

Abstract—Good rosters have many benefits for an

organization, such as lower costs, more effective utilization of
resources and fairer workloads and distribution of shifts. The
process of constructing optimized work timetables for the
personnel is an extremely demanding task, hence the use of
decision support systems for workforce scheduling has become
increasingly important for both the public sector and private
companies. This paper describes an effective method for
optimizing large-scale staff rostering instances. The idea is to
divide an instance into smaller units, solve them separately and
then combine the results together again. A set of artificial and
real-world instances derived from the actual instances solved
for various companies are presented. We publish the best
solutions we have found using our computational intelligence
heuristic called the PEAST algorithm. We invite the workforce
scheduling community to challenge our results. This research
has contributed to better systems for our industry partner.

Index Terms—Staff Rostering, Large-Scale Real-World
Scheduling, Workforce Scheduling, Computational
Intelligence.

I. INTRODUCTION

Workforce scheduling, also called staff scheduling and
labor scheduling, is a difficult and time consuming problem
that every company or institution that has employees
working on shifts or on irregular working days must solve.
The workforce scheduling problem has a fairly broad
definition. Most of the studies focus on assigning employees
to shifts, determining working days and rest days or
constructing flexible shifts and their starting times. Different
variations of the problem are NP-hard and NP-complete [1]-
[8], and thus extremely hard to solve. The first mathematical
formulation of the problem based on a generalized set
covering model was proposed by Dantzig [9]. Good
overviews of workforce scheduling are published by Alfares
[10], Ernst et al. [11] and Meisels and Schaerf [12].

Nurse rostering [13] is by far the most studied application
area in workforce scheduling. Other successful application
areas include airline crews [14], call centers [15], check-in
counters [16], ground crews [17], nursing homes, call
centers and airport ground services [18], postal services

N. Kyngäs is with the Satakunta University of Applied Sciences, Pori,

Finland (phone: +358 50 542 9219; fax: +358 2 620 3030; e-mail:
nico.kyngas@samk.fi).

J. Kyngäs is with the Satakunta University of Applied Sciences, Pori,
Finland (e-mail: jari.kyngas@samk.fi).

K. Nurmi is with the Satakunta University of Applied Sciences, Pori,
Finland (e-mail: cimmo.nurmi@samk.fi).

[19], transport companies [20] and retail stores [21]. Recent
successful algorithms for staff scheduling include ant
colony optimization [22], dynamic programming [23],
constraint programming [24], genetic algorithms [25],
scatter search [26], hyperheuristics [27], integer
programming [28], metaheuristics [29], simulated annealing
[30], tabu search [31] and variable neighborhood search
[32].

The need for effective commercial workforce scheduling
has been driven by the growth of the customer contact
center industry and retail sector, in which efficient
deployment of labor is of crucial importance. The balance
between offering a superior service and reducing costs to
generate revenues must constantly be found.

There are five basic reasons for the increased interest in
workforce scheduling optimization. First, public institutions
and private companies around the world have become more
aware of the possibilities of decision support technologies,
and they no longer want to handle the schedules manually.
Second, human resources are one of the most critical and
most expensive resources for these organizations. Careful
planning can lead to significant improvements in
productivity. Third, good schedules are very important for
the welfare of the staff. They also reduce sick-leaves.
Besides increasing employee satisfaction, effective labor
scheduling can also improve customer satisfaction. Fourth,
new algorithms have been developed to tackle previously
intractable problem instances, and, at the same time,
computer power has increased to such a level that
researchers are able to solve real-world problems. Finally,
one further significant benefit of automating the scheduling
process is the considerable amount of time saved by the
administrative staff involved.

The goal of this paper is to describe an effective method
for solving large-scale staff rostering instances as they occur
in various lines of business and industry. Section II
introduces the workforce scheduling process and necessary
terminology. Section III gives an outline of our
computational intelligence algorithm. In Section IV we
describe how to divide a staff rostering instance into smaller
units, solve them separately and then combine the results
together again. Section V presents a set of artificial test
instances and Section VI a real-world instance. We publish
the best solutions we have found and invite the workforce
scheduling community to challenge our results.

We believe this is the first publication that uses a
computational intelligence heuristic to divide and combine
large-scale staff rostering instances, and furthermore,
present artificial and real-world benchmark instances. We
hope these instances will lay the foundation for the standard

Optimizing Large-Scale Staff Rostering
Instances

N. Kyngäs, J. Kyngäs and K. Nurmi

benchmark instances for the problem.

II. WORKFORCE SCHEDULING

Workforce scheduling consists of assigning employees to
tasks and shifts over a period of time according to a given
timetable. The planning horizon is the time interval over
which the employees have to be scheduled. Each employee
has a total working time that he/she has to work during the
planning horizon. Furthermore, each employee has
competences (qualifications and skills) that enable him/her
to carry out certain tasks. Days are divided into working
days (days-on) and rest days (days-off). Each day is divided
into periods or timeslots. A timeslot is the smallest unit of
time and the length of a timeslot determines the granularity
of the schedule. A shift is a contiguous set of working hours
and is defined by a day and a starting period on that day
along with a shift length (the number of occupied timeslots).
Shifts are usually grouped in shift types, such as morning,
day and night shifts. Each shift is composed of a number of
tasks. A shift or a task may require the employee assigned to
it to possess one or more competences. A work schedule for
an employee over the planning horizon is called a roster. A
roster is a combination of shifts and days-off assignments
that covers a fixed period of time.

Table I shows a solution for a simple one-week
workforce scheduling instance with seven employees, two
shifts (day and night) in a working day and one of three
tasks to be completed within a shift. Moreover, tasks A and
B cannot be carried out by Bea and Ellie, a night shift
cannot be followed by a day shift on the next day, and each
employee should have exactly one day-off.

TABLE I

AN EXAMPLE OF A WORKFORCE SCHEDULING SOLUTION
 Axel Bea Cass Dave Ellie Fay Gary

Mon
Day A C B
Night C B A

Tue
Day A B C
Night C A B

Wed
Day A C B
Night C A B

Thu
Day A B C
Night C B A

Fri
Day B A C
Night A C B

Sat
Day C A B
Night C B A

Sun
Day A C B
Night B C A

We classify the real-world workforce scheduling process

as given in Fig. 1. Workload prediction, also referred to as
demand forecasting or demand modeling, is the process of
determining the staffing levels - that is, how many
employees are needed for each timeslot in the planning
horizon. In this presentation, workload prediction also
includes determination of planning horizons, competence
structures, regulatory requirements and other constraints.
Shift generation is the process of determining the shift
structure, tasks to be carried out on particular shifts and the
competence needed on different shifts. The shifts generated

from a solution to the shift generation problem form the
input for subsequent phases in the workforce scheduling.
Another important goal for shift generation is to determine
the size of the workforce required to solve the demand.
Shifts are created anonymously, so there is no direct link to
the employee that will be eventually assigned to the shift.

Fig. 1. The real-work workforce scheduling process.

In preference scheduling, each employee gives a list of

preferences and attempts are made to fulfill them as well as
possible. The employees’ preferences are often considered
in the days-off scheduling and staff rostering phases. Days-
off scheduling deals with the assignment of rest days
between working days over a given planning horizon. Days-
off scheduling also includes the assignment of vacations and
special days, such as union steward duties and training
sessions. Staff rostering, also referred to as shift scheduling,
deals with the assignment of employees to shifts. It can also
specify the starting time and duration of shifts for a given
day, even though in most cases they are preassigned in shift
design. In other words, days-off scheduling deals with
working days and staff rostering deals with the working
times of day. When days-off and shifts are scheduled
simultaneously, the process is sometimes called tour
scheduling. Another special case is to schedule days-off
every tenth week and roster staff every second week to
enable the employees to plan their free time more
conveniently.

The phases from shift generation to staff rostering can be
solved using computational intelligence. Computational
workforce scheduling is a key to increased productivity,
quality of services, customer satisfaction and employee
satisfaction. Other advantages include reduced planning
time, reduced payroll expenses and ensured regulatory
compliance.

Rescheduling deals with ad hoc changes that are
necessary due to sick leaves or other no-shows. The changes
are usually carried out manually. Finally, participation in
evaluation ranges from the individual employee through
personnel managers to executives. A reporting tool should
provide performance measures in such a way that the
personnel managers can easily evaluate both the realized
staffing levels and the employee satisfaction. When
necessary, the workload prediction and/or shift generation
can be reprocessed and focused, and the whole workforce
scheduling process restarted.

III. THE COMPUTATIONAL INTELLIGENCE ALGORITHM

The usefulness of an algorithm depends on several
criteria. The two most important are the quality of the

generated solutions and the algorithmic power of the
algorithm (i.e. its efficiency and effectiveness). Other
important criteria include flexibility, extensibility and
learning capabilities. We can steadily note that our PEAST
algorithm [35] realizes these criteria. It has been used to
solve real-world school timetabling problems [36], real-
world sports scheduling problems [37] and real-world
workforce scheduling problems [38].

The PEAST algorithm is a population-based local search
method. As we know, the main difficulty for a local search
is

1) to explore promising areas in the search space - that

is, to zoom in to find local optimum solutions to a
sufficient extent, while at the same time,

2) avoiding staying stuck in these areas for too long and
3) escaping from these local optima in a systematic

way.

Population-based methods use a population of solutions

in each iteration. The outcome of each iteration is also a
population of solutions. Population-based methods are a
good way to escape from local optima. Our algorithm is
somewhat based on the cooperative local search method
[39]. In a cooperative local search scheme, each individual
carries out its own local search, in our case the GHCM
heuristic [40]. The outline of the algorithm is given in Fig.
2. and the pseudo-code of the algorithm is given in Fig. 3

Fig. 2. The population-based PEAST algorithm.

The reproduction phase of the algorithm is, to a certain

extent, based on steady-state reproduction: the new schedule
replaces the old one if it has a better or equal objective
function value. Furthermore, the least fit is replaced with the
best one when n better schedules have been found, where n
is the size of the population. Marriage selection [41] is used
to select a schedule from the population of schedules for a
single GHCM operation. In the marriage selection we

randomly pick a schedule, S, and then we try at most k – 1
times to randomly pick a better one. We choose the first
better chromosome, or if none is found, we choose S.

Fig. 3. The pseudo-code of the PEAST algorithm.

The heart of the GHCM heuristic is based on similar

ideas to the Lin-Kernighan procedures [42] and ejection
chains [43]. The basic hill-climbing step is extended to
generate a sequence of moves in one step, leading from one
solution candidate to another. The GHCM heuristic moves
an object, o1, from its old position, p1, to a new position, p2,
and then moves another object, o2, from position p2 to a new
position, p3, and so on, ending up with a sequence of moves.

Picture the positions as cells as shown in Fig. 4. The
initial cell selection is random. The cell that receives an
object is selected by considering all the possible cells and
selecting the one that causes the least increase in the
objective function when only considering the relocation
cost.

Fig. 4. A sequence of moves in the GHCM heuristic

Then, another object from that cell is selected by
considering all the objects in that cell and picking the one

Set the time limit t, no_change limit m and the population size n
Generate a random initial population of schedules
Set no_change = 0 and better_found = 0
WHILE elapsed-time < t
 REPEAT n times
 Select a schedule S by using a marriage selection with k = 3
 (explore promising areas in the search space)
 Apply GHCM to S to get a new schedule S’
 Calculate the change Δ in objective function value
 IF Δ < = 0 THEN
 Replace S with S’
 IF Δ < 0 THEN
 better_found = better_found + 1
 no_change = 0
 END IF
 ELSE
 no_change = no_change + 1
 END IF
 END REPEAT
 IF better_found > n THEN
 Replace the worst schedule with the best schedule
 Set better_found = 0
 END IF
 IF no_change > m THEN
 (escape from the local optimum)
 Apply shuffling operators
 Set no_change = 0
 END IF
 (avoid staying stuck in the promising search areas too long)
 Update simulated annealing and tabu search framework
 Update the dynamic weights of the hard constraints (AdaGen)
END WHILE
Choose the best schedule from the population

for which the removal causes the biggest decrease in the
objective function when only considering the removal cost.
Next, a new cell for that object is selected, and so on. The
sequence of moves stops if the last move causes an increase
in the objective function value and if the value is larger than
that of the previous non-improving move. Then, a new
sequence of moves is started. The initial solution is
randomly generated.

In our solution to staff rostering in large instances, the
PEAST algorithm is used to divide first the employees and
then the jobs into groups – that is, to create a partition of the
set of all employees/jobs in a certain way. Using the
notation above, the employee/job groups are the cells and
the employees/jobs are the objects in their corresponding
division problems.

The tabu list and simulated annealing refinement [40] are
used to avoid staying stuck in the promising search areas for
too long. The simulated annealing refinement uses a
standard exponential annealing scheme. The annealing is
stopped at some predefined temperature. After a certain
number of iterations, m, we let the algorithm accept an
increase in the cost function with some constant probability,
p. We choose m equal to the maximum number of iterations
with no improvement to the cost function and p equal to
0.0015. This annealing schedule has been proven to produce
better solutions compared to the well-known annealing
schedules.

A hyperheuristic [45] is a mechanism that chooses a
heuristic from a set of simple heuristics, applies it to the
current solution, then chooses another heuristic and applies
it, and continues this iterative cycle until the termination
criterion is satisfied. We use the same idea, but the other
way around. We apply shuffling operators to escape from
the local optimum. We introduce a number of simple
heuristics that are normally used to improve the current
solution but, instead, we use them to shuffle the current
solution - that is, we allow worse solution candidates to
replace better ones in the current population. In solving the
large-scale staff rostering instances, the PEAST algorithm
uses three shuffling operations:

1) Select k1 random employees/jobs from random

groups and move them into other random groups.
2) Select k2 pairs of random employees/jobs from

random groups, and swap each pair.
3) Select a random group. Select at most k3 random

employees/jobs from the group, and move them into
other groups.

The algorithm runs for a set number of iterations. For the
first half of those, one random shuffling operation is run
every 5,000th iteration. For the latter half, a random
shuffling operator operator is triggered by 5,000
consecutive iterations without improvement to the solution.
For the first half k1, k2 and k3 are all 1. For the latter half
their values stochastically vary between 5 and 10.

The algorithm uses an adaptive penalty method
(ADAGEN) for multi-objective optimization. A traditional
penalty method assigns positive weights (penalties) to the
soft constraints and sums the violation scores to the hard

constraint values to get a single value to be optimized. The
ADAGEN method assigns dynamic weights to the hard
constraints based on the weights assigned to the soft
constraints [40]. The soft constraints are assigned constant
weights according to their significance.

IV. THE DIVIDE-AND-COMBINE APPROACH
FOR LARGE-SCALE STAFF ROSTERING INSTANCES

There are hundreds of workforce scheduling solutions
commercially available and in widespread use. In that sense,
the so-called implementation-oriented workforce scheduling
approach is standard practice in industry. However, we
believe there is still a gap between academic and
commercial solutions. The commercial products may not
include the best academic solutions. We have earlier defined
[46] the implementation-oriented staff scheduling research
as research that raises

1) such modeling issues that have probably precluded

academics from getting their research results
implemented to commercial advantage, and

2) the collaboration between an academic researcher, a
problem owner and an industry software vendor.

According to our experience, the best action plan for real-

world workforce scheduling research is to cooperate with
both a problem owner and a third-party vendor. In addition,
an academic should not consider working with user
interfaces, financial management links, customer reports,
help desks, etc. Instead, one should concentrate on modeling
issues and algorithmic power.

However, it should be noted that it is difficult to
incorporate the experience and expertise of the personnel
managers into a workforce scheduling system. Personnel
managers often have extremely valuable knowledge and
experience, and a detailed understanding of their specific
staffing problem, which will vary from company to
company. To formalize this knowledge into a mathematical
business model is not an easy task.

 Rostering a large number of employees – roughly
speaking more than one hundred - is an extremely
demanding task. As the number of employees grows beyond
this limit, the computation time needed to find acceptable
solutions grows drastically – in most cases to unreasonable
levels. This is the problem we address in this paper.

The phase of the workforce scheduling process treated in
this paper is staff rostering. Companies often have manual
processes for determining days-off schedules, and they are
extremely reluctant to let go of them. Our divide-and-
combine approach for large staff rostering instances consists
of four phases:

1. Divide the employees into N groups
(E1, E2, …, EN) that are as homogeneous as
possible with regard to the constraints relevant to
the instance at hand.

2. Divide the jobs into N groups (J1, J2, …, JN) so
that each group Ji corresponds to the employee
group Ei. The goal is to maximize the

compatibility between each pair, so that
scheduling the jobs of Ji to the employees of Ei
has as good an expected result as possible.

3. Roster the staff for each of the N individual
groups, scheduling the jobs in group Ji to the
employees in group Ei.

4. Combine the N generated subrosters into one
roster. This is a solution to the original large-scale
problem.

In phase one the goal is to make the employee groups

statistically as similar to each other as possible. Intuitively
this is done to maintain the diversity of the whole set of
employees within the groups. Other approaches were also
considered during the course of the development process
but were abandoned due to their potential pitfalls. The
group division is solved using our PEAST algorithm. There
are no hard constraints in this phase.

There are a myriad of things that might be considered
when constructing employee groups. Some, like shift
restrictions and competences, are more important than
others. We consider the following in descending order of
importance:

1) Shift restrictions of the employees. Each group
should contain such employees that for each day
and for each shift code (for example, M for
morning shift) the number of employees who can
do a job with a certain code is the same.

2) Competences of the employees. Like 1), but for
competences instead of shift restrictions. In actual
implementation, competences and shift restrictions
are combined into one constraint, since an
employee’s actual ability to work on any given
day is highly dependent on both.

3) Shift preferences of the employees. Like 1), but
handles employees’ preferred shift codes.

4) Size of the groups.
5) Employees with pre-assigned jobs. The goal is to

balance the number of such jobs among the
groups for each day.

6) Employees with days-off. Like 1), but for days-off
codes instead of shift restrictions.

7) The ending times of the last jobs for employees
from the previous planning horizon should be
evenly distributed among the groups. Since this
only concerns one day and usually only a small
number of employees, it doesn’t have a high
priority.

Restrictions (Jane has a day-off on Thursday, hence she
cannot have a morning shift on Friday) and competences
(Abdul cannot drive a bus to a military area since he is not a
native citizen) are a primary concern, having a weight of
three. All the other constraints have weights of one.

Phase two is somewhat similar to phase one. The major
difference is that the job groups are mostly dependent on the
corresponding employee groups, whereas the employee
groups mostly depend on the number of groups. For
example, in phase one, each group should have M / N

employees, where M is the total number of employees and
N is the number of groups, whereas group Jk should have as
many jobs as the employees of group Ek can do. This phase
is also solved using our PEAST algorithm. The things we
consider in this phase are as follows:

1) For each group and for each day we must have at

least as many available employees as we have
jobs. Furthermore, the shift restrictions and
competences of the employees must be
considered, so that a trivially impossible situation
can be avoided (for example, if an employee
group has five people who can work the morning
shift on a given Monday, there can be at most five
morning shifts for that day in the corresponding
job group). This is the only hard constraint. This is
by far the most important constraint when the
instance is difficult.

2) As 1), but instead of ensuring a sufficiently small
number of jobs for each group try to balance the
differences between the available employees and
jobs in each group. This is important for easier
instances.

3) The sizes of the groups are matched according to
their employee group counterparts.

4) For each group and for each day we try to match
the total sum of job minutes with the average
minutes the corresponding workers are able to do.

Constraint 1) is the only hard constraint. Constraint 2),
which balances the available employees based on shift
restrictions and competences has a weight of three. The
group size balance constraint has a weight of two. All the
other constraints have weight of one.

Phase three is again solved using our PEAST algorithm
as in [34]. In phase four all the rosters are assembled into
one. This is a trivial procedure.

Note that the quality of the solution in phases one and
two is often not that apparent until phase four is completed.
The hard constraint weights are set so that each hard
violation in phase two (phase one contains no hard
constraints) causes one hard violation in the final schedule.
However, it is mostly impossible to be certain that a
particular group structure does not guarantee the existence
of additional hard constraint violations in phase three.

V. ARTIFICIAL BENCHMARK INSTANCES

Researchers quite often only solve some special artificial
cases or one real-world case. The strength of artificial and
random test instances is the ability to produce many
problems with many different properties. Still, they should
be sufficiently simple for each researcher to be able to use
them in their test environment. The strength of real-world
instances is self-explanatory. Solving real-world cases is our
ultimate goal. However, an algorithm that performs well on
one practical instance may not perform well on another,
which is why we present a collection of test instances for
both artificial and real-world cases. We start with artificial
cases. The detailed data can be obtained from the authors by
email.

Most of the current staff rostering benchmark instances
have rather specialized constraints that not all staff rostering
algorithms are capable of tackling. Our goal is to make the
instances and constraints as simple as possible, so that a
wide range of staff rostering algorithms could be used to
solve them. Our artificial instances consist of 1,000
employees and 14,000 jobs. The planning horizon is two
weeks. There are no days-off, so each employee should end
up with one job for each day - that is, 14 jobs in total. Some
of the constraints used here are defined in [46] (each such
case noted in parentheses). The following constraints are
considered:

1) An employee cannot be assigned to more than one
shift per day. This is a hard constraint.

2) An evening shift should not be succeeded by a
morning shift. One violation for each such
occurrence. (O5)

3) The required number of working minutes (6,727
or 6,728 for each employee) should be respected.
One violation for each minute of absolute
difference between the final and the target value
of working minutes for each employee. (R1)

Due to the lack of complex constraints, the jobs are
essentially different in only three variables: the day of the
job, the length of the job and whether it is a morning shift or
an evening shift. The instances were generated as follows.
For each day we create 1,000 jobs. The lengths of the jobs
were chosen as shown in Table II. For example, for each
day there are exactly 40 (4% of 1000) jobs between 361 and
390 minutes in length. The exact job lengths were generated
using discrete uniform distributions, so on average we
choose each job length between 361 and 390 minutes
exactly once for each day.

The first instance consists of only morning shifts, so
constraint 2) is irrelevant. The second instance was
generated from the first one by transforming 50% of the
jobs in each day, picked at random, into evening shifts.

Table III shows that the results improve greatly with the
group division. This is to be expected. Without the division
phase, the running time required by PEAST to achieve
acceptable solutions in such a large instance is huge. With
group division those solutions are reachable within a
reasonable time.

With ten groups, six out of six runs are far superior to the
best run made without group division for the first instance.
Increasing the number of groups to twenty causes one run
out of six to be much worse, while each of the other five
runs are better than the best run with ten groups. Thus it
seems that the optimal number of groups for this particular
instance might be even higher, but it may call for an
increase in the number of generations to achieve reliability.
In real-world situations the number of generations is usually
limited by time constraints, which is an important factor to
consider. The metric by which to determine the best set of
runs is another important consideration. Using the worst run
we would choose ten to be the number of groups for similar
data in the future. Using the best run, average run or median
run we’d choose twenty groups instead. The number of

generations is smaller for the runs with group division
simply to better demonstrate the quality of the solutions and
savings in running time provided by the division approach.
There were no hard constraint violations in any runs for the
first instance. Phase three could be parallelized, which
would usually lead to the entire process being faster than
simply running PEAST on the whole data with equal
number of generations. However, it is simpler to execute
simultaneous sequential runs in order to maximize system
stability.

TABLE II

THE DISTRIBUTION OF THE LENGTHS OF THE JOBS
min, max of

the uniform

distribution

361

390

391

420

421

450

451

480

481

510

511

540

541

570

571

600

jobs chosen

from the

interval

4% 8% 13% 25% 25% 13% 8% 4%

TABLE III

THE RESULTS OF THE TEST INSTANCES

Instance Groups Gen Min Max Avg Med Time

1 1 3 1492 2127 1809 1755 5

1 10 1 288 330 314 317 1

1 20 1 114 1283 324 140 1

2 1 3 3057 3974 3491 3503 5

2 10 1 2286 2684 2372 2315 1

2 20 1 2039 2938 2211 2060 1

Groups = number of groups the data was divided into, Gen = number of
generations (millions) used in the run, Min = the best solution found (in 6
runs), Max = the worst solution found, Avg = the average solution, Med =
the median solution, Time = the approximate running time in days. The runs
were made on a PC with Intel Core i7-980X Extreme Edition 3.33GHz and
6GB of RAM running Windows 7 Professional Edition.

The results for the second instance are similar to those of
the first one. Adding the constraint to reduce morning shifts
following evening shifts roughly doubles the value of the
objective function for unmodified PEAST. One solution out
of six also had one hard constraint violation. The effect of
the additional constraint is more pronounced on the dividing
approach, yet the results still beat the unmodified version by
a fair margin. There were no hard constraint violations in
any of the runs made with group division for the second
instance. As the number of groups grows from ten to
twenty, the variance of the results grows yet again. This
time the average solution goes down, though.

VI. A REAL-WORLD BENCHMARK INSTANCE

The real-world instance introduced in this section is based
on a case we have solved with our business partner. The
detailed data can be obtained from the authors by email.

The planning horizon is two weeks. There are 560
employees, most of whom have four days-off. Fourteen
employees do not work at all. There are a total of 2,912
days-off among the employees, which leaves the employees
capable of doing a total of 4,928 shifts. Of those, 1,092
contain preferences - i.e. an employee wants a certain kind
of shift (morning, night, etc.). The target average shift
length is 459 minutes for all employees.

There are a total of 4,522 jobs, and they are 491 minutes
in length on average. The job lengths vary between 259 and
648 minutes. The combined length of the jobs is 41,328
minutes below the combined target average shift length of
the employees, so, on average, each employee has roughly
76 minutes less work than they should have over the two-
week period. The earliest jobs start at 4:35AM and the latest
jobs end at 1:28AM. They are split into four categories that
are used as preferences for the employees: morning, noon,
evening and night.

Again, some of the constraints used here are defined in
[46] and in the case of such constraints the name used in
[46] are in parentheses. We set out to optimize the following
constraints.

1) An employee cannot be assigned to more than one

shift per day. This is a hard constraint.
2) A night shift must not precede a day-off. This is a

hard constraint. (E8)
3) An employee must have a resting time of 9 hours

between two shifts. This is a hard constraint. (R5)
4) The required number of working minutes over the

whole two-week period (459 for each actual
working day) must be respected. One violation is
given for each minute of absolute difference
between the final and the target value of working
minutes for each employee. (R1)

5) The shortage of job minutes should be distributed
evenly among the employees. Let c be the total of
minute shortage (41,328) divided by the total
number of working shifts doable by the
employees (4,928). Thus c describes the average
shortage per shift. To get the optimal shortage, s,
for a given employee, c is multiplied by the
number of days-on for that employee. Let d be the
absolute difference between the employee’s
shortage and the target shortage. One violation for
each minute above 0.1s, rounded up.

6) A night shift should not precede a morning shift
or a noon shift. One violation for each such
occurrence. (O5)

TABLE IV

THE RESULTS OF THE REAL-WORLD INSTANCES

Groups Gen Min Max Avg Med Time

1 10 5481 7206 6291 6335 5

7 10 312 803 483 462 5

14 10 126 2686 542 256 5

Groups = number of groups the data was divided into, Gen =
number of generations (millions) used in the run, Min = the best
solution found (out of ten runs), Max = the worst solution found,
Avg = the average solution, Med = the median solution, Time = the
approximate running time in days. The runs were made on a PC
with Intel Core i7-980X Extreme Edition 3.33GHz and 6GB of
RAM running Windows 7 Professional Edition.

 Table IV shows our results for the instance. The runs with
group division are far superior to those produced by the
unmodified PEAST. Doubling the number of groups from
seven to fourteen greatly increases the variance of the runs,

increasing the average slightly yet improving the best run
and the median by a notable amount.
 The running time may look impractical for real-world
applications. However, according to our runs halving the
number of generations has surprisingly little effect on the
results. In addition to reducing the number of generations,
the total running time can be cut to a fraction by
parallelizing phase three. This does not mean that the
computation time becomes negligible. Based on our
experiences, we estimate that almost as good and reliable
results (within 10%) as above could be reached with the
approximate running time of one day. Considering the fact
that the planning horizon is two weeks, that should be more
than acceptable. The actual personnel who use the software
may need more reinforcement. They may have heard about
software that rosters the staff very quickly (maybe within 15
minutes). However, these software solve only distances with
a few dozen employees and our software solves instances
with hundreds of employees. We find it advantageous to use
more computation time in order to achieve better results. It
should also be noted that integer programming based
optimizers do not usually gain substantial improvement in
solution quality when the computation time is increased
from e.g. 15 minutes to one day.

VII. CONCLUSIONS AND FUTURE WORK

We described an effective method for optimizing large-
scale staff rostering instances. A set of artificial and real-
world instances were solved using our computational
intelligence heuristic called the PEAST algorithm. This
research has contributed to better systems for our industry
partner. Our future research will include staff demand
forecasting and shift generation to meet the staff demand.

REFERENCES
[1] Garey M.R. and Johnson D.S., Computers and Intractability. A Guide

to the Theory of NP-Completeness, Freeman, 1979.
[2] Bartholdi, J.J., A Guaranteed-Accuracy Round-off Algorithm for

Cyclic Scheduling and Set Covering, Operations Research 29, 501–
510, 1981.

[3] Tien J. and Kamiyama A., On Manpower Scheduling Algorithms. In
SIAM Rev. 24 (3), 275–287, 1982.

[4] Lau, H. C., On the Complexity of Manpower Shift Scheduling,
Computers and Operations Research 23(1), 93-102, 1996.

[5] Kragelund L. and Kabel T., Employee Timetabling. An Empirical
Study, Master’s Thesis, Department of Computer Science, University
of Aarhus, Denmark, 1998.

[6] Fukunaga, A., Hamilton, E., Fama, J., Andre, D., Matan, O. and
Nourbakhsh, I, Staff scheduling for inbound call and customer contact
centers, AI Magazine 23(4), 30-40, 2002.

[7] Marx, D., Graph coloring problems and their applications in
scheduling, Periodica Polytechnica Ser. El. Eng. 48, 5–10, 2004.

[8] Di Gaspero, L., Gärtner, J., Kortsarz, G., Musliu, N., Schaerf, A. and
Slany, W., The minimum shift design problem, Annals of Operations
Research, 155(1), 79–105, 2007.

[9] Dantzig, G.B., A comment on Edie’s traffic delays at toll booths,
Operations Research 2, 339–341, 1954.

[10] Alfares, H.K., Survey, categorization and comparison of recent tour
scheduling literature, Annals of Operations Research 127, 145-175,
2004.

[11] Ernst, A. T., Jiang H., Krishnamoorthy, M., and Sier, D., Staff
scheduling and rostering: A review of applications, methods and
models, European Journal of Operational Research 153 (1), 3-27,
2004.

[12] Meisels, A. and Schaerf, A. 2003, Modelling and solving employee
timetabling problems, Annals of Mathematics and Artificial
Intelligence 39, 41-59, 2003.

[13] Burke, E.K., De Causmaecker P., Petrovic S. and Vanden Berghe G.,
Variable neighborhood search for nurse rostering problems. In
Resende and de Sousa, Editors, Metaheuristics: Computer Decision-
Making, Kluwer, 153–172, 2004.

[14] Dowling, D., Krishnamoorthy, M., Mackenzie, H. and Sier, D., Staff
rostering at a large international airport, Annals of Operations
Research 72, 125-147, 1997.

[15] Beer, A., Gaertner, J., Musliu, N., Schafhauser, W. and Slany, W.,
Scheduling breaks in shift plans for call centers. In Proc. of the 7th
Int. Conf. on the Practice and Theory of Automated Timetabling,
Montréal, Canada, 2008.

[16] Stolletz, R., Operational workforce planning for check-in counters at
airports, Transportation Research Part E 46, 414-425, 2010.

[17] Lusby T., Dohn A., Range T. and Larsen J., Ground Crew Rostering
with Work Patterns at a Major European Airlines. In Proc of the 8th
Conference on the Practice and Theory of Automated Timetabling
(PATAT), Belfast, Ireland, 2010.

[18] Ásgeirsson, E. I., Bridging the gap between self schedules and
feasible schedules in staff scheduling. In Proc of the 8th Conference
on the Practice and Theory of Automated Timetabling (PATAT),
Belfast, Ireland, 2010.

[19] Bard, J. F., Binici, C. and Desilva, A. H., Staff Scheduling at the
United States Postal Service, Computers & Operations Research 30,
745-771, 2003.

[20] Nurmi K., Kyngäs J. and Post G. Staff Scheduling for Bus Transit
Companies, In Proc of the International MultiConference of
Engineers and Computer Scientists (ICOR’11), Hong Kong, 2011.

[21] Chapados, N., Joliveau, M. and Rousseau L-M., Retail Store
Workforce Scheduling by Expected Operating Income Maximization,
CPAIOR, 53-58, 2011.

[22] Seçkiner, S.U. and Kurt, M., Ant colony optimization for the job
rotation scheduling problem, Applied Mathematics and Computation
201(1-2), 149-160, 2008.

[23] Elshafei M. and Alfares H., A dynamic programming algorithm for
days-off scheduling with sequence dependent labor costs, Journal of
Scheduling 11(2), 85-93, 2008.

[24] Qu R. and He F., A hybrid constraint programming approach for nurse
rostering problems. In Allen, Ellis, and Petridis, Editors, Applications
and Innovations in Intelligent Systems XVI, Cambridge, UK, 211-
224, 2008.

[25] Dean J., Staff Scheduling by a Genetic Algorithm with a Two-
Dimensional Chromosome Structure. In Proc of the 7th Conference on
the Practice and Theory of Automated Timetabling, Montreal,
Canada, 2008.

[26] Burke, E.K., Curtois, T., Qu, R. and Vanden Berghe, G., A scatter
search methodology for the nurse rostering problem, Journal of the
Operational Research Society, 2010.

[27] Remde, S., Cowling, P. I., Dahal, K. P. and Colledge, N.,
Exact/Heuristic Hybrids Using rVNS and Hyperheuristics for
Workforce Scheduling. In Proc. of the 7th Evolutionary Computation
in Combinatorial Optimization, Lecture Notes in Computer Science
4446, Springer, 188-197, 2007.

[28] Brunner, J.O., Bard, J.F., and Kolisch, R., Flexible shift scheduling of
physicians, Health Care Management Science. 12(3), 285-305, 2009.

[29] Burke, E., De Causmaecker P., Petrovic S., and Vanden Berghe G.,
Metaheuristics for Handling Time Interval Coverage Constraints in
Nurse Scheduling, Applied Artificial Intelligence, 743-766, 2006.

[30] Goodale, J. and Thompson, G., A Comparison of Heuristics for
Assigning Individual Employees to Labor Tour Schedules, Annals of
Operations Research 128(1), 47-63 2004.

[31] Musliu, N., Heuristic Methods for Automatic Rotating Workforce
Scheduling, International Journal of Computational Intelligence
Research 2(4), 309-326, 2006.

[32] Burke, E.K., Curtois, T., Post, G.F., Qu, R. and Veltman, B., A hybrid
heuristic ordering and variable neighbourhood search for the nurse
rostering problem, European Journal of Operational Research 188(2),
330-341, 2008.

[33] Nurmi, K. and Kyngäs, J., Days-off Scheduling for a Bus
Transportation Staff, International Journal of Innovative Computing
and Applications Volume 3 (1), Inderscience, UK, 2011.

[34] Nurmi, K., Kyngäs, J. and Post, G., Driver Rostering for Bus Transit
Companies, Engineering Letters, Volume 19(2), 125-132, 2011.

[35] Kyngäs, J: Solving Challenging Real-World Scheduling Problems,
Dissertation, Dept. of Information Technology, University of Turku,
Finland, 2011.

[36] Nurmi, K. and Kyngäs, J.: A Framework for School Timetabling
Problem, in Proc of the 3rd Multidisciplinary Int. Scheduling Conf.:
Theory and Applications (MISTA), Paris, France, 386-393, 2007.

[37] Kyngäs, J. and Nurmi, K.: Scheduling the Finnish Major Ice Hockey
League, in Proc of the IEEE Symposium on Computational
Intelligence in Scheduling (CISCHED), Nashville, USA, 2009.

[38] Kyngäs, J. and Nurmi, K.: Shift Scheduling for a Large Haulage
Company, in Proc of the 2011 International Conference on Network
and Computational Intelligence (ICNCI), Zhengzhou, China, 2011.

[39] Preux, P. and Talbi, E-G.: Towards Hybrid Evolutionary Algorithms,
International Transactions in Operational Research 6, 557-570, 1999.

[40] Nurmi, K.: Genetic Algorithms for Timetabling and Traveling
Salesman Problems, Dissertation, Dept. of Applied Math., University
of Turku, Finland, 1998. Available:
http://www.bit.spt.fi/cimmo.nurmi/

[41] Ross, P. and Ballinger, G.H.: PGA - Parallel Genetic Algorithm
Testbed, Department of Articial Intelligence, University of
Edinburgh, England, 1993.

[42] Lin, S. and Kernighan, B. W.: An effective heuristic for the traveling
salesman problem, Operations Research 21, 498–516, 1973.

[43] Glover, F.: New ejection chain and alternating path methods for
traveling salesman problems, in Computer Science and Operations
Research: New Developments in Their Interfaces, edited by Sharda,
Balci and Zenios, Elsevier, 449–509, 1992.

[44] van Laarhoven, P.J.M. and Aarts, E.H.L.: Simulated annealing:
Theory and applications, Kluwer Academic Publishers, 1987.

[45] Cowling, P., Kendall, G. and Soubeiga, E.: A hyperheuristic
Approach to Scheduling a Sales Summit, in Proc. of the 3rd
International Conference on the Practice and Theory of Automated
Timetabling (PATAT), 176-190, 2000.

[46] Ásgeirsson, E.I., Kyngäs, J., Nurmi, K. and Stølevik, M.: A
Framework for Implementation-Oriented Staff Scheduling. In Proc of
the 5th Multidisciplinary Int. Scheduling Conf.: Theory and
Applications (MISTA), Phoenix, USA, 2011.

