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Abstract—The design of container shipping networks is an
important real world problem, with assets and operational costs
in billions of dollars. To guide the optimal deployment of the
ships, a single vessel roundtrip is considered by minimizing
operational costs and flowing the best paying cargo under com-
mercial constraints. Inspiration for formulation and solution
method is taken from the rich research done within pickup and
delivery problems. The problem, the multicommodity one-to-
one pickup and delivery traveling salesman problem with path
duration limits is, to the best of out knowledge, considered for
the first time. An arc flow and a path flow model are presented.
A Branch and Cut and Price solution method is proposed and
implemented.

Index Terms—Traveling salesman problem, Liner shipping,
Branch-and-Cut-and-Price, shortest path, green logistics.

I. INTRODUCTION

CONTAINER shipping carriers operate worldwide net-
works consisting of hundreds of vessels and with op-

erating costs of billions of dollars. Developing methods that
can improve these network costs and service levels are of
huge importance for both the carriers and the customers,
indirectly all of us, as most manufactured produce can trace
parts of its origin to distant continents.

Research on Liner Shipping Network Design Problems
(LSNDP) has so far been limited and relatively isolated.
At the same time research in seemingly related problems
of various pickup and delivery problems has been abundant.
This paper aims to use effective formulations from well
studied pickup and delivery problems and adding complexity
to attain a closer resemblance with LSNDP problems.

Container shipping networks provide transport of contain-
ers from port to port at a fixed schedule, usually weekly,
with a predetermined path duration. The networks consist of
a number of services, a set of similarly sized vessels sailing
on a cyclic itinerary of ports. The services meet at certain
hub ports where interchange of cargo can happen. Usually
the service frequency is weekly, and the roundtrip time is a
multiplier of 7, with the same number of vessels assigned,
e.g. a 42 days roundtrip service, has 6 vessels assigned,
giving a weekly portcall for all ports on the service.
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A demand will then be loaded at its origin port to some
service, which may bring the demand directly to its destina-
tion or unload it at some hub port for transhipment to another
service, ultimately bringing the cargo to its destination. For a
more general introduction to the economics of liner shipping
please refer to Stopford [19] and Notteboom [15].

In this paper we will investigate a limited version of the
full LSNDP. This can be interesting as an efficient method
for a subset of the LSNDP, which can be extended to cover
a larger part of the problem domain later.

The investigated problem will consider the design of a
single capacitated service following a simple cyclic rotation
where all ports must be visited, a hamiltonian tour.

In its own right this can also be interesting for a network
planner designing a single service. Fierce competition often
require that path durations are low, while the best paying
cargo must be prioritized for the limited capacity. Here it
can be part of an important decision support tool.

The problem is to transport a set of demands on a gener-
ated roundtrip, where the combined weight of these demands
must respect the capacity of all edges. A demand has a
maximal path duration which must be respected, alternatively
the cargo can be left at port, without being transported. A
demand can be partly fulfilled, but must still respect the path
duration limit.

This problem will be denoted the multi-commodity one-
to-one pickup-and-delivery traveling salesman problem with
path duration limits, or in short m-t-PDTSP, to the best of
our knowledge this problem has not been addressed before.

A. Liner shipping

Research on Liner Shipping problems has been relatively
scarce, for an overview of earlier research on the topic
please refer to Christiansen et al. [7] and Christiansen
et al. [6]. Since these reviews, the interest in the field
has increased and a number of articles has been published,
with various approaches and scopes of the LSNDP. The
work of Shintani et al. [18] has a detailed description of
the problem cost structure and includes consideration of
repositioning empty containers. The network design problem
considered by Agarwal and Ergun [1] generate multiple
services and handles transhipments, a bender’s and a column
generation based algorithm is implemented. These scale to
large instances, but a drawback is that transhipments costs are
excluded. The model of Alvarez [2] considers transhipment
cost and find solutions for large instances in a heuristical
column generation approach. The Branch-and-Cut method of
Reinhardt and Pisinger [17] has the first model considering



both transhipments and allowing for non-simple rotations
(with two calls to a single port), smaller instances are solved
optimally. The models of Gelareh et al. [9] and Gelareh and
Pisinger [10] use a hub location based approach, generating
a main service servicing some ports directly and others are
feedering to these. The work of Løfstedt et al. [14] describes
the domain of LSNDP, discusses the relevant scoping, has a
revised model of the problem based on the model of Alvarez
[2] and presents a number of benchmark instances for the
LSNDP based on real world problems. A novel aggregation
of demands was presented in Jepsen et al. [13] giving a
new model formulation and decomposition method, though
this did not perform well in practice. A heuristic for a
short horizon version of the problem is presented by Wang
and Meng [20]. This multitude of work on LSNDP shows
that interest in these important problems has picked up.
Most of this work considers different models and scopes of
the problem. The optimal methods can only solve smaller
problem instances (10 - 15 ports), and as real world instances
are much larger the problem is still open as highlighted by
the work of Løfstedt et al. [14].

B. Pickup and Delivery problems

The m-t-PDTSP is inspired by the wealth of research
done within pickup and delivery problems, Parragh et al.
[16] and Berbeglia et al. [4] both give good introductions
to these problems, reviews existing literature and proposes
classification schemes. In the classification of Parragh et al.
[16] the m-t-PDTSP is a Single Dial A Ride Problem
(SDARP) excluding Time Windows and with the important
difference that no depot is required, i.e. cargo can be carried
through the depot. In the classification of Berbeglia et al. [4]
the m-t-PDTSP is a [1-1|PD|1], 1-1 as each commodity has
one origin and one destination, PD as each vertex must be
visited exactly once for combined pickup and delivery and
1 as a single service is generated, but again an important
difference from related problems is the lack of depot. The
multi-commodity one-to-one pickup-and-delivery traveling
salesman problem (m-PDTSP) in considered in Hernández-
Pérez and Salazar-González [11], the problem is formulated
and solution methods based on bender’s decomposition are
implemented. The m-t-PDTSP is an extension of the m-
PDTSP, with the addition of path duration, no depot or
allowing cargo to be carried through it and allowing partial
carriage of flow, which has an associated revenue. An often
encountered type of subproblem in pickup and delivery prob-
lems are Shortest Path Problems with Resource Constraints
(SPPRC) which is also found in a decomposition of the m-
t-PDTSP. For a review on SPPRC problems and algorithms
please refer to Irnich and Desaulniers [12].

II. MATHEMATICAL FORMULATION

In the following we introduce the notation, present an arc
flow model, followed by a path model and solution method
for the m-t-PDTSP.

The service must visit all nodes, i ∈ V exactly once.
Directed edges (i, j) ∈ A exists between all nodes, giving
the complete directed graph G = (V,A). Each arch a ∈ A
has a cost to traverse, ca, representing time charter costs for
the vessel, bunker cost for propulsion and portcall costs for

visiting the port j. Traversing the arc takes time, ta, this time
will depend on the sailed distance and the speed of the vessel.
The service has a capacity Q, which must be respected at
all traversed arcs. The generated service can transport the
commodities k ∈ K, each commodity k has a source sk
and a destination dk, (sk 6= dk), (sk, dk ∈ V ), a volume
of cargo Fk > 0, a maximal transit time tk > 0 and unit-
revenue for transporting, rk > 0. A node i can be the source
of one or more commodities, as well as destination for some
commodities.

A. Arc Flow Formulation

The problem is to find a maximal profit set of paths in
G for a set of commodities k such that containers can be
moved from origin to destination, in at most time tk. All the
paths should be placed on a hamiltonian tour, where each
arc has some cost and traversal time.

Let xa be a binary variable set if the service travels on arc
a ∈ A. Let fka be the flow of commodity k on arc a, binary
variable xka is set iff commodity k uses arc a. The problem
can then be formulated as:

min
∑
a∈A

caxa −
∑
k∈K

rkfksk (1)

subject to

x(δ+(i)) = x(δ−(i)) ∀i ∈ V (2)

x(δ+(i)) = 1 ∀i ∈ V (3)

x(δ+(S)) ≥ 1 ∀S ⊂ V (4)∑
a∈δ+(i)

fka −
∑

a∈δ−(i)

fka{
≤ qk if i = sk,

= 0 otherwise
∀i ∈ V, k ∈ K (5)∑

k∈K

fka ≤ Qxa ∀a ∈ A (6)

fka ≤ Fkxka ∀a ∈ A, k ∈ K (7)∑
a∈A

xkata ≤ tk ∀k ∈ K (8)

fka ≥ 0 ∀a ∈ A, k ∈ K (9)
xa ∈ {0, 1} ∀a ∈ A (10)

xka ∈ {0, 1} ∀a ∈ A, k ∈ K (11)

Where the objective minimizes the cost of the traversed
arcs subtracted the revenue of flowed cargo. Constraint (2)
that all nodes have the same number of ingoing and outgoing
opened edges, where δ+(i) and δ−(i) denotes the set of
ingoing, respectively outgoing, arcs to node i. Each node
must be visited exactly once (3). Constraints (4) are subtour
elimination constraints that ensure that the service connects
all nodes in a single rotation. The conservation of flow is
ensured by (5), and the capacity is enforced by (6). We can
not transport more cargo than available, is ensured by (7)
which also set variables xka. The path duration is ensured by
(8).



B. Path Flow Formulation

The arc flow model given by (1) - (11) is Dantzig - Wolfe
decomposed on the variables fka . Let Pk be the set of all
feasible paths from sk to dk, satisfying constraint (5), (7) and
(8), this set has an exponential number of elements. Each
path p ∈ Pk is denoted as a set of arcs, i.e. p ⊂ A, let∑
a∈p ta = tp be the transit time of this path. Let λp be a

non negative real variable, being the volume of flow using
path p. The m-t-PDTSP can then be formulated as:

min
∑
a∈A

caxa −
∑
k∈K

rk
∑
p∈Pk

λp (12)

subject to

x(δ+(i)) = x(δ−(i)) ∀i ∈ V (13)
x(δ+(i)) = 1 ∀i ∈ V (14)
x(δ+(S)) ≥ 1 ∀S ⊂ V (15)∑

k∈K

∑
p∈Pk:a∈p

λp ≤ Qxa ∀a ∈ A (16)∑
p∈Pk

λp ≤ Fk ∀k ∈ K (17)

xa ∈ {0, 1} ∀a ∈ A (18)
λp ≥ 0 ∀k ∈ K (19)

The objective minimizes the costs of chosen arcs sub-
tracted the revenue of flowed cargo. Constraints (13), (14)
and (15) gives the hamiltonian tour. The capacity is enforced
by (16). Convexity constraints (17) ensures that at most the
available flow is transported.

The exponential subtour elimination constraints (15) are
relaxed initially and inserted as lazy constraints when vio-
lated. A lower bound on the optimal value of this model
can be attained by solving the LP-relaxation, where the
integrality constraints (18) are replaced with constraints
0 ≤ xa ≤ 1 ∀ a ∈ A.

This LP-relaxation is solved using a cut and price algo-
rithm, due to the exponential number of variables λp. A
restricted master problem is obtained by considering a subset
P̄ ⊆ P of paths. Additional columns of negative reduced
costs are generated by solving a pricing subproblem. Let
πa, free be the dual variables for the capacity constraints
(16) and let θk ≤ 0 be dual variables for the convexity
constraints (17). Then the pricing problem becomes:

Min:
∑
a∈A

πax
k
a − θk − rk (20)

Subject to constraints (5), (7) and (8).

C. Subtour Elimination Constraints

When the LP-relaxation of the path flow formulation has
been solved it is checked if any violated subtours can be
separated, this is done solving a min cut problem. The
violated cuts are added and the LP-relaxation is resolved.
When no additional violated subtours can be found, negative
reduced costs columns are generated.

D. Pricing Problem
The pricing problem is an Elementary Shortest Path Prob-

lem with Resource Constraints (ESPPRC), which is strongly
NP-hard as described in Irnich and Desaulniers [12]. The
path must have the lowest cost given by arc weights πa, while
respecting path durations

∑
a∈A x

k
ata ≤ tk. As the pricing is

working on the dual variables of πa, negative cycles are likely
and the subproblem algorithm must ensure the elementary
property.

E. Branching
When all violated cuts and negative reduced costs columns

have been added to the current node, and non binary vari-
ables xa exists, branching is commenced. Binary branching
is used, by selecting the most fractional xa and adding
constraints xa ≤ 0, xa ≥ 1 to the two branching children
respectively.

III. COMPUTATIONAL RESULTS

The algorithm has been implemented using third party
libraries were possible. The COIN-OR DIP (Galati and
Ralphs [8]) framework has been used to implement the
Branch-and-Cut-and-Price method, using CPLEX 12.1 as LP
solver. boost’s graph library (boost [5]) has an implementa-
tion of SPPRC, which has been used heuristically to solve
the ESPPRC, solved as a MIP problem to prove optimality.
concorde (Applegate et al. [3]) has an efficient implementa-
tion of a min cut algorithm and boost also finds connected
components, to check if we have a feasible solution. The
implementation has been run on a 3 GB Ram, Intel i5
2.53 GHz using a single core. An initial implementation can
solve instances up to 16 nodes and 16 commodities in less
than 1 hour, but further work is being done to refine the
implementation and better results are expected. At the time
of the conference we aim to present detailed computational
results for the method.

IV. CONCLUSION AND FURTHER WORK

This work use effective formulations from well studied
pickup and delivery problems on LSNDP by considering a
multicommodity one-to-one capacitated pickup and delivery
problem, with the extension of path duration time limits.
Additionally the solution does not consider any depot, which
gives a harder problem. A arc flow model as well as a
path flow model and a solution method for this has been
proposed. The solution method has been implemented and
preliminary results are promising although further work with
the implementation is required. Further detail can be included
to capture the rich problems faced in liner shipping network
design. This could be to: include berth windows, as a carrier
will often have a limited number of berth hours available at
some port. Allow multiple port calls to some ports, a port call
both in- and outbound on a service, e.g. the service would
be a non-simple cycle. Allow omissions of ports, i.e. relax
hamiltonian tour requirement, so we only visit a port if the
demand to / from the port can justify this. Allow multiple
edges for the same port-port combination, with different
cost and speed, resembling a vessel sailing faster or slower.
Enforcing weekly frequency of the service. And ultimately
allowing several services to be generated, which may even
tranship cargo in between each other.
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