
 

  
Abstract— An operon is a fundamental unit of transcription 

which is used to understand gene regulations and functions in 
entire genomes. Detecting operons experimentally is difficult 
and time-consuming, and many bioinformatics algorithms have 
been proposed to predict operons. In this paper, an improved 
genetic algorithm (IGA) is used for operon prediction in 
bacterial genomes. IGA uses a local search strategy to maintain 
the diversity in a population. It is more powerful than genetic 
algorithms, since it avoids local optima while searching for a 
better solution. We utilized the intergenic distance of adjacent 
genes, participation in the same metabolic pathway and cluster 
of orthologous groups (COG) gene functions to design the 
fitness function. The method was successfully tested for a set of 
experimentally-defined operons in the E. coli, B. subtilis and P. 
aeruginosa PA01 genomes, with accuracies of 0.881, 0.907 and 
0.941, respectively, indicating that the method can obtain highly 
accurate operon predictions. 
 

Index Terms—operon prediction, IGA, intergenic distance, 
metabolic pathway, cluster of orthologous groups. 
 

I.    INTRODUCTION  

or prokaryotic organisms, operons can be defined as a 
single gene or multiple consecutive genes on the same 

transcriptional strand of a genome sequence, where the genes 
are co-transcribed in the same transcription unit, and where 
the co-transcribed genes have the same biological function 
and directly affect each other. Operon prediction can be used 
to infer the function of putative proteins if the functions of 
other genes in the same operon are known. In prokaryotes, 
the genome is composed of thousands of genes, and operons 
of bacterial genomes contain information useful for drug 
design and determining protein functions [1], etc. Hence 
accurate operon prediction will facilitate drug target 
identification and the development of antibiotic drugs. 
However, operons are poorly understood and experimental 
methods to predict operons are very difficult to implement [2]. 
Thus, developing bioinformatics techniques to effectively 
predict operons has become a very important issue. 

In recent years, researchers have proposed the use of 
biological properties to accurately predict operons, based on 
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features which can be divided into the following five 
categories [3]: intergenic distance, conserved gene clusters, 
functional relations, genome sequences, and experimental 
evidence. In each of these categories, detecting the promoter 
and terminator at the operon boundaries is critical to 
identifying the most biologically representative properties [2], 
The simplest prediction feature is whether the distance 
between gene pairs within an operon (WO pairs) is shorter 
than the distance between gene pairs at the borders of the 
transcription units (TUB pairs) [4]. This simple feature 
obtains good results for operon prediction [3]. 

Many operon prediction methods have been proposed, 
including Genetic Algorithm (GA) [1], Fuzzy Guided 
Genetic Algorithm (FGA) [2], Support Vector Machine 
(SVM) [5], Hidden Markov Model (HMM) [6], and the 
Bayesian Network approach [7]. GA uses four biological 
properties to assess putative operons: the intergenic distance, 
metabolic pathway, cluster of orthologous groups gene 
function (COG) and microarray expression data. FGA uses 
the intergenic distance, metabolic pathway, conservation 
across multiple genomes and the similarity of protein 
functions to design a fitness function assessment method. 
SVM uses the above four biological properties as its input 
vectors and divides gene pairs into operon pairs (OP) and 
non-operon pairs (NOP). These methods all fail to consider 
the importance of gene direction in predicting operons, and 
thus these algorithms are unable to determine better parent 
chromosomes at initialization, thus limiting the quality of the 
solution. 

We present a simple and highly accurate computational 
method for operon prediction called the improved genetic 
algorithm (IGA). The algorithm uses the direction of adjacent 
genes to encode chromosomes during the initialization. The 
evaluation fitness function is based on the intergenic distance, 
metabolic pathway and cluster of orthologous groups (COG) 
gene function. We tested our method on the E. coli 
(NC_000913), B. subtilis (NC_000964) and P. aeruginosa 
PA01 (NC_002516) genomes. Experimental results on three 
test data sets indicate that the proposed method obtained a 
higher accuracy, sensitivity, and specificity compared to 
other methods taken from the literature. 

  

II.    BACKGROUND 

A.   Data set preparation 
In this study, we used three test data sets comprised of 

4430, 4106 and 5566 genes, respectively, from the E. coli, B. 
subtilis and P. aeruginosa PA01 genomes. All experimental 
data and annotated genes can be downloaded from the 
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GenBank database (http://www.ncbi.nlm.nih.gov/). The data 
contains the name, ID, start position, end position, direction 
and product names of each gene. The E. coli and B. subtilis 
genomes were respectively obtained from RegulonDB 
(http://regulondb.ccg.unam.mx/) [8] and DBTBS 
(http://dbtbs.hgc.jp/) [9], while the operon databases of the P. 
aeruginosa PA01 genome can be obtained from ODB 
(http://odb.kuicr.kyoto-u.ac.jp/) [10]. The genomes’ 
metabolic pathways and COG were respectively obtained 
from KEGG (http://www.genome.ad.jp/kegg/pathway.html) 
and NCBI (http: //www.ncbi. nlm.nih.gov/COG/). 

 

B.   Biological properties 
This study included the following three features: 

1)   Intergenic distance 
This feature can be predicted with the complete genome 

sequencing of the operon, thus protecting the mRNA in the 
degradation process. Therefore genes in the same operon are 
characterized by short distances. However, adjacent genes 
may sometimes overlap, and shorter intergenic distances are 
more likely to be located within an operon [1]. The maximum 
frequency of the WO pair distance is -4 [11]. However, the 
distance distribution frequency of TUB pairs increases with 
distance, and gradually comes to exceed the frequency of the 
WO pairs. Thus, this property can be used to identify operons 
in the bacterial genomes. 

 
2)   Cluster of orthologous groups gene function 

The COGs are clusters of orthologous groups, and consist 
of three main levels. The first level can be divided into 
information storage and processing, cellular processing and 
signaling, metabolism and different COG categories. Each 
first level class includes many sub-classes. If adjacent genes 
belong to the same category, they may be in the same operon. 

 
3)   Metabolic pathway 

Gene ontology contains three levels of biological functions, 
one of which is a biological process [12]. However, genes 
within an operon often participate in the same biological 
process [5]. Therefore, if adjacent genes have the same 
metabolic pathway, we assume that the gene pair is located in 
the same operon. 

 

C.   Definition of a potential operon pair 
For operon prediction, we first defined the WO pair and 

TUB pair to compute the prediction accuracy. Adjacent 
genes in the same operon are called WO pairs. If the operon 
contains a single gene, and the downstream gene is of 
unknown status, the gene pair is called a TUB pair. However, 
if the upstream gene is the last gene of an operon, and the 
status of the downstream gene is uncertain, the gene pair 
cannot be called a TUB pair [13]. In Fig. 1 the white arrows 
represent unknown genes, the gray arrow represents an 
operon containing only a single gene, and the black arrows 
represent operons composed of more than two genes. 

 

 
Fig 1. WO and TUB pairs 

 

III. METHODOLOGY 

A.   Genetic Algorithm 
In 1975, Holland first proposed genetic algorithm [14], 

based on Darwinian natural selection. Genetic algorithm 
includes three main steps: selection, crossover and mutation. 
In this study, we use a roulette wheel selection method to 
choose two chromosomes from the population as parents, 
while crossover and mutation respectively use two-point 
crossover and single-point random mutation. The main 
purpose of crossover is to continue to propagate the 
advantages of the parental generation to produce fitter 
offspring, and the mutations increase chromosomal diversity 
to avoid local optima solutions. 

 
1)   Chromosome 

A binary encoding method was used to build the 
chromosomes. A gene is encoded as "1" to indicate that the 
gene and downstream gene are in the same operon (WO). If 
the gene and the downstream gene are in different operons or 
in the opposite direction (TUB) then the gene is encoded as 
"0". In Fig. 2, if the chromosome is encoded as 110010, 
Gene1, Gene2 and Gene3 belong to a single operon, while 
Gene4 belongs to a second operon, and Gene5 and Gene6 
belong to a third operon. 

 

 
Fig 2. Diagram of building chromosomes 

 
2)   Initialization 

We use the direction and distance of the adjacent gene to 
encode the chromosome, generating for each chromosome a 
random number from 0 to 600 as a threshold, if distance of 
the upstream and downstream genes is greater than the 
threshold value, the upstream gene will be encoded as 1, and 
otherwise it will be encoded as 0. Figure 3 illustrates the 
chromosome building process. Distance is calculated as 
follows [15]: 

 
( )1_finishGene_startGenedistance 12 +−=  (1) 

 
where Gene1_finish is the base end position of the upstream 
gene, and Gene2_start is the base start position of the 
downstream gene. 



 

 
Fig 3. Chromosome building 

 
3)   Fitness evaluation 

Intergenic distance, metabolic pathway and COG gene 
functions are used to calculate the fitness value. 

a) Intergenic distance: The intergenic distance between 
genes is very useful for operon prediction [12] and is used 
here as the basis for fitness evaluation. Table 1 shows the 
fitness function of the distance based on the 
local-entropy-minimization method [1], with assessment 
scores for each distance interval. If the intergenic distance of 
a gene pair is located within a certain interval, then the 
pair-score is equal to the score of this interval. 

b) Metabolic pathway: If adjacent genes have the same 
metabolic pathway the gene pair has a high probability of 
sharing an operon. In this paper, the pair-score of a gene pair 
is 1 if the adjacent genes are located in the same pathway, but 
is 0 otherwise. 

c)  COG functions: Taken from the [1], this function uses 
the log-likelihood method to calculate scores. Table 2 shows 
the log-likelihoods of information storage and processing, 
cellular processing and signaling, metabolism and different 
COG categories are 1.0733, 1.7251, 1.3467 and -1.1789, 
respectively.  

d) Chromosome fitness: In calculating the fitness value of 
chromosomes, when the operon contains only one gene the 
pair-score of metabolic pathway and COG of gene are 
multiplied by 0 and -1, respectively. The pair-score of 
adjacent genes and the fitness value of the cth putative operon 
are thus calculated as follows: 
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where m and n are respectively the total number of genes and 
gene pairs in the cth operon. Finally, the fitness value of a 
particle is calculated as the sum of the fitness values from all 
putative operons in the particle as follows: 
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where c is the number of operons in the particle. 
 
4)   Selection 

Our selection process uses the roulette selection method, 
and the probability of selection is based on the fitness of each 
chromosome. High fitness value chromosomes have a high 
probability of selection. The probability of selection of each 
chromosome was normalized between 0 and 1 by (5) and (6) 
below. In the selection process, we generate a random value 
between 0 and 1; if the value is in the range of probability of a 
given chromosome, then the chromosome is selected as a 
parental chromosome. 
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where P-num is the number of chromosomes in the 
population, fit(i) is the value of the fitness function of the 
chromosomes, and fitsum represents the sum of all 
chromosome fitness values. 

 
TABLE I 

INTERVALS OF INTERGENIC DISTANCE USING LOCAL-ENTROPY-MINIMIZATION METHOD FOR E. COLI GENOME 
Interval Score Interval Score Interval Score 
[561, 40611] -1 [380,560] -0.3902 [290,379] -0.4007 
[235,289] -0.2879 [211,234] -0.1502 [186,210] -0.0617 
[167,185] -0.0148 [140,166] -0.1074 [128,139] -0.0817 
[114,127] -0.0148 [98,113] -0.0192 [91,97] 0.1233 
[82,90] 0.2081 [77,81] 0.0089 [69,76] 0.0573 
[65,68] 0.0226 [54,64] 0.2317 [49,53] 0.029 
[47,48] 0.188722 [38,46] 0.408327 [32,37] 0.374738 
[30,31] 0.408327 [28,29] 0.456436 [21,27] 0.531 
[10,20] 0.7355 [5,9] 0.5862 [2,4] 0.6549 
[-6,1] 0.791443 [-15,-7] 0.66271 [-18,-16] 0.188722 
[-24,-19] 0.278072 [-70,-25] 0.733235 [-149,-71] -1 
 

TABLE II 
FREQUENCIES OF ADJACENT PAIRS FOR DIFFERENT COG FUNCTIONAL CATEGORIES AND THEIR SCORES IN E. COLI GENOME 

COG functional categories Frequency WO pairs Frequency TUB pairs Log-likelihoods 
Information storage and processing 0.074 0.035 1.0733 
Cellular processing and signaling 0.132 0.040 1.7251 
Metabolism 0.463 0.182 1.3467 
Different COG categories 0.319 0.722 -1.1789 
 



 

5)  Crossover 
We use the two-point crossover, randomly generating two 

points as the basis of the crossover, enabling the parent 
chromosomes to be divided into three sections. Changes in 
the middle-encoding of two chromosomes produce two new 
offspring chromosomes. Fig. 4 shows that, following the 
division of the parental chromosomes, the middle-coding of 
parental1 is 101, and that of parental2 is 011. The 
middle-encoding of two parental chromosomes is changed, 
and produces the two offspring chromosomes, encoded as 
101101 and 110100. 

 

 
Fig 4. Two-point crossover 

 
6)  Mutation 

The mutation process determines the TUB bit of the two 
offspring chromosomes; if the random value of the bit is 
smaller than the mutation rate, then the mutation proceeds by 
one of the following methods: 

a) Front mutation: As seen in Fig. 5, if the TUB bit is 
selected for Gene4, but Gene4 lies in a different direction 
from Gene5, then the pair-scores are assessed by Gene3 and 
Gene4. If the pair-score is less than pair-average-score, then 
the coding of Gene3 is changed to 0. 

 

 
Fig 5. Front mutation 

 
b)  Backend mutation: As seen in Fig. 6, if Gene4 and 

Gene5 lie in the same direction and the pair-score is greater 
than pair-average-score, then the coding of Gene4 is changed 
to 1. 

 

 

Fig 6. Backend mutation diagram 

B.   Improved genetic algorithm 
An improved genetic algorithm is added to the local search. 

In this study, the local search is fine-tuned for the new 
generation of chromosomes. To avoid excessive similarity 
between the chromosomes, fitness enhancement is 
discontinued. Local search is applied to the initialization, 
crossover and mutation processes, mainly to improve the 
fitness values of the chromosomes and to avoid multiple 
iterations so that the lack of population diversity won’t 
impede the search for a better solution. This method is similar 
to that used in the mutation process: first pick a gene from the 
gene sequence and force an encoding change in the selected 
gene; then assess the fitness value of the chromosomes after 
the change. As the gene sequence contains thousands of 
genes, we only execute a D/10 times (D = the number of 
genes in the chromosome) local search for each chromosome 
to determine which genes are able to improve their fitness 
value, and then replace the original chromosome if the fitness 
is improved. Thus, we can use less iteration to obtain the 
chromosome’s high fitness value. 

 

C.   Parameter settings 
In this study, the population number P is 20, the iteration 

number G is 100, the crossover rate (X-rate) is 1.0, the 
mutation rate (M-rate) is 0.05, and the thresholds of 
initialization are between 0 and 600 bps. 

 

IV.  EXPERIMENTAL RESULTS AND DISCUSSIONS 

A.   Performance measurement 
Tables 3 and 4 show the most commonly used assessment 

methods for medical diagnostics. TP and FP represents true 
and false positive, while TN and FN represent true and false 
negative. These are used to calculate the positive prediction 
rate (PPR), negative prediction rate (NPR), sensitivity (SN), 
specificity (SP) and accuracy (ACC) [16]. 

 
TABLE III 

POSITIVE AND NEGATIVE EVALUATION 
True

Prediction 
Positive Negative 

Positive TP FP 

Negative FN TN 

 
TABLE VI 

EVALUATION METHOD FOR OPERON PREDICTION 

Value to be estimated Equation for estimation 

Positive prediction rate TP/(TP+FP) 

Negative prediction rate TN/(FN+TN) 

Sensitivity TP/(TP+FN) 

Specificity TN/(FP+TN) 

Accuracy (TP+TN)/(TP+FP+TN+FN) 

 
The experimental operon encoding of the genome is 



 

111010, and the predicted operon encoding is 110110. The 
third and fourth genes are FN and FP, respectively. The first, 
second and fifth genes are TP, and the sixth gene is TN. The 
accuracy obtained by the proposed method was compared to 
other methods, and showed a good balance between 
sensitivity and specificity. 

 

B.   Comparison to other methods 
We used IGA to search for the best chromosome, and 

compared the search results with experimentally-verified 
operons to calculate TP, FN, TN and FP to evaluate accuracy, 
sensitivity and specificity. This provided a basis for 
comparison with other methods from the literature, with 
results shown in Table 5. The proposed method obtained 
prediction accuracy values of 0.881, 0.907 and 0.941, 
respectively, for the E. coli, B. subtilis and P. aeruginosa 
PA01 genome data sets. Although this study uses only three 
features for prediction, which is less than other operon 
prediction methods, the proposed method achieves a better 
balance between sensitivity and specificity than does ODB. 
For B. subtilis and P. aeruginosa PA01, our method obtained 
higher accuracy and specificity than ODB and other methods 
from the literature. GA uses the same three features used in 
the proposed method, along with microarray expression data. 
However, the proposed method still outperformed GA, 
indicating that these three features can effectively improve 
GA performance through improved predictive accuracy and 
local search. 

 

C.   Discussion 
The IGA used local search to change the relation of the 

near genes, thereby increasing the probability of finding an 
optimal solution. Since the initialization step for operon 
prediction is very important, to raise the IGA prediction 
performance we first conducted a local search for the initial 
population, thus increasing the likelihood of producing high 
quality offspring chromosomes. Given a better population of 
chromosomes in the initialization step, updating the 
population will effectively improve operon prediction 
accuracy through multiple iterations. The direction of the 
adjacent gene is important for operon prediction because 
genes in the same operon will share a direction, while 
adjacent genes in different directions must belong to different 
operons. Therefore, this study used two biological 
characteristics as the initial basis: threshold of intergenic 
distance (adjusting the initial threshold to 600 bps raises the 
sensitivity and specificity of the gap, and improves prediction 
accuracy) and the direction of the adjacent gene (which 
effectively predicts TUB to enhance prediction accuracy and 
specificity). Using these biological properties as the basis for 
initialization, followed by local search, raises the fitness of 
each chromosome. However, the genetic algorithms evolve 
slowly with low mutation rates, causing results to often fall 
into local optima solutions. Thus we follow mating and 
mutation with local search, and use an increased mating and 
mutation rate to increase chromosome diversity, thus 
increase the chances of finding the best chromosome. 

Experimental data on the E. coli genome can be 

downloaded from the RegulonDB database, but extensive 
experimental data are not readily available for other genomes. 
To apply the proposed method to other genomes with fewer 
attributes, only five common properties for operon prediction 
were used. In theory, using more features in prediction will 
increase the resulting prediction accuracy, but some features 
require a considerable time investment without providing 
commensurate improvement. ODB used four properties for 
operon prediction, but the method suffers from low 
prediction sensitivity [10]. In addition, the WO pair and TUB 
pair performance of DVDA was <0.5 in the gene pair 
analyses performed, and the operon prediction performance 
based on the literature [3] was <0.2 based on the complete 
operons of E. coli and B. subtilis. However, when adjacent 
genes share a common pathway, the probability of a gene pair 
being a WO pair is very high [2]. The probability of gene 
pairs with the same first-level of COG function categories is 
83.5% [17]. Since intergenic distance is the most commonly 
used feature, we used these three features as the basis for 
fitness evaluation. The results reveal that the pathway and 
COG properties are more suitable for identifying WO and 
TUB pairs. Our IGA method only uses three such properties 
but still achieves better results. The simplicity of our method 
can thus be considered a significant advantage for operon 
prediction. 

Generally, the use of more functions increases prediction 
accuracy and increases computation time. However, not all 
features are applicable to all genomes, and they must be 
chosen carefully. We use the same calculations for fitness 
values used in [1], the local entropy-minimization-based 
method to evaluate the intergenic distance and log-likelihood 
to statistically evaluate the COG function score. The pathway 
used is also identical to that in [1]. Using only three 
properties, our method obtained the highest accuracy for 
operon prediction on two bacterial genomes. These results 
suggest that IGA can effectively enhance prediction 
accuracy. 

V.   CONCLUSIONS 
An effective operon prediction method with an improved 

genetic algorithm is proposed, using local search to enhance 
the chances for getting better chromosome, so that before the 
iterative process to obtain more excellent chromosomes. We 
improved prediction accuracy through a fitness function 
based on intergenic distance, metabolic pathway and COG 
gene functions. Results show the proposed method can 
effectively predict the correct rate, sensitivity and specificity 
of operons. 
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TABLE V 

ACCURACY, SENSITIVITY, SPECIFICITY OF THREE GENOMES 
Genomes Methodologies Accuracy Sensitivity Specificity 

E. coli 

IGA 0.881 0.863 0.892 
GA [1] 0.860 0.894 0.813 
FGA [2] 0.900 N/A N/A 
SVM [5] 0.856 0.888 0.802 

B. subtilis 

IGA 0.907 0.868 0.939 
GA[1] 0.883 0.873 0.897 
FGA[2] 0.882 N/A N/A 
SVM [5] 0.889 0.900 0.860 
ODB[10] 0.632 0.499 0.992 
OFS [18] 0.683 0.765 0.439 
OPERON [19] 0.629 0.531 0.892 
JPOP [17] 0.746 0.720 0.900 
VIMSS [20] 0.780 0.764 0.871 
UNIPOP [21] 0.792 0.782 0.821 
DADV[22] 0.485 0.319 0.932 

P. aeruginosa PA01 
IGA 0.941 0.937 0.946 
GA [1] 0.813 0.870 0.763 

a. N/A = data not available.

 




