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Abstract—Characterization and identification of eukaryotic 

promoter is important for the gene prediction and genome 
annotation. In this paper, we study the structural 
characteristics of the core promoters in several eukaryotes 
through a series of DNA physicochemical properties and adopt 
a method that combines the alignment and average of multiple 
promoters and the nonlinear dimensionality reduction 
technique. The result shows that the eukaryotic core promoters 
have very special structural characteristics that are coherent 
between different species and independent of their sequence 
compositions. 
 

Index Terms— DNA physicochemical properties, eukaryotic 
promoters, Isomap, structural profiles 
 

I. INTRODUCTION 
promoter is a region of a genomic DNA sequence, 

which is located near a gene and contains critical 
elements to control the transcription regulation of the gene. 
The binding of these response elements with RNA 
polymerase and transcription factors to initiate the gene 
transcription constitutes the foundation of gene expression 
and repression mechanism, and it has been proved that the 
malfunction of promoter is closely related to quite a few 
diseases [1]-[3].  Promoter prediction is one of the tasks of 
genome annotation. Computational methods of promoter 
prediction mostly rely on the conserved cis-acting sequence 
motifs, such as TATA-boxes, CpG islands and CAAT boxes. 
However, on the whole, the effectiveness of these prediction 
methods based purely on the sequence features is quite 
limited or only workable for some specific groups of 
promoters. This is because eukaryotic promoters are 
extremely diverse and so far no ubiquitous sequence pattern 
that makes sense in all eukaryotic promoters has yet been 
found. For example, TATA-box, a well-known signature of 
promoter, is predicted to only appear in a maximum of 20% 
of mammalian promoters [4],[5]. The enrichment of CpG 
islands serves as a mark of nucleosome-depletion region and 
thus a mark of promoter for many vertebrate eukaryotes, but 
gives little help in characterizing promoters in non-vertebrate 
eukaryotes [6]. A recent point argued that besides carrying 
the sequence composition information, the linear DNA 

molecule also has very distinct physicochemical properties 
that decide to a large extent its topological structure and 
binding affinity to RNA polymerase and other protein factors 
during the formation of transcriptional complex [7],[8]. Over 
the past twenty years, abundant experiments have been 
carried out to measure the physicochemical properties of 
DNA molecules under different conditions, based on which 
people have summarized a set of empirical physicochemical 
parameters for various short DNA segments. These 
parameters have been taken into account in recent studies for 
the description of promoter, coding and non-coding regions 
in the genome of specific species, including yeast, 
Arabidopsis, rice, Plasmodium falciparum, mouse, human, 
etc [9]-[11]. It was preliminarily observed that irrespective of 
gene types or species, the regions around transcription start 
site (TSS) and core promoter (CP) indeed exhibit special 
structural settings compared with the non-promoter regions 
[10],[12],[13]. The DNA structural profiles described by 
these physicochemical parameters are also being used more 
and more widely in the promoter prediction computation 
[14],[15], and the prediction performance can be improved 
by this means.  
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However, there are also two debates about the use of these 
structural properties. One is that since the properties are 
sequence-dependent, it is not clear whether the information 
in the structural profiles has already been encompassed in the 
sequence composition or reveals some new aspects of a DNA 
segment [16]. The other is that the structural profiles of a 
single DNA sequence are very noisy because they are 
converted from the original sequence at a dinucleotides or 
trinucleotides. The noise conceals a lot of useful information 
in the profiles, while the smoothing of the profiles does 
reduce the noise but will inevitably lead to the loss of local 
details [15],[17].  

In this paper, we investigate and compare the features in 
the structural profiles of core promoter regions in several 
typical eukaryotes. Instead of using a sliding window of 
specified width to filter noise in the structural profiles of each 
individual promoter, we align promoters at the TSS for each 
eukaryote type and get an averaged promoter representative 
for this eukaryote type. Then we apply a nonlinear 
dimensionality reduction algorithm – Isomap on the averaged 
promoter model, which is described by a set of 
physicochemical parameters, to separate a comprehensive 
structural profile. The structural profile derived by our 
method is very different from those in previous studies. 
Firstly, the avoidance of the sliding window approach can 
preserve the local details of each single promoter, while the 
average between individual promoters weakens the local 
inconsistent structural traits and strengthens the consistent 
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traits. Secondly, the correlation between the original 
physicochemical parameters is captured in the first principal 
dimensionality. The structural profile under this collective 
dimensionality can reflect the coordinated structural 
variation defined by multiple physicochemical properties 
rather than a single one. The result shows that eukaryotic core 
promoters have very special structural characteristics, which 
are independent of their DNA sequence content.   

II. MATERIALS AND METHODS 

A. Core-promoter datasets 
We choose the promoters of rice, fruit fly, chicken, mouse, 

rat and human from Eukaryote Promoter Database (EPD), the 
numbers of which are 13046, 1926, 72, 196, 119 and 1871 
respectively. The reason why we choose EPD is that the 
promoter sequences in EPD are all experimentally 
determined, so they can reflect the true nature of promoters. 
We extract [-100, +50] relative to the TSS from each 
sequence as the core promoter.  

B. Physicochemical properties of DNA 
We use fourteen most commonly used ditrinucleotide and 

trinucleotide physicochemical properties to describe the core 
promoters (Table 1) [10],[14],[15]. Each promoter sequence 
is converted to a string of numerical values based on these 
ditrinucleotide and trinucleotides properties and thus is 
described by a 151 by 14 matrix. Within each group, a 
varying number of promoters (N=5, 10, 20, 30, 50) are 
randomly selected and aligned at transcription start site 
(TSS), and then averaged. By this means, we obtain an 
averaged CP representative for each eukaryote type. Then, 
we used the nonlinear dimensionality reduction 
algorithm-Isomap to extract a principal structural feature 
from the averaged CP.  

C. Isometric feature mapping (Isomap) 
Isomap is an extension of classical multidimensional 

scaling (MDS) by substituting the straight-line Euclidean 
distance with the geodesic distances to measure the pairwise 
distance between data points. It is one of the most widely 
used algorithms in the manifold learning field. The goal of 
manifold learning is to find the underlying low-dimensional 
manifold that the sample points in the high-dimensional 
space actually lie on and construct an approximation to the 
true geometry of the data manifold. The Isomap algorithm 
achieves this goal in three steps [18]:  
1) Build a neighborhood graph. This step determines which 

points are neighbors on the manifold M. If the 
distance between two points i, j in the input 
space X satisfies the criteria of K-nearest neighbors or 
ε-radius, they are regarded as neighbors. A weighted 
graph G over all the data points is defined by this means.  

( , )Xd i j

2) Calculate shortest paths. The shortest path 
distances in the graph G defined above are 
calculated and used to approximate the true geodesic 
distances between all pairs. This can be done by 
various graph analysis algorithms. Floyd’s algorithm, 
for example, iteratively improves the estimate on the  

( , )Gd i j

( , )Md i j

 

TABLE 1 

DNA PHYSICOCHEMICAL PROPERTIES 

Num. Physical property Min Max 

1 A-philicity  0.13 1.04 

2 B-DNA twist  30.6° 43.2° 

3 DNA bendability  -0.280 +0.194 

4 DNA-bending 

stiffness  

20 nm  130 nm  

5 DNA 

denaturation  

64.35 

cal/mol  

135.38 

cal/mol  

6 Duplex disrupt 

energy  

0.9 kcal  3.1 kcal  

7 Duplex free 

energy  

-2.1 

kcal/mol  

-0.9 

kcal/mol  

8 GC content  0 3 

9 Nucleosome 

positioing  

-36% +45% 

10 Propeller twist  -18.66° -8.11° 

11 Protein-DNA 

twist  

31.5° 37.8° 

12 Protein-induced 

deformability  

1.6 12.1 

13 Stacking energy  -14.59 

kcal  

-3.82 

kcal  

14 Z-DNA 

stabilizing energy 

5.9 

kcal/mol 

0.7 

kcal/mol 

 
shortest paths by comparing all the possible paths 
between all point pairs through the graph, until the 
optimal value is obtained. Graph G is firstly initialized 
by  

( , )      i,j are linked by an edge
( , )

         otherwise                  
X

G

d i j
d i j

⎧
= ⎨ ∞⎩

 

Then, for each 1, 2, ,k N= K in turn, is replaced 

by the minimal value in { } . 

Finally, the collection

( , )Gd i j

( , ),  ( , ) ( , )G G Gd i j d i k d k j+

{ ( , )G G }D d i j= represents the 
shortest paths between all point pairs in graph G. 

3) Construct d-dimensional embedding. The classical MDS 
is applied to construct an embedding of geodesic 
distance data { }( , )G GD d i j= into a d-dimensional 
Euclidean space Y. The vectors yi in Y are those that can 
minimize the cost function  

2( ) ( )G Y L
E D D= τ − τ  

in which 2L is the L2 matrix norm and τ is the inner 
product operator. The number of dimensionality d is 
decided by the top d eigenvectors in the matrix ( )GDτ .    

Here, Isomap is used to reduce the dimensionality of the 
averaged CP vectors so that each averaged CP will be 
described by the underlying principal dimensionality of the 
151 sample points.    



 

III. RESULTS AND DISCUSSION 

A. Physicochemical property profiles of CP 
For each single core promoter sequence (N=1), its 

structural profiles in terms of the fourteen original 
physicochemical properties are quite rough and of high noise 
caused by direct coding of the DNA sequence (Figure1). By 
applying the nonlinear dimensionality reduction technique, 
we obtain a low-dimensional representation of the CP 
structure. The top three principal dimensionalities account 
for 98.5% variances, and the first principal dimensionality 
alone represents 92.2% variances. So we use the first 
principal dimensionality instead of the fourteen original 
physicochemical properties to characterize the nature of the 
CP. The structural variation of the CP under the first principal 
dimensionality is marked as , n=-100,…+50. 
However, is also very noisy (Figure1). One reason is the 
high noise in the fourteen original physicochemical property 
profiles, and the other is the very limited number of data 
points (only 151) involved in the dimensionality reduction 
calculation. 

( )Y n
( )Y n

 

 

B. Structural feature found in the averaged CP 
Since the structural information in single CP is too 

obscure, we turn to the investigation of the common feature 
of certain CP group. We randomly select different numbers 
of promoters (N=5, 10, 20, 30, 50) within each eukaryote 
type, align them at transcription start site (TSS) and obtain 
fourteen averaged physicochemical property profiles. Isomap 
is then used to extract the first principal dimensionality from 

the averaged CP. To distinguish the structural signal obtained 
by this means from that extracted from a single CP, we mark 
it as , n=-100,…+50. It can be found that a 
significant feature located around [-40, -20] becomes more 
and more evident as the number of promoters involved 
increases and this rule makes sense for all the eukaryotes in 
our study (Figure2). Therefore, it is concluded that the 
“valley” in the [-40, -20] region of the structural profile is a 
mark of the eukaryotic core promoters. This hallmark signal 
is the result of accumulative effect, because the original 
signal in each single CP is too weak to be observed. The 
average of a group of promoters makes the local inconsistent 
structural traits cancel each other out while intensifies the 
local consistent traits.   

_ ( )N aveY n

n

C. The influence of TATA-box 
The [-40, -20] segment relative to TSS is also the area in 

which TATA-box often appears, so we investigate if the 
hallmark in the structural profile revealed above is practically 
caused by the TATA-box. The pattern of TATA-box follows 
the human promoter elements definition given by Narang et 
al., which includes eighteen hexanucleotide types altogether 
[19].The human promoters from EPD are scanned and 
classified into TATA-box group and no-TATA-box group. 
The scanning is done by the online server GPMiner [20]. We 
then select fifty CPs (N=50) from the two groups respectively 
and calculate the for both CP collections. The 

result shows that the same feature appears in the structural 
profiles of both groups (Figure 3), implying that the 
structural or physical characteristic of the core promoter is 
intrinsic and independent of TATA-box. In other words, the 
upstream region in the immediate vicinity of TSS has very 
special texture, which is not influenced by the sequence 
composition of the core promoter. On the other hand, there is 
another remarkable feature appearing at the TSS in the 
structural profile for the TATA-box-free group. Based on 
this phenomenon, we speculate that if TATA-box does not 
exist at the upstream region very near to TSS, the TSS itself 
will take special structural or physical settings to ensure the 
precise transcriptional initiation.   

50 _ ( )aveY

IV. CONCLUSION 
The eukaryotic core promoters have very special structural 

characteristics that are coherent between different species 
and independent of their sequence compositions. Average 
over certain number of promoters can accumulate the local 
consistent physicochemical traits, while the nonlinear 
dimensionality reduction technique has been proved to be an 
effective method to extract the hallmark structural signal 
from the averaged core promoter models. The hallmark 
located at the region of [-40, -20] is to a great extent the 
intrinsic nature for eukaryotic core promoter rather than a 
sign for the TATA-box, besides the feature in the region of 
[-40, -20], the TSS is also observed to have an extreme value 
in the structural profile. 
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Fig. 1.  Profiles of fourteen physicochemical properties and Y(n) for  a  
human CP (EPD entry: EP07056).  Refer to Table 1 for the fourteen 
physicochemical properties (pty1-14).
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Fig. 2.  The profiles of (N=5, 10, 20, 30, 50) for (a) rice, (b) fruitfly, (c) chicken, (d) mouse, (e) rat and (f) human _ ( )N aveY n

 

 
Fig. 3.  The profiles of (N=50) for two human promoter groups: (a) TATA-box group and (b) no-TATA-box group _ ( )N aveY n
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