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Abstract—We consider a multi-component, multi-product,
periodic-review (re)assemble-to-order (RATO) system that uses
an independent base-stock policy for the inventory replenish-
ment of the components. At the beginning of each period,
end-of-lease cores are returned. Because the quality of cores
is random, they are tested, graded, and sorted into four
pre-specified quality levels. Then, the random, jointly and
continuously distributed demands for the products are realized.
In our problem, partial fulfillment is not allowed. Furthermore,
the system quotes a predetermined response time window for
each product, and it penalizes the system if the demand is not
satisfied within its time window. We model this problem through
a risk-adjusted two-stage stochastic programming problem,
where the first-stage decisions are the base-stock levels for all
components, and the second-stage decisions are the allocations
of components to different products. The risk adjustment is
formulated through a chance constraint, which is then replaced
by a conditional value-at-risk constraint. We solve the resulting
problem through the sample average approximation method
combined with the L-shaped method. We also present some
encouraging numerical results.

Index Terms—Monte Carlo simulation, reverse logistics, risk
measures, stochastic programming.

I. INTRODUCTION

PRODUCT recovery can be performed in many ways
such as remanufacturing, reconditioning, recycling, can-

nibalizing and refurbishing of products. The reuse of product
returns (also called cores) can be very profitable, especially
for the high-tech products that have quite long product
life cycles. For instance, the characteristic life cycle of
a computer chip is 80,000 hours for which only 20,000
hours are used; therefore, that chip can still be economically
used for 60,000 hours in some other products through, say,
remanufacturing; see Geyer et al. (2007). Remanufacturing
is one of the highly important field of product recovery. In
the context of our paper, it refers to the process through
which a core is brought to an as good as new condition
by inspecting its components, and performing repairing,
replacing, restoring operations and/or updating it with new
specifications when necessary. This operation is widely found
for high-valued industrial products like photocopiers, com-
puters, cellular phones, aviation equipments, vehicle engines,
and telecommunication or medical equipments.

Many firms have been looking for ways to decrease their
response times to the market because the pressure for serving
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customers speedily and the impacts of product obsolescence
increase. One way to deal with the aforementioned issues
is to adopt an assemble-to-order (ATO) manufacturing strat-
egy and/or its variations (i.e., reassemble-to-order (RATO),
configure-to-order, etc.) instead of employing the traditional
make-to-stock system. In an (R)ATO system, the inventories
are held at component or part levels, which substantially
reduces the inventory holding costs. This (R)ATO system
further increases customer satisfaction through decreasing
response times to the demands and increasing fill rates (i.e.,
the fraction of demands satisfied from on-hand inventory to
the total demands).

Our paper contributes to the existing literature in the
following ways:
• This paper considers the joint optimization of the base-

stock levels and component allocation in case there are
cores of uncertain quality.

• The problem is considered in a risk-adjusted manner
by considering the so-called conditional-value-at-risk
constraint.

The first item was also considered in Akçay and Xu (2004),
but in a risk-neutral environment and without remanufactur-
ing.

The rest of the paper is organized as follows. In Section 2,
we present a description of the system, and in Section 3 we
present the risk-adjusted two-stage optimization problem. In
Section 4, we present our numerical results, and in Section
5 our conclusions and future research.

II. SYSTEM DESCRIPTION

We consider a hybrid assemble-to-order (ATO) and
reassemble-to-order (RATO) system with m components,
indexed by i = 1, ...,m, and n products, indexed by
j = 1, ..., n. The following sequence of events is typical
for the system for every period t, t = 0, 1, 2, .... At the
beginning of a period, the inventory position (i.e., on-hand
inventory plus on-order inventory minus backorders) of each
component is reviewed, and the component replenishment
orders are placed according to the inventory policy. After
the receipt of the replenishment for earlier orders and update
of the inventory positions of the components, end-of-lease
products (cores) are returned. These cores are subject to be
tested, graded, and sorted into a number of quality levels,
so that the random amounts of cores which fall into each
quality level are revealed. Then, random orders for different
products arrive through lease agreements.

The properties of the system are as follows. Each compo-
nent i operates under a periodic-review, independent base-
stock policy with the base-stock level (order-up-to level) for



component i denoted by Si. The replenishment lead time
of component i, denoted by Li, is deterministic and integer,
which is an integer multiple of the review interval. These
lead times can be different for different components.

The return time and quantity of the cores are considered as
deterministic. However, the quality of the cores is difficult
to predict. Hence, they are tested, graded, and sorted into
four quality levels; see the Xerox Europe case study in
[6]. The cores of quality level 1 (i.e., best cores) require
only refurbishing, and the cores of quality level 2 can be
remanufactured. Moreover, the cores of quality level 3 are
disassembled, and after being repaired, some of their com-
ponents enter the inventories of the brand-new components.
Finally, the cores of quality level 4 are immediately disposed
off at negligible costs.

In this study, we assume no market segmentation between
remanufactured and manufactured products. Each manufac-
tured (brand-new) product is assembled from multiple units
of a subset of m components, and each core of quality
level 2 is remanufactured by replacing a prespecified number
of components. Let bij and b′ij2 denote the usage rates
of component i to manufacture and to remanufacture unit
demand of product j, respectively, where bij ≥ b′ij2. The
system quotes a response time window, wj , for product j.
This time window is prespecified and fixed for every product
type by the system. We assume that the system is penalized
by a unit penalty, qj , if a demand for product j cannot
be filled within wj periods after its arrival. Furthermore, a
demand for product j is considered to be filled if that demand
is allocated bij or b′ij2 units of component i (no partial
shipment is allowed). All unfilled demands are completely
backlogged. The system uses the following order to fill the
demands: first, the cores of quality level 1, then the cores
of quality level 2, and finally the manufactured products.
This order is reasonable because the production times and
component requirements increase in the same order.

The problem of interest is analyzed in two stages. The
first-stage decisions are the optimal base-stock levels Si for
i = 1, ...,m, and these decisions are taken without observing
the realizations of the random amounts of cores of different
quality levels and the realizations of the random demands for
the n products. After the cores are tested and graded, and
customers’ demands are received, the second-stage decisions,
namely the amounts of inventories to be allocated to the
unfilled demands, are made in each period. We assume that
the inventories are allocated to the unfilled demands subject
to a first-come first-served (FCFS) inventory commitment
rule. Under the FCFS rule, no inventory is allocated to the
demands received in later periods unless earlier backlogs for
a component are completely satisfied. The FCFS rule has
been adopted by [1], [2], and [8].

Now, we introduce new random variables, which depend
on the joint random demands (P1t, P2t, ..., Pnt) for the
n products and the joint random amounts of the cores
that fall into four quality levels (Rjt1, Rjt2, Rjt3, Rjt4) for
j = 1, ..., n and t = 0, 1, .... These new random variables
will be used to derive an equation for the inventory on-hand.
Let Dit and Qit be the total demand for component i in
period t and the total amount of component i disassembled
from cores of quality level 3, respectively, for i = 1, ...,m.

Then,

Dit =

n∑
j=1

[
b′ij2 min

{
(Pjt −Rjt1)+ , Rjt2

}
+bij (Pjt −Rjt1 −Rjt2)+

]
Qit =

n∑
j=1

b′ij3Rjt3

where, for any two random variables X and Y , (X − Y )
+
=

max {X − Y, 0}. We further denote the amount of replenish-
ment for component i in period t and the net inventory level
(i.e., on-hand inventory minus backlog) of component i at
the end of period t by Ait and Iit, respectively. Let Di [s, t],
Ai [s, t], and Qi [s, t] be the total demand, the total replen-
ishment, and the total disassembled amount for component i
from period s through period t inclusive, respectively, where

Di [s, t] =

t∑
u=s

Diu Ai [s, t] =

t∑
u=s

Aiu

Qi [s, t] =

t∑
u=s

Qiu.

Now, we derive an equation for the inventory on-hand.
Assume that k is a nonnegative integer such that k ≤ Li
for any lead time Li. Because each component is operated
under an independent base-stock level Si, based on [7], the
following equation for the net inventory level at the end of
period t+ k can be written for i = 1, ...,m

Ii,t+k = Si −Di [t+ k − Li, t+ k]

+Qi [t+ k − Li, t+ k] .
(1)

Furthermore, using balance equations and FCFS inventory
commitment rule, the net inventory level at the end of period
t+k is related to the one at the end of period t−1 as follows

Ii,t+k = Ii,t−1 +Ai [t, t+ k]−Di [t, t+ k]

+Qi [t, t+ k] .
(2)

Substituting (2) in (1), we reach the following result

Ii,t−1 +Ai [t, t+ k] +Qi [t, t+ k] =

Si −Di [t+ k − Li, t− 1] +Qi [t+ k − Li, t+ k] . (3)

Note that Ii,t−1 + Ai [t, t+ k] + Qi [t, t+ k] is the net
inventory level at the end of period t + k after having
received all replenishment orders and having disassembled
all repairable components i from cores of quality level 3, but
before allocating any inventory to the demands realized after
period t− 1. Furthermore, because of the FCFS rule, if the
amount Si − Di [t+ k − Li, t− 1] + Qi [t+ k − Li, t+ k]
is positive, that inventory will be committed to the demands
(P1t, P2t, ..., Pnt) of period t before any demands of the
subsequent periods. Now, suppose that the response time
windows for the n products can be ordered as w1 ≤ w2 ≤
... ≤ wn. Then, the on-hand inventory of component i to be
committed to (P1t, P2t, ..., Pnt) for k = 0, 1, ..., wn is given
by

(Si −Di [t+ k − Li, t− 1]

+Qi [t+ k − Li, t+ k])
+
.

(4)



Before presenting the formulation, we assume the follow-
ing: the longest response window wn does not exceed the
shortest of the lead times Li; i.e., wn ≤ min

1≤i≤m
Li. This is a

plausible assumption because if there exists any product j for
which the lead time of component i satisfies Li < wj , that
component i can be replenished to fill the orders of product j
before its response time window wj . Hence, the component i
will not be considered in the allocation problem for product
j.

In the following, for ease of exposition, we shall focus on
stationary random data so that the on-hand inventory level
of component i in (4) becomes

(Si −Di [Li − k] +Qi [Li + 1])
+
. (5)

III. RISK-ADJUSTED TWO-STAGE STOCHASTIC
PROGRAMMING FORMULATION

We consider the following problem with a chance con-
straint:

min
S=(S1,...,Sm)T∈Rm

cTS+ E [Q (S, ε)]

s.t. Prob {Q (S, ε) ≤ η} ≥ 1− α
S ≥ Ssafe

(6)

where for a realization ε̃ =
(
P̃1, ..., P̃n, R̃11, ..., R̃n4

)
of ε,

the second-stage cost Q (S, ε̃) is given by

min qTu

s.t.
n∑
j=1

k∑
l=0

(
b′ij2x

r
jl + bijx

m
jl

)
≤(

Si − D̃i [Li − k] + Q̃i [Li + 1]
)+

(7a)

for k = 0, 1, ..., wn and i = 1, ...,m
wj∑
l=0

(
xrjl + xmjl

)
+ uj =

(
P̃j − R̃j1

)+
(7b)

for j = 1, ..., n
wj∑
l=0

xrjl ≤ R̃j2 for j = 1, ..., n (7c)

xrjl ≥ 0, xmjl ≥ 0, uj ≥ 0

for l = 0, ..., wj and j = 1, ..., n.

In the following, we define the notation in (6) and (7).
c = (c1, ..., cm)

T is vector of procurement costs per unit of
the m components, S = (S1, ..., Sm)

T is vector of base-stock
levels of the m components, Ssafe = (S1s, ..., Sms)

T is vector
of mean safety stock levels for the m components during
their lead times, η is upper bound on random second-stage
cost Q (S, ε), and α is significance level where α ∈ (0, 1).
The first-stage here-and-now decisions are the base-stock
levels (S1, ..., Sm), and these decisions are made before
observing the random data. Furthermore, q = (q1, ..., qn)

T

is vector of shortage costs per unit of the n products, and
u = (u1, ..., un)

T is vector of shortage amounts of the n
products. The second-stage wait-and-see decisions are the
remanufactured and manufactured amounts xrjl and xmjl of
product j (j = 1, ..., n), respectively, within its response
time window l = 0, 1, ..., wj , and the shortage amounts
uj . The second-stage decisions are made after observing the
random demands and the random amounts of cores that fall
into each of the four quality levels. Moreover, (7a) implies
that the amount of component i used for remanufacturing

and manufacturing within response time windows cannot
exceed its on-hand inventory level; (7b) implies that the
total remanufactured and manufactured amounts of product j
within its response time window wj plus the shortage amount

has to be equal to the net demand
(
P̃j − R̃j1

)+
for product

j, because the cores of quality level 1 (i.e., R̃j1) are ready to
fill the demand for product j after only minor servicing. Fur-
thermore, (7c) implies that the total remanufactured amounts
of product j within wj cannot exceed the remanufacturable
amount R̃j2 for product j. Additionally, in case all penalty
costs are qj = 1, the objective function in (7) divided by the
sum of the expected demands for all n products equals the
expected average no-fill rate (i.e., the complement of fill rate
with respect to one).

The formulation (6) provides a risk-adjusted approach
to the problem; i.e., it minimizes the random second-stage
cost Q (S, ε) on average, while controlling its upper limit η
for different realizations of the random data. A well-known
problem of such a formulation is that chance constraints
usually define non-convex feasible sets. It was suggested in
[9] to replace chance constraints by conditional value-at-risk
constraints, where the Conditional Value-at-Risk of a random
variable Z at significance level α is defined as

CV@Rα [Z] := inf
t∈R

{
t+ α−1E [Z − t]+

}
. (8)

It was further shown in [9] that (8) is a convex conservative
approximation to its corresponding chance constraint; i.e.,
the feasible set defined by CV@Rα [Z] ≤ η is contained in
the feasible set defined by Prob {Z ≤ η} ≥ 1−α. Therefore,
in our analysis, we will replace the chance constraint in (6)
by its corresponding CV@Rα constraint.

Ignoring the chance constraint in (6), the formulations in
(6) and (7) satisfy the well-known relatively complete re-
course assumption; i.e., given any feasible first-stage solution
(S1, ..., Sm), there exists a feasible second-stage solution(
xrjl, x

m
jl , uj

)
(j = 1, .., n and l = 0, ..., wj) for almost

every (a.e.) realization of ε. To see this, consider the worst-
case situation in which a feasible solution with Si ≥ 0 for
each component i for (6) is given, but the right-hand-sides in
(7a) are all zero; i.e., there is no on-hand inventory for any
component i. Then, for a.e. realization of ε, xrjl = 0, xmjl = 0,

and uj =
(
P̃j − R̃j1

)+
for all j = 1, ..., n and l = 0, ..., wj

constitutes a feasible solution for (7). However, the chance
constraint and consequently the CV@Rα constraint can make
(6) infeasible. Therefore, we relax the CV@Rα constraint as
follows. Let

ρλ [Q (S, ε)] := (1− λ)E [Q (S, ε)]

+λCV@Rα [Q (S, ε)]
(9)

be a real-valued function of the random variable Q (S, ε),
where E [Q (S, ε)] is assumed to be well-defined and finite.
In (9), λ ∈ [0, 1] is a parameter that can be tuned for a
tradeoff between minimizing on average and risk control.
Using (8) and (9), we reformulate the first-stage problem (6)
as follows, which we will use throughout the paper:

min
S≥Ssafe,t∈R

cTS+ λt+ E {V (S, ε)}. (10)

where V (S, ε) = (1− λ)Q (S, ε) + λα−1 [Q (S, ε)− t]+.
Now, the second-stage objective function in (7) is given



by (1− λ)qTu+ λα−1
[
qTu− t

]+
. By introducing a new

variable v such that v ≥ qTu− t and v ≥ 0, the formulation
in (7) becomes

min (1− λ)qTu+ λα−1v (11)

s.t.
n∑
j=1

k∑
l=0

(
b′ij2x

r
jl + bijx

m
jl

)
≤

(
Si − D̃i [Li − k] + Q̃i [Li + 1]

)+
for k = 0, 1, ..., wn and i = 1, ...,m
wj∑
l=0

(
xrjl + xmjl

)
+ uj =

(
P̃j − R̃j1

)+
for j = 1, ..., n
wj∑
l=0

xrjl ≤ R̃j2 for j = 1, ..., n

qTu− v ≤ t
xrjl ≥ 0, xmjl ≥ 0, uj ≥ 0

for l = 0, ..., wj and j = 1, ..., n.

We assume that we can sample from the joint distributions
of (P1, P2, ..., Pn) and (Rj1, Rj2, Rj3, Rj4) for j = 1, ..., n
through Monte Carlo simulation and solve the problems in
(10) and (11) through the sample average approximation
method combined with the L-shaped algorithm. We do not
give further details about our solution procedure and refer to
[10] for the sample average approximation, and [3] for the
L-shaped algorithm.

IV. NUMERICAL EXAMPLES

We implement all experiments on a PC with Windows
XP, Intel Pentium 4 CPU of 1.60 GHz, and 1.00 GB RAM.
Because for now the instances that are detailed below are
small, the CPU times are negligible, and hence they are not
presented.

We consider the configure-to-order system in [4]. The lead
times and the unit acquisition costs are given in Table 1, and
the bill-of-materials structure is given in Table 2. Further-
more, we assume that the demands for the three products are
multivariate normally distributed with the mean vector (150,
100, 125), the variances (750, 625, 675), and the correlations
between the demands are randomly generated from the uni-
form distribution on (-1, 1). The response window times are
first considered as w1 = 1, w2 = 2, w3 = 3 for products 1,
2, and 3. Later, we also consider w1 = w2 = w3 = 0, which
enables us to observe immediate fill rates for products 1, 2,
and 3. Moreover, the amounts of cores (returned products)
are considered as (10, 15, 20) for products 1, 2, and 3. We
assume that for each product, the numbers of cores that fall
into the quality levels 1, 2, 3, and 4 follow multivariate
normal distributions with the following mean vectors and
variances: (1200, 1500, 2500, 2200) as the mean vector and
(300, 500, 1000, 560) as the variances for product 1, (3500,
1200, 2200, 1800) as the mean vector and (1000, 600, 1200,
900) as the variances for product 2, and (1500, 1500, 1500,
300) as the mean vector and (900, 900, 900, 125) as the
variances for product 3. For each product, the correlations
between the quality levels are again randomly generated from
the uniform distribution on (-1, 1). We denote the realizations

TABLE I
COMPONENTS, LEAD TIMES, AND UNIT ACQUISITION COSTS FOR THE

EXAMPLE CONFIGURE-TO-ORDER SYSTEMS IN [4]

i Component Lead time Unit acquisition cost

1 Base unit 5 215
2 128 MB card 15 232
3 450 MHz board 12 246
4 500 MHz board 12 316
5 600 MHz board 12 639
6 7 GB disk drive 18 215
7 13 GB disk drive 18 250
8 Preload A 4 90
9 Preload B 4 90

10 CD ROM 10 126
11 Video graphics card 6 90
12 Ethernet card 10 90

TABLE II
THE BILL-OF-MATERIALS STRUCTURE FOR THE EXAMPLE

CONFIGURE-TO-ORDER SYSTEMS IN [4]

Component Product 1 Product 2 Product 3

Base unit 1.0 1.0 1.0
128 MB card 1.0 1.0 1.0
450 MHz board 1.0 - -
500 MHz board - 1.0 -
600 MHz board - - 1.0
7 GB disk drive 1.0 0.4 -
13 GB disk drive - 0.6 1.0
Preload A 0.7 0.5 0.3
Preload B 0.3 0.5 0.7
CD ROM 1.0 1.0 1.0
Video graphics card - 0.3 0.6
Ethernet card - 0.2 0.5

of these multivariate normally distributed random variables
by δ̃1 =

(
δ̃1,1, δ̃1,2, δ̃1,3, δ̃1,4

)
, δ̃2 =

(
δ̃2,1, δ̃2,2, δ̃2,3, δ̃2,4

)
,

and δ̃3 =
(
δ̃3,1, δ̃3,2, δ̃3,3, δ̃3,4

)
. Note that because for a fixed

product j, the sum of the fractions of cores that fall into the
four quality levels has to be equal to one, we compute these
four fractions from the δ̃j through δ̃j,1/ρ̃j , δ̃j,2/ρ̃j , δ̃j,3/ρ̃j ,
and δ̃j,4/ρ̃j , where ρ̃j = δ̃j,1 + δ̃j,2 + δ̃j,3 + δ̃j,4. Then, for
example, we find the realizations of the cores of quality levels
1, 2, 3, and 4 for product 1 by 10 × δ̃1,1/ρ̃1, 10 × δ̃1,2/ρ̃1,
10 × δ̃1,3/ρ̃1, and 10 × δ̃1,4/ρ̃1, respectively. The penalty
costs are qT = (22480, 25200, 33020).

We consider λ and α in (10) and (11) as parameters, and
solve these problems for several values of λ and α. We first
solve the problems for w1 = 1, w2 = 2, w3 = 3 (instance
1), and then repeat the experiments for w1 = w2 = w3 = 0
(instance 2). We obtain very similar results for both in-
stances, hence we present results in Figures 1 and 2 only
for instance 1. Note that after sampling the demands and
the random amounts of cores that fall into each quality
levels, the problems in (10) and (11) are formulated as two
linear programming problems, which are then solved through
CPLEX 12.2.

Note that increasing λ or decreasing α would increase the
relative importance of the risk adjustment term, and hence
would lead to a more conservative system; for α, this can



also be seen from the chance constraint in (6). Both Figures
1 and 2 reflect the increase in the conservatism of the system
because the optimal objective value of the first-stage problem
in (10) increases as λ increases in Figure 1, and it increases
as α decreases in Figure 2.

V. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we consider a multi-component, multi-
product, periodic-review (re)assemble-to-order system, and
find the joint optimal base-stock levels and component al-
location policies in a risk-adjusted environment. We model
this problem through a risk-adjusted two-stage stochastic
programming problem, where the first-stage decisions are
the base-stock levels for all components, and the second-
stage decisions are the allocations of components to dif-
ferent products. Risk adjustment is achieved through the
conditional-value-at-risk constraint. We solve the resulting
problem through the sample average approximation com-
bined with the L-shaped method. Our preliminary numerical
results are intuitively sound: as we make the system more
conservative (by increasing the parameter λ or by decreasing
the parameter α), our expected total optimal objective value
increases.

Further research should include more numerical results by
using different multivariate distributions for demands. Con-
sideration of market segmentation between remanufactured
and manufactured products is a further important issue.
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Fig. 1. Effects of changing λ on the optimal objective value of the first-
stage problem in (10): α = 10% and fixed
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Fig. 2. Effects of changing α on the optimal objective value of the first-
stage problem in (10): λ = 0.5 and fixed




