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Abstract—Good rosters have many benefits for an 

organization, such as lower costs, more effective utilization of 
resources and fairer workloads and distribution of shifts. The 
process of constructing optimized work timetables for the 
personnel is an extremely demanding task, hence the use of 
decision support systems for workforce scheduling has become 
increasingly important for both the public sector and private 
companies. This paper describes an effective method for 
optimizing large-scale staff rostering instances. The idea is to 
divide an instance into smaller units, solve them separately and 
then combine the results together again. A set of artificial and 
real-world instances derived from the actual instances solved 
for various companies are presented. We publish the best 
solutions we have found using our computational intelligence 
heuristic called the PEAST algorithm. We invite the workforce 
scheduling community to challenge our results. This research 
has contributed to better systems for our industry partner. 
 

Index Terms—Staff Rostering, Large-Scale Real-World 
Scheduling, Workforce Scheduling, Computational 
Intelligence. 
 

I. INTRODUCTION 

Workforce scheduling, also called staff scheduling and 
labor scheduling, is a difficult and time consuming problem 
that every company or institution that has employees 
working on shifts or on irregular working days must solve.  
The workforce scheduling problem has a fairly broad 
definition. Most of the studies focus on assigning employees 
to shifts, determining working days and rest days or 
constructing flexible shifts and their starting times. Different 
variations of the problem are NP-hard and NP-complete [1]-
[8], and thus extremely hard to solve. The first mathematical 
formulation of the problem based on a generalized set 
covering model was proposed by Dantzig [9]. Good 
overviews of workforce scheduling are published by Alfares 
[10], Ernst et al. [11] and Meisels and Schaerf [12]. 

Nurse rostering [13] is by far the most studied application 
area in workforce scheduling. Other successful application 
areas include airline crews [14], call centers [15], check-in 
counters [16], ground crews [17], nursing homes, call 
centers and airport ground services [18], postal services 
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[19], transport companies [20] and retail stores [21]. Recent 
successful algorithms for staff scheduling include ant 
colony optimization [22], dynamic programming [23], 
constraint programming [24], genetic algorithms [25], 
scatter search [26], hyperheuristics [27], integer 
programming [28], metaheuristics [29], simulated annealing 
[30], tabu search [31] and variable neighborhood search 
[32]. 

The need for effective commercial workforce scheduling 
has been driven by the growth of the customer contact 
center industry and retail sector, in which efficient 
deployment of labor is of crucial importance. The balance 
between offering a superior service and reducing costs to 
generate revenues must constantly be found. 

There are five basic reasons for the increased interest in 
workforce scheduling optimization. First, public institutions 
and private companies around the world have become more 
aware of the possibilities of decision support technologies, 
and they no longer want to handle the schedules manually. 
Second, human resources are one of the most critical and 
most expensive resources for these organizations. Careful 
planning can lead to significant improvements in 
productivity. Third, good schedules are very important for 
the welfare of the staff. They also reduce sick-leaves. 
Besides increasing employee satisfaction, effective labor 
scheduling can also improve customer satisfaction. Fourth, 
new algorithms have been developed to tackle previously 
intractable problem instances, and, at the same time, 
computer power has increased to such a level that 
researchers are able to solve real-world problems. Finally, 
one further significant benefit of automating the scheduling 
process is the considerable amount of time saved by the 
administrative staff involved. 

The goal of this paper is to describe an effective method 
for solving large-scale staff rostering instances as they occur 
in various lines of business and industry. Section II 
introduces the workforce scheduling process and necessary 
terminology. Section III gives an outline of our 
computational intelligence algorithm. In Section IV we 
describe how to divide a staff rostering instance into smaller 
units, solve them separately and then combine the results 
together again. Section V presents a set of artificial test 
instances and Section VI a real-world instance.  We publish 
the best solutions we have found and invite the workforce 
scheduling community to challenge our results. 

We believe this is the first publication that uses a 
computational intelligence heuristic to divide and combine 
large-scale staff rostering instances, and furthermore, 
present artificial and real-world benchmark instances. We 
hope these instances will lay the foundation for the standard 
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benchmark instances for the problem. 

II. WORKFORCE SCHEDULING 

Workforce scheduling consists of assigning employees to 
tasks and shifts over a period of time according to a given 
timetable. The planning horizon is the time interval over 
which the employees have to be scheduled. Each employee 
has a total working time that he/she has to work during the 
planning horizon. Furthermore, each employee has 
competences (qualifications and skills) that enable him/her 
to carry out certain tasks. Days are divided into working 
days (days-on) and rest days (days-off). Each day is divided 
into periods or timeslots. A timeslot is the smallest unit of 
time and the length of a timeslot determines the granularity 
of the schedule. A shift is a contiguous set of working hours 
and is defined by a day and a starting period on that day 
along with a shift length (the number of occupied timeslots). 
Shifts are usually grouped in shift types, such as morning, 
day and night shifts. Each shift is composed of a number of 
tasks. A shift or a task may require the employee assigned to 
it to possess one or more competences. A work schedule for 
an employee over the planning horizon is called a roster. A 
roster is a combination of shifts and days-off assignments 
that covers a fixed period of time.  

Table I shows a solution for a simple one-week 
workforce scheduling instance with seven employees, two 
shifts (day and night) in a working day and one of three 
tasks to be completed within a shift. Moreover, tasks A and 
B cannot be carried out by Bea and Ellie, a night shift 
cannot be followed by a day shift on the next day, and each 
employee should have exactly one day-off. 

 
TABLE I 

AN EXAMPLE OF A WORKFORCE SCHEDULING SOLUTION 
  Axel Bea Cass Dave Ellie Fay Gary 

Mon 
Day A C  B    
Night   C   B A 

Tue 
Day A   B C   
Night  C A    B 

Wed 
Day A    C B  
Night  C  A   B 

Thu 
Day A  B  C   
Night  C    B A 

Fri 
Day   B A C   
Night A     C B 

Sat 
Day  C A B    
Night     C B A 

Sun 
Day A C B     
Night    B C A  

 
We classify the real-world workforce scheduling process 

as given in Fig. 1. Workload prediction, also referred to as 
demand forecasting or demand modeling, is the process of 
determining the staffing levels - that is, how many 
employees are needed for each timeslot in the planning 
horizon. In this presentation, workload prediction also 
includes determination of planning horizons, competence 
structures, regulatory requirements and other constraints. 
Shift generation is the process of determining the shift 
structure, tasks to be carried out on particular shifts and the 
competence needed on different shifts. The shifts generated 

from a solution to the shift generation problem form the 
input for subsequent phases in the workforce scheduling. 
Another important goal for shift generation is to determine 
the size of the workforce required to solve the demand. 
Shifts are created anonymously, so there is no direct link to 
the employee that will be eventually assigned to the shift. 

 
 

Fig. 1. The real-work workforce scheduling process. 

 
In preference scheduling, each employee gives a list of 

preferences and attempts are made to fulfill them as well as 
possible. The employees’ preferences are often considered 
in the days-off scheduling and staff rostering phases. Days-
off scheduling deals with the assignment of rest days 
between working days over a given planning horizon. Days-
off scheduling also includes the assignment of vacations and 
special days, such as union steward duties and training 
sessions. Staff rostering, also referred to as shift scheduling, 
deals with the assignment of employees to shifts. It can also 
specify the starting time and duration of shifts for a given 
day, even though in most cases they are preassigned in shift 
design. In other words, days-off scheduling deals with 
working days and staff rostering deals with the working 
times of day. When days-off and shifts are scheduled 
simultaneously, the process is sometimes called tour 
scheduling. Another special case is to schedule days-off 
every tenth week and roster staff every second week to 
enable the employees to plan their free time more 
conveniently. 

The phases from shift generation to staff rostering can be 
solved using computational intelligence. Computational 
workforce scheduling is a key to increased productivity, 
quality of services, customer satisfaction and employee 
satisfaction. Other advantages include reduced planning 
time, reduced payroll expenses and ensured regulatory 
compliance. 

Rescheduling deals with ad hoc changes that are 
necessary due to sick leaves or other no-shows. The changes 
are usually carried out manually. Finally, participation in 
evaluation ranges from the individual employee through 
personnel managers to executives. A reporting tool should 
provide performance measures in such a way that the 
personnel managers can easily evaluate both the realized 
staffing levels and the employee satisfaction. When 
necessary, the workload prediction and/or shift generation 
can be reprocessed and focused, and the whole workforce 
scheduling process restarted.  

III. THE COMPUTATIONAL INTELLIGENCE ALGORITHM 

The usefulness of an algorithm depends on several 
criteria. The two most important are the quality of the 



 

generated solutions and the algorithmic power of the 
algorithm (i.e. its efficiency and effectiveness). Other 
important criteria include flexibility, extensibility and 
learning capabilities. We can steadily note that our PEAST 
algorithm [35] realizes these criteria. It has been used to 
solve real-world school timetabling problems [36], real-
world sports scheduling problems [37] and real-world 
workforce scheduling problems [38]. 

The PEAST algorithm is a population-based local search 
method. As we know, the main difficulty for a local search 
is 

 
1) to explore promising areas in the search space - that 

is, to zoom in to find local optimum solutions to a 
sufficient extent, while at the same time, 

2) avoiding staying stuck in these areas for too long and 
3) escaping from these local optima in a systematic 

way. 
 
Population-based methods use a population of solutions 

in each iteration. The outcome of each iteration is also a 
population of solutions. Population-based methods are a 
good way to escape from local optima. Our algorithm is 
somewhat based on the cooperative local search method 
[39]. In a cooperative local search scheme, each individual 
carries out its own local search, in our case the GHCM 
heuristic [40]. The outline of the algorithm is given in Fig. 
2. and the pseudo-code of the algorithm is given in Fig. 3  

 

Fig. 2. The population-based PEAST algorithm. 

 
The reproduction phase of the algorithm is, to a certain 

extent, based on steady-state reproduction: the new schedule 
replaces the old one if it has a better or equal objective 
function value. Furthermore, the least fit is replaced with the 
best one when n better schedules have been found, where n 
is the size of the population. Marriage selection [41] is used 
to select a schedule from the population of schedules for a 
single GHCM operation. In the marriage selection we 

randomly pick a schedule, S, and then we try at most k – 1 
times to randomly pick a better one. We choose the first 
better chromosome, or if none is found, we choose S. 

 

 

Fig. 3. The pseudo-code of the PEAST algorithm. 

 
The heart of the GHCM heuristic is based on similar 

ideas to the Lin-Kernighan procedures [42] and ejection 
chains [43]. The basic hill-climbing step is extended to 
generate a sequence of moves in one step, leading from one 
solution candidate to another. The GHCM heuristic moves 
an object, o1, from its old position, p1, to a new position, p2, 
and then moves another object, o2, from position p2 to a new 
position, p3, and so on, ending up with a sequence of moves. 

Picture the positions as cells as shown in Fig. 4. The 
initial cell selection is random. The cell that receives an 
object is selected by considering all the possible cells and 
selecting the one that causes the least increase in the 
objective function when only considering the relocation 
cost.  

 
 
 
 
 
 
 
 
 

Fig. 4. A sequence of moves in the GHCM heuristic 

 
Then, another object from that cell is selected by 
considering all the objects in that cell and picking the one 

 
Set the time limit t, no_change limit m and the population size n 
Generate a random initial population of schedules 
Set no_change = 0 and better_found = 0 
WHILE elapsed-time < t 
    REPEAT n times 
        Select a schedule S by using a marriage selection with k = 3 
        (explore promising areas in the search space) 
        Apply GHCM to S to get a new schedule S’ 
        Calculate the change Δ in objective function value 
        IF Δ < = 0 THEN 
            Replace S with S’ 
            IF Δ < 0 THEN 
                better_found = better_found  + 1 
                no_change = 0 
            END IF 
        ELSE 
            no_change = no_change + 1 
        END IF 
    END REPEAT 
    IF better_found > n THEN 
        Replace the worst schedule with the best schedule 
        Set better_found = 0 
    END IF 
    IF no_change > m THEN 
        (escape from the local optimum) 
        Apply shuffling operators 
        Set no_change = 0 
    END IF 
    (avoid staying stuck in the promising search areas too long) 
    Update simulated annealing and tabu search framework 
    Update the dynamic weights of the hard constraints (AdaGen) 
END WHILE 
Choose the best schedule from the population 
 



 

for which the removal causes the biggest decrease in the 
objective function when only considering the removal cost. 
Next, a new cell for that object is selected, and so on. The 
sequence of moves stops if the last move causes an increase 
in the objective function value and if the value is larger than 
that of the previous non-improving move. Then, a new 
sequence of moves is started. The initial solution is 
randomly generated. 

In our solution to staff rostering in large instances, the 
PEAST algorithm is used to divide first the employees and 
then the jobs into groups – that is, to create a partition of the 
set of all employees/jobs in a certain way. Using the 
notation above, the employee/job groups are the cells and 
the  employees/jobs are the objects in their corresponding 
division problems. 

The tabu list and simulated annealing refinement [40] are 
used to avoid staying stuck in the promising search areas for 
too long. The simulated annealing refinement uses a 
standard exponential annealing scheme. The annealing is 
stopped at some predefined temperature. After a certain 
number of iterations, m, we let the algorithm accept an 
increase in the cost function with some constant probability, 
p. We choose m equal to the maximum number of iterations 
with no improvement to the cost function and p equal to 
0.0015. This annealing schedule has been proven to produce 
better solutions compared to the well-known annealing 
schedules. 

A hyperheuristic [45] is a mechanism that chooses a 
heuristic from a set of simple heuristics, applies it to the 
current solution, then chooses another heuristic and applies 
it, and continues this iterative cycle until the termination 
criterion is satisfied. We use the same idea, but the other 
way around. We apply shuffling operators to escape from 
the local optimum. We introduce a number of simple 
heuristics that are normally used to improve the current 
solution but, instead, we use them to shuffle the current 
solution - that is, we allow worse solution candidates to 
replace better ones in the current population. In solving the 
large-scale staff rostering instances, the PEAST algorithm 
uses three shuffling operations: 

 
1) Select k1 random employees/jobs from random 

groups and move them into other random groups. 
2) Select k2 pairs of random employees/jobs from 

random groups, and swap each pair. 
3) Select a random group. Select at most k3 random 

employees/jobs from the group, and move them into 
other groups. 
 

The algorithm runs for a set number of iterations. For the 
first half of those, one random shuffling operation is run 
every 5,000th iteration. For the latter half, a random 
shuffling operator operator is triggered by 5,000 
consecutive iterations without improvement to the solution. 
For the first half k1, k2 and k3 are all 1. For the latter half 
their values stochastically vary between 5 and 10. 

The algorithm uses an adaptive penalty method 
(ADAGEN) for multi-objective optimization. A traditional 
penalty method assigns positive weights (penalties) to the 
soft constraints and sums the violation scores to the hard 

constraint values to get a single value to be optimized. The 
ADAGEN method assigns dynamic weights to the hard 
constraints based on the weights assigned to the soft 
constraints [40]. The soft constraints are assigned constant 
weights according to their significance.  

IV. THE DIVIDE-AND-COMBINE APPROACH 
FOR LARGE-SCALE STAFF ROSTERING INSTANCES 

There are hundreds of workforce scheduling solutions 
commercially available and in widespread use. In that sense, 
the so-called implementation-oriented workforce scheduling 
approach is standard practice in industry. However, we 
believe there is still a gap between academic and 
commercial solutions. The commercial products may not 
include the best academic solutions. We have earlier defined 
[46] the implementation-oriented staff scheduling research 
as research that raises 

 
1) such modeling issues that have probably precluded 

academics from getting their research results 
implemented to commercial advantage, and 

2) the collaboration between an academic researcher, a 
problem owner and an industry software vendor. 

 
According to our experience, the best action plan for real-

world workforce scheduling research is to cooperate with 
both a problem owner and a third-party vendor. In addition, 
an academic should not consider working with user 
interfaces, financial management links, customer reports, 
help desks, etc. Instead, one should concentrate on modeling 
issues and algorithmic power.  

However, it should be noted that it is difficult to 
incorporate the experience and expertise of the personnel 
managers into a workforce scheduling system. Personnel 
managers often have extremely valuable knowledge and 
experience, and a detailed understanding of their specific 
staffing problem, which will vary from company to 
company. To formalize this knowledge into a mathematical 
business model is not an easy task. 
 
 Rostering a large number of employees – roughly 
speaking more than one hundred - is an extremely 
demanding task. As the number of employees grows beyond 
this limit, the computation time needed to find acceptable 
solutions grows drastically – in most cases to unreasonable 
levels. This is the problem we address in this paper. 

The phase of the workforce scheduling process treated in 
this paper is staff rostering. Companies often have manual 
processes for determining days-off schedules, and they are 
extremely reluctant to let go of them. Our divide-and-
combine approach for large staff rostering instances consists 
of four phases: 
  

1. Divide the employees into N groups 
(E1, E2, …, EN) that are as homogeneous as 
possible with regard to the constraints relevant to 
the instance at hand. 

2. Divide the jobs into N groups (J1, J2, …, JN) so 
that each group Ji corresponds to the employee 
group Ei. The goal is to maximize the 



 

compatibility between each pair, so that 
scheduling the jobs of Ji to the employees of Ei 
has as good an expected result as possible. 

3. Roster the staff for each of the N individual 
groups, scheduling the jobs in group Ji to the 
employees in group Ei.  

4. Combine the N generated subrosters into one 
roster. This is a solution to the original large-scale 
problem. 

 
In phase one the goal is to make the employee groups 

statistically as similar to each other as possible. Intuitively 
this is done to maintain the diversity of the whole set of 
employees within the groups. Other approaches were also 
considered during the course of the development process 
but were abandoned due to their potential pitfalls. The 
group division is solved using our PEAST algorithm. There 
are no hard constraints in this phase. 

There are a myriad of things that might be considered 
when constructing employee groups. Some, like shift 
restrictions and competences, are more important than 
others. We consider the following in descending order of 
importance: 
 

1) Shift restrictions of the employees. Each group 
should contain such employees that for each day 
and for each shift code (for example, M for 
morning shift) the number of employees who can 
do a job with a certain code is the same. 

2) Competences of the employees. Like 1), but for 
competences instead of shift restrictions. In actual 
implementation, competences and shift restrictions 
are combined into one constraint, since an 
employee’s actual ability to work on any given 
day is highly dependent on both. 

3) Shift preferences of the employees. Like 1), but 
handles employees’ preferred shift codes. 

4) Size of the groups. 
5) Employees with pre-assigned jobs. The goal is to 

balance the number of such jobs among the 
groups for each day. 

6) Employees with days-off. Like 1), but for days-off 
codes instead of shift restrictions. 

7)  The ending times of the last jobs for employees 
from the previous planning horizon should be 
evenly distributed among the groups. Since this 
only concerns one day and usually only a small 
number of employees, it doesn’t have a high 
priority. 
 

Restrictions (Jane has a day-off on Thursday, hence she 
cannot have a morning shift on Friday) and competences 
(Abdul cannot drive a bus to a military area since he is not a 
native citizen) are a primary concern, having a weight of 
three. All the other constraints have weights of one. 

Phase two is somewhat similar to phase one. The major 
difference is that the job groups are mostly dependent on the 
corresponding employee groups, whereas the employee 
groups mostly depend on the number of groups. For 
example, in phase one, each group should have M / N 

employees, where M is the total number of employees and 
N is the number of groups, whereas group Jk should have as 
many jobs as the employees of group Ek can do. This phase 
is also solved using our PEAST algorithm. The things we 
consider in this phase are as follows: 

 
1) For each group and for each day we must have at 

least as many available employees as we have 
jobs. Furthermore, the shift restrictions and 
competences of the employees must be 
considered, so that a trivially impossible situation 
can be avoided (for example, if an employee 
group has five people who can work the morning 
shift on a given Monday, there can be at most five 
morning shifts for that day in the corresponding 
job group). This is the only hard constraint. This is 
by far the most important constraint when the 
instance is difficult. 

2) As 1), but instead of ensuring a sufficiently small 
number of jobs for each group try to balance the 
differences between the available employees and 
jobs in each group. This is important for easier 
instances. 

3) The sizes of the groups are matched according to 
their employee group counterparts. 

4) For each group and for each day we try to match 
the total sum of job minutes with the average 
minutes the corresponding workers are able to do. 
 

Constraint 1) is the only hard constraint. Constraint 2), 
which balances the available employees based on shift 
restrictions and competences has a weight of three. The 
group size balance constraint has a weight of two. All the 
other constraints have weight of one. 

Phase three is again solved using our PEAST algorithm 
as in [34]. In phase four all the rosters are assembled into 
one. This is a trivial procedure. 

Note that the quality of the solution in phases one and 
two is often not that apparent until phase four is completed. 
The hard constraint weights are set so that each hard 
violation in phase two (phase one contains no hard 
constraints) causes one hard violation in the final schedule. 
However, it is mostly impossible to be certain that a 
particular group structure does not guarantee the existence 
of additional hard constraint violations in phase three. 

V. ARTIFICIAL BENCHMARK INSTANCES 

Researchers quite often only solve some special artificial 
cases or one real-world case. The strength of artificial and 
random test instances is the ability to produce many 
problems with many different properties. Still, they should 
be sufficiently simple for each researcher to be able to use 
them in their test environment. The strength of real-world 
instances is self-explanatory. Solving real-world cases is our 
ultimate goal. However, an algorithm that performs well on 
one practical instance may not perform well on another, 
which is why we present a collection of test instances for 
both artificial and real-world cases. We start with artificial 
cases. The detailed data can be obtained from the authors by 
email. 



 

Most of the current staff rostering benchmark instances 
have rather specialized constraints that not all staff rostering 
algorithms are capable of tackling. Our goal is to make the 
instances and constraints as simple as possible, so that a 
wide range of staff rostering algorithms could be used to 
solve them. Our artificial instances consist of 1,000 
employees and 14,000 jobs. The planning horizon is two 
weeks. There are no days-off, so each employee should end 
up with one job for each day - that is, 14 jobs in total. Some 
of the constraints used here are defined in [46] (each such 
case noted in parentheses). The following constraints are 
considered: 
 

1) An employee cannot be assigned to more than one 
shift per day. This is a hard constraint. 

2) An evening shift should not be succeeded by a 
morning shift. One violation for each such 
occurrence. (O5) 

3) The required number of working minutes (6,727 
or 6,728 for each employee) should be respected. 
One violation for each minute of absolute 
difference between the final and the target value 
of working minutes for each employee. (R1) 
 

Due to the lack of complex constraints, the jobs are 
essentially different in only three variables: the day of the 
job, the length of the job and whether it is a morning shift or 
an evening shift. The instances were generated as follows. 
For each day we create 1,000 jobs. The lengths of the jobs 
were chosen as shown in Table II. For example, for each 
day there are exactly 40 (4% of 1000) jobs between 361 and 
390 minutes in length. The exact job lengths were generated 
using discrete uniform distributions, so on average we 
choose each job length between 361 and 390 minutes 
exactly once for each day. 

The first instance consists of only morning shifts, so 
constraint 2) is irrelevant. The second instance was 
generated from the first one by transforming 50% of the 
jobs in each day, picked at random, into evening shifts. 

Table III shows that the results improve greatly with the 
group division. This is to be expected. Without the division 
phase, the running time required by PEAST to achieve 
acceptable solutions in such a large instance is huge. With 
group division those solutions are reachable within a 
reasonable time. 

With ten groups, six out of six runs are far superior to the 
best run made without group division for the first instance. 
Increasing the number of groups to twenty causes one run 
out of six to be much worse, while each of the other five 
runs are better than the best run with ten groups. Thus it 
seems that the optimal number of groups for this particular 
instance might be even higher, but it may call for an 
increase in the number of generations to achieve reliability. 
In real-world situations the number of generations is usually 
limited by time constraints, which is an important factor to 
consider. The metric by which to determine the best set of 
runs is another important consideration. Using the worst run 
we would choose ten to be the number of groups for similar 
data in the future. Using the best run, average run or median 
run we’d choose twenty groups instead. The number of 

generations is smaller for the runs with group division 
simply to better demonstrate the quality of the solutions and 
savings in running time provided by the division approach. 
There were no hard constraint violations in any runs for the 
first instance. Phase three could be parallelized, which 
would usually lead to the entire process being faster than 
simply running PEAST on the whole data with equal 
number of generations. However, it is simpler to execute 
simultaneous sequential runs in order to maximize system 
stability. 

 
TABLE II 

THE DISTRIBUTION OF THE LENGTHS OF THE JOBS 
min, max of 

the uniform 

distribution 

361 

390 

391 

420 

421 

450 

451 

480 

481 

510 

511 

540 

541 

570 

571 

600 

jobs chosen 

from the 

interval 

4%  8%  13%  25%  25%  13%  8%  4% 

 
TABLE III 

THE RESULTS OF THE TEST INSTANCES 

Instance  Groups  Gen  Min  Max  Avg  Med  Time 

1  1  3  1492  2127  1809  1755  5 

1  10  1  288  330  314  317  1 

1  20  1  114  1283  324  140  1 

2  1  3  3057  3974  3491  3503  5 

2  10  1  2286  2684  2372  2315  1 

2  20  1  2039  2938  2211  2060  1 

Groups = number of groups the data was divided into, Gen = number of 
generations (millions) used in the run, Min = the best solution found (in 6 
runs), Max = the worst solution found, Avg = the average solution, Med = 
the median solution, Time = the approximate running time in days. The runs 
were made on a PC with Intel Core i7-980X Extreme Edition 3.33GHz and 
6GB of RAM running Windows 7 Professional Edition. 
 

The results for the second instance are similar to those of 
the first one. Adding the constraint to reduce morning shifts 
following evening shifts roughly doubles the value of the 
objective function for unmodified PEAST. One solution out 
of six also had one hard constraint violation. The effect of 
the additional constraint is more pronounced on the dividing 
approach, yet the results still beat the unmodified version by 
a fair margin. There were no hard constraint violations in 
any of the runs made with group division for the second 
instance. As the number of groups grows from ten to 
twenty, the variance of the results grows yet again. This 
time the average solution goes down, though.  

VI. A REAL-WORLD BENCHMARK INSTANCE 

The real-world instance introduced in this section is based 
on a case we have solved with our business partner. The 
detailed data can be obtained from the authors by email. 

The planning horizon is two weeks. There are 560 
employees, most of whom have four days-off. Fourteen 
employees do not work at all. There are a total of 2,912 
days-off among the employees, which leaves the employees 
capable of doing a total of 4,928 shifts. Of those, 1,092 
contain preferences - i.e. an employee wants a certain kind 
of shift (morning, night, etc.). The target average shift 
length is 459 minutes for all employees. 



 

There are a total of 4,522 jobs, and they are 491 minutes 
in length on average. The job lengths vary between 259 and 
648 minutes. The combined length of the jobs is 41,328 
minutes below the combined target average shift length of 
the employees, so, on average, each employee has roughly 
76 minutes less work than they should have over the two-
week period. The earliest jobs start at 4:35AM and the latest 
jobs end at 1:28AM. They are split into four categories that 
are used as preferences for the employees: morning, noon, 
evening and night. 

Again, some of the constraints used here are defined in 
[46] and in the case of such constraints the name used in 
[46] are in parentheses. We set out to optimize the following 
constraints. 

 
1) An employee cannot be assigned to more than one 

shift per day. This is a hard constraint. 
2) A night shift must not precede a day-off. This is a 

hard constraint. (E8) 
3) An employee must have a resting time of 9 hours 

between two shifts. This is a hard constraint. (R5) 
4) The required number of working minutes over the 

whole two-week period (459 for each actual 
working day) must be respected. One violation is 
given for each minute of absolute difference 
between the final and the target value of working 
minutes for each employee. (R1) 

5) The shortage of job minutes should be distributed 
evenly among the employees. Let c be the total of 
minute shortage (41,328) divided by the total 
number of working shifts doable by the 
employees (4,928). Thus c describes the average 
shortage per shift. To get the optimal shortage, s, 
for a given employee, c is multiplied by the 
number of days-on for that employee. Let d be the 
absolute difference between the employee’s 
shortage and the target shortage. One violation for 
each minute above 0.1s, rounded up.  

6) A night shift should not precede a morning shift 
or a noon shift. One violation for each such 
occurrence. (O5) 

 
TABLE IV 

THE RESULTS OF THE REAL-WORLD INSTANCES 

Groups  Gen  Min  Max  Avg  Med  Time 

1  10  5481  7206  6291  6335  5 

7  10  312  803  483  462  5 

14  10  126  2686  542  256  5 

Groups = number of groups the data was divided into, Gen = 
number of generations (millions) used in the run, Min = the best 
solution found (out of ten runs), Max = the worst solution found, 
Avg = the average solution, Med = the median solution, Time = the 
approximate running time in days. The runs were made on a PC 
with Intel Core i7-980X Extreme Edition 3.33GHz and 6GB of 
RAM running Windows 7 Professional Edition. 
 
 Table IV shows our results for the instance. The runs with 
group division are far superior to those produced by the 
unmodified PEAST. Doubling the number of groups from 
seven to fourteen greatly increases the variance of the runs, 

increasing the average slightly yet improving the best run 
and the median by a notable amount. 
 The running time may look impractical for real-world 
applications. However, according to our runs halving the 
number of generations has surprisingly little effect on the 
results. In addition to reducing the number of generations, 
the total running time can be cut to a fraction by 
parallelizing phase three. This does not mean that the 
computation time becomes negligible. Based on our 
experiences, we estimate that almost as good and reliable 
results (within 10%) as above could be reached with the 
approximate running time of one day. Considering the fact 
that the planning horizon is two weeks, that should be more 
than acceptable. The actual personnel who use the software 
may need more reinforcement. They may have heard about 
software that rosters the staff very quickly (maybe within 15 
minutes). However, these software solve only distances with 
a few dozen employees and our software solves instances 
with hundreds of employees. We find it advantageous to use 
more computation time in order to achieve better results. It 
should also be noted that integer programming based 
optimizers do not usually gain substantial improvement in 
solution quality when the computation time is increased 
from e.g. 15 minutes to one day. 

VII. CONCLUSIONS AND FUTURE WORK 

We described an effective method for optimizing large-
scale staff rostering instances. A set of artificial and real-
world instances were solved using our computational 
intelligence heuristic called the PEAST algorithm. This 
research has contributed to better systems for our industry 
partner. Our future research will include staff demand 
forecasting and shift generation to meet the staff demand. 
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