỹi)−

(zTDz)1/2)∇2f(z, ỹi)− (f(z, ỹi) + (zTBz)1/2)

∇2h(z, ỹi))p}
)

+
s∑
i=1

ti{(h(z, ỹi)− (zTDz)1/2)ρid2
i (x, z)

+(f(z, ỹi) + (zTBz)1/2)ρ′i(d
′
i(x, z))

2}. (17)

As µj ≥ 0, j = 1, 2, ...,m, from (16) and sublinearity of F ,
we have

−
m∑
j=1

µjgj(z) +
1
2
pT∇2

m∑
j=1

µjgj(z)p ≥ F
(
x, z;

m∑
j=1

µj(



∇gj(z) +∇2gj(z)p)
)

+
m∑
j=1

µjγjc
2
j (x, z). (18)

Now, adding (17) and (18), using (6)-(8), (19) and sublin-
earity of F , we get

φ1(x)− φ1(z) ≥ F
(
x, z;

s∑
i=1

ti{(∇f(z, ỹi) +Bw)(h(z, ỹi)

−(zTDz)1/2)− (∇h(z, ỹi)−Dv)(f(z, ỹi)+(zTBz)1/2)}+
s∑
i=1

ti{(h(z, ỹi)− (zTDz)1/2)∇2f(z, ỹi)− (f(z, ỹi)+

(zTBz)1/2)∇2h(z, ỹi)}p+
m∑
j=1

µj∇gj(z)+

∇2
m∑
j=1

µjgj(z)p
)

= 0

which contradicts (13). Thus the theorem proved. 2

Theorem 3.2 (Strong Duality) Let x∗ be an optimal
solution for (P1) and let ∇gj(x∗), j ∈ J(x∗) be linearly
independent. Then, there exist (s∗, t∗, ỹ∗) ∈ K(x∗) and
(x∗, µ∗, λ∗, w∗, v∗, p∗ = 0) ∈ H1(s∗, t∗, ỹ∗) such that
(x∗, µ∗, λ∗, w∗, v∗, s∗, t∗, ỹ∗, p∗ = 0) is feasible solution
of (DM1) and the two objectives have same values. If,
in addition, the assumption of weak duality hold for all
feasible solutions (x, µ, λ, w, v, s, t, ỹ, p) of (DM1), then
(x∗, µ∗, λ∗, w∗, v∗, s∗, t∗, ỹ∗, p∗ = 0) is an optimal solution
of (DM1).

Proof. Since x∗ is an optimal solution of (P1) and
∇gj(x∗), j ∈ J(x∗) are linearly independent, then by
Theorem 2.1 , there exist (s∗, t∗, ỹ∗) ∈ K(x∗) and
(x∗, µ∗, λ∗, w∗, v∗, p∗ = 0) ∈ H1(s∗, t∗, ỹ∗) such that
(x∗, µ∗, λ∗, w∗, v∗, s∗, t∗, ỹ∗, p∗ = 0) is feasible solution of
(DM1) and the two objectives have same values. Optimality
of (x∗, µ∗, λ∗, w∗, v∗, s∗, t∗, ỹ∗, p∗ = 0) for (DM1), thus
follows from weak duality Theorem 3.1. 2

Theorem 3.3 (Strict Converse Duality) Let x∗ be optimal
solution to (P1) and (z∗, µ∗, λ∗, w∗, v∗, s, t∗, ỹ∗, p∗) be op-
timal solution to (DM1). Assume that f(., ỹ∗i )+(.)TBw∗ and
−h(., ỹ∗i ) + (.)TDv∗ are second-order (F, ρi) and (F, ρ′i)-
convex, i = 1, 2, ..., s at z∗, respectively. Also let gj(.) be
second-order (F, γj)-convex at z∗, j = 1, 2, ...,m and let

s∑
i=1

t∗i {(h(z∗, ỹ∗i )− (z∗TDz∗)1/2)ρid2
i (x
∗, z∗)+

(f(z∗, ỹ∗i ) + (z∗TBz∗)1/2)ρ′i(d
′
i(x
∗, z∗))2}+

m∑
j=1

µ∗jγjc
2
j (x
∗, z∗) ≥ 0 (19)

holds and let {∇gj(x∗), j ∈ J(x∗)}, are linearly
independent. Then z∗ = x∗.

Proof We shall assume that z∗ 6= x∗ and reach a contradic-
tion. Since x∗ and (z∗, µ∗, λ∗, w∗, v∗, s, t∗, ỹ∗, p∗) be opti-
mal solutions to (P1) and (DM1), respectively and {∇gj(x∗),

j ∈ J(x∗)}, are linearly independent, by strong duality
theorem, we get

sup
ỹ∗∈Y

f(x∗, ỹ∗) + (x∗TBx∗)1/2

h(x∗, ỹ∗)− (x∗TDx∗)1/2
= F (z∗).

Therefore, for ỹ∗i ∈ Y (z∗), we have

f(x∗, ỹ∗i ) + (x∗TBx∗)1/2

h(x∗, ỹ∗i )− (x∗TDx∗)1/2
≤ sup
ỹ∗∈Y

f(x∗, ỹ∗) + (x∗TBx∗)1/2

h(x∗, ỹ∗)− (x∗TDx∗)1/2

=
f(z∗, ỹ∗i ) + (z∗TBz∗)1/2

h(z∗, ỹ∗i )− (z∗TDz∗)1/2
.

which from t∗i ≥ 0, i = 1, 2, ..., s and t∗ 6= 0 follows that
s∑
i=1

t∗i [(h(z
∗, ỹ∗i )−(z∗TDz∗)1/2)(f(x∗, ỹ∗i )+(x∗TBx∗)1/2)−

(f(z∗, ỹ∗i )+ (z∗TBz∗)1/2)(h(x∗, ỹ∗i )− (x∗TDx∗)1/2)] < 0.

This together with Lemma 2.1 and (8) give

φ1(x∗) =
s∑
i=1

t∗i [(h(z
∗, ỹ∗i )−z∗TDv∗)(f(x∗, ỹ∗i )+x

∗TBw∗)−

(f(z∗, ỹ∗i ) + z∗TBw∗)(h(x∗, ỹ∗i )− x∗TDv∗)]

≤
s∑
i=1

t∗i [(h(z
∗, ỹ∗i )−(z∗TDz∗)1/2)(f(x∗, ỹ∗i )+(x∗TBx∗)1/2)

− (f(z∗, ỹ∗i ) + (z∗TBz∗)1/2)(h(x∗, ỹ∗i )− (x∗TDx∗)1/2)]

< 0 = φ1(z∗)

Therefore
φ1(x∗) < φ1(z∗). (20)

Since, f(., ỹ∗i ) + (.)TBw∗ and −h(., ỹ∗i ) + (.)TDv∗ are
second-order (F, ρi) and (F, ρ′i)-convex, i = 1, 2, ..., s at
z∗, respectively, we have

f(x∗, ỹ∗i ) + x∗TBw∗ − (f(z∗, ỹ∗i ) + z∗TBw∗)+

1
2
p∗T∇2f(z∗, ỹ∗i )p

∗ ≥ F
(
x∗, z∗; {∇f(z∗, ỹ∗i )+

Bw∗ +∇2f(z∗, ỹ∗i )p
∗}
)

+ ρid
2
i (x
∗, z∗), (21)

−h(x∗, ỹ∗i ) + x∗TDv∗ + h(z∗, ỹ∗i )− z∗TDv∗−
1
2
p∗T∇2h(z∗, ỹ∗i )p

∗ ≥ F
(
x∗, z∗; {−∇h(z∗, ỹ∗i )

+Dv∗ −∇2h(z∗, ỹ∗i )p
∗}
)

+ ρ′i(d
′
i(x
∗, z∗))2. (22)

Multiplying (21) by t∗i [h(z
∗, ỹ∗i ) − (z∗TDz∗)1/2] and (22)

by t∗i [f(z∗, ỹ∗i ) + (z∗TBz∗)1/2], i = 1, 2, ..., s and then
summing up these inequalities and using (8) and sublinearity
of F , we obtain

φ1(x∗)− φ1(z∗) +
1
2
p∗T

s∑
i=1

t∗i {(h(z∗, ỹ∗i )− (z∗TDz∗)1/2)

∇2f(z∗, ỹ∗i )− (f(z∗, ỹ∗i ) + (z∗TBz∗)1/2)∇2h(z∗, ỹ∗i )}p∗

≥ F
(
x∗, z∗;

s∑
i=1

t∗i {(∇f(z∗, ỹ∗i ) +Bw∗)(h(z∗, ỹ∗i )−



(z∗TDz∗)1/2)−(∇h(z∗, ỹ∗i )−Dv∗)(f(z∗, ỹ∗i )+(z∗TBz∗)1/2

)}+
s∑
i=1

t∗i {(h(z∗, ỹ∗i )− (z∗TDz∗)1/2)∇2f(z∗, ỹ∗i )−

(f(z∗, ỹ∗i ) + (z∗TBz∗)1/2)∇2h(z∗, ỹ∗i )}p∗
)

+

s∑
i=1

t∗i {(h(z∗, ỹ∗i )−(z∗TDz∗)1/2)ρid2
i (x
∗, z∗)+(f(z∗, ỹ∗i )+

(z∗TBz∗)1/2)ρ′i(d
′
i(x
∗, z∗))2}. (23)

Also, the second-order (F, γj)-convexity of gj(.), j =
1, 2, ...,m at z∗, µ∗j ≥ 0 and feasibility of x∗ give

−
m∑
j=1

µ∗jgj(z
∗) +

1
2
p∗T∇2

m∑
j=1

µ∗jgj(z
∗)p∗

≥ F
(
x∗, z∗;

m∑
j=1

µ∗j (∇gj(z∗) +∇2gj(z∗)p∗)
)

+

m∑
j=1

µ∗jγjc
2
j (x
∗, z∗). (24)

Finally, adding (23) and (24) and using (7) and (19), we
obtain

φ1(x∗)− φ1(z∗) ≥ F
(
x∗, z∗;

s∑
i=1

t∗i {(∇f(z∗, ỹ∗i )+Bw
∗)

(h(z∗, ỹ∗i )− (z∗TDz∗)1/2)− (∇h(z∗, ỹ∗i )−Dv∗)(f(z∗, ỹ∗i )

+(z∗TBz∗)1/2)}+
s∑
i=1

t∗i {(h(z∗, ỹ∗i )− (z∗TDz∗)1/2)

∇2f(z∗, ỹ∗i )− (f(z∗, ỹ∗i ) + (z∗TBz∗)1/2)∇2h(z∗, ỹ∗i )}p∗

+
m∑
j=1

µj∇gj(z∗) +∇2
m∑
j=1

µjgj(z∗)p∗
)
,

which further from (6) implies

φ1(x∗) ≥ φ1(z∗).

This contradicts (20). Hence the result. 2

IV. DUALITY MODEL II

In this section, we consider the following dual problem to
(P1):
(DM2) max

(s,t,ỹ)∈K(z)
sup

(z,µ,λ,w,v,p)∈H2(s,t,ỹ)

L,

where L =

∑s
i=1 ti(f(z, ỹi) + (zTBz)1/2) +

∑m
j=1 µjgj(z)∑s

i=1 ti(h(z, ỹi)− (zTDz)1/2)
and H2(s, t, ỹ) denotes the set of all (z, µ, λ, w, v, p) ∈
Rn ×Rm+ ×R+ ×Rn ×Rn ×Rn satisfying

∇
(∑s

i=1 ti(f(z, ỹi) + (zTBz)1/2) +
∑m
j=1 µjgj(z)∑s

i=1 ti(h(z, ỹi)− (zTDz)1/2)

)
+

1
(
∑s
i=1 ti(h(z, ỹi)− (zTDz)1/2))2

{ s∑
i=1

ti(h(z, ỹi)−

(zTDz)1/2)
[ s∑
i=1

ti∇2f(z, ỹi) +
m∑
j=1

µj∇2gj(z)
]
−

s∑
i=1

ti∇2h(z, ỹi)
[ s∑
i=1

ti(f(z, ỹi) + (zTBz)1/2)+

m∑
j=1

µjgj(z)
]}
p = 0 (25)

1
2
pT
{ s∑
i=1

ti(h(z, ỹi)− (zTDz)1/2)
[ s∑
i=1

ti∇2f(z, ỹi)+

m∑
j=1

µj∇2gj(z)
]
−

s∑
i=1

ti∇2h(z, ỹi)
[ s∑
i=1

ti(f(z, ỹi)+

(zTBz)1/2) +
m∑
j=1

µjgj(z)
]}
p ≤ 0 (26)

wTBw ≤ 1, vTDv ≤ 1, (zTBz)1/2 = zTBw,

(zTDz)1/2 = zTDv. (27)

If the set H2(s, t, ỹ) is empty, we define the supremum
in (DM2) over H2(s, t, ỹ) equal to −∞. We use the notation

φ2(.) =
[ s∑
i=1

ti(h(z, ỹi)−zTDv)
][ s∑

i=1

ti(f(., ỹi)+(.)TBw)

+
m∑
j=1

µjgj(.)
]
−
[ s∑
i=1

ti(f(z, ỹi) + zTBw) +
m∑
j=1

µjgj(z)
]

[ s∑
i=1

ti(h(., ỹi)− (.)TDv)
]

Theorem 4.1 (Weak Duality) Let x and
(z, µ, λ, w, v, s, t, ỹ, p) are feasible solutions of (P1)
and (DM2) respectively. Suppose that φ2(.) is second-order
(F, ρ)-convex at z and ρ1 ≥ 0. Then

sup
ỹ∈Y

f(x, ỹ) + (xTBx)1/2

h(x, ỹ)− (xTDx)1/2
≥ L

Proof Assume on contrary to the result that

sup
ỹ∈Y

f(x, ỹ) + (xTBx)1/2

h(x, ỹ)− (xTDx)1/2
< L

or (f(x, ỹi) + (xTBx)1/2)
[ s∑
i=1

ti(h(z, ỹi)− (zTDz)1/2)
]

< (h(x, ỹi)− (xTDx)1/2)
[ s∑
i=1

ti(f(z, ỹi) + (zTBz)1/2)+

m∑
j=1

µjgj(z)
]
, ∀ ỹi ∈ Y (z), i = 1, 2, ..., s

Using ti ≥ 0, i = 1, 2, ..., s and (27) in above, we have
s∑
i=1

ti(f(x, ỹi) + (xTBx)1/2)
[ s∑
i=1

ti(h(z, ỹi)− zTDv)
]

<

s∑
i=1

ti(h(x, ỹi)− (xTDx)1/2)
[ s∑
i=1

ti(f(z, ỹi) + zTBw)



+
m∑
j=1

µjgj(z)
]
,

which further from Lemma 2.1 and (27) gives

φ2(x) ≤
[ s∑
i=1

ti(f(x, ỹi)+(xTBx)1/2)+
m∑
j=1

µjgj(x)
]

s∑
i=1

ti(h(z, ỹi)− zTDv)−
s∑
i=1

ti(h(x, ỹi)− (xTDx)1/2)

[ s∑
i=1

ti(f(z, ỹi) + zTBw) +
m∑
j=1

µjgj(z)
]

<

s∑
i=1

ti(h(z, ỹi)− zTDv)
m∑
j=1

µjgj(x)

Since
s∑
i=1

ti(h(z, ỹi) − zTDv) > 0 and
m∑
j=1

µjgj(x) ≤ 0, it

follows that

φ2(x) < 0 = φ2(z) (28)

Now, by the second-order (F, ρ)-convexity of φ2(.) at z, we
get

φ2(x)− φ2(z) +
1
2
pT∇2φ2(z)p ≥ F (x, z; {∇φ2(z)+

∇2φ2(z)p}) + ρ1d
2(x, z),

which by (26) and (27) yield

φ2(x)− φ2(z) ≥ F (x, z;∇φ2(z)+∇2φ2(z)p)+ρ1d
2(x, z).

Finally, using (25), (27), ρ1 ≥ 0 and sublinearity of F in
above, we have

Hence, φ2(x) ≥ φ2(z),

which contradicts (28). This proves the theorem. 2

By a similar way, we can proof the following theorems
between (P1) and (DM2):

Theorem 4.2 (Strong Duality) Let x∗ be an optimal
solution for (P1) and let ∇gj(x∗), j ∈ J(x∗) be linearly
independent. Then, there exist (s∗, t∗, ỹ∗) ∈ K(x∗) and
(x∗, µ∗, λ∗, w∗, v∗, p∗ = 0) ∈ H2(s∗, t∗, ỹ∗) such that
(x∗, µ∗, λ∗, w∗, v∗, s∗, t∗, ỹ∗, p∗ = 0) is feasible solution
of (DM2) and the two objectives have same values. If,
in addition, the assumption of weak duality hold for all
feasible solutions (x, µ, λ, w, v, s, t, ỹ, p) of (DM2), then
(x∗, µ∗, λ∗, w∗, v∗, s∗, t∗, ỹ∗, p∗ = 0) is an optimal solution
of (DM2).

Theorem 4.3 (Strict Converse Duality) Let x∗ be optimal
solution to (P1) and (z∗, µ∗, λ∗, w∗, v∗, s∗, t∗, ỹ∗, p∗) be
optimal solution to (DM2). Let φ2(.) be second-order (F, ρ)-
convex at z∗ and ρ2 ≥ 0. Further, assume that {∇gj(x∗),
j ∈ J(x∗)} are linearly independent. Then z∗ = x∗, that is
z∗ is an optimal solution to (P1).

V. SPECIAL CASES

(i) If p = 0, then the dual model (DM1) reduce to the
problems studied in [11,12,15,16].

(ii) If p = 0, then the model (DM2) becomes the dual
model considered in [11,12,14,16].

(iii) If p = 0 and B and D are zero matrices of order n,
then (DM1) and (DM2) reduce to the problems studied
in [5].
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