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Abstract— This paper presents two imputation methods:  

Markov Chain Monte Carlo (MCMC) and Copulas to handle 
missing data in repeated measurements. Simulation studies 
were performed using the Monte Carlo technique to generate 
datasets in different situations. Each subject unit in each 
dataset was measured on three occasions under the following 
conditions: 1. data had a multivariate normal distribution 
under two types of correlation structures: Compound 
Symmetry (CS) and Autoregressive (AR (1)), 2.  the correlation 
among repeated observations under each subject was 
determined at low level (ρ =0.3), middle level (ρ =0.5), and 
high level (ρ=0.7), 3. sample sizes consisted of 30, 70, and 100 
subject units, and 4. data were assigned missing at random 
(MAR) at the last occasion of measurement with missing rate 
of 5%, 10%, 20% and 30%, respectively. All possible 
combinations of these conditions gave rise a total of 72 
different situations. Each defined situation was repeated 1,000 
times by SAS programming and each missing value was 
replaced with a set of five plausible values that represent the 
uncertainty about the right value to impute under the MCMC 
method. The performance of each imputation method was 
evaluated using mean square error (MSE). The lower MSE 
would indicate the more effective method. The results from the 
simulation studies showed that the Copulas method was 
superior effective than other methods in all situations. The 
MCMC method was more effective than the simple mean 
imputation method when the correlation structure was AR1. 
For application, both imputation methods were applied with 
two datasets in practices: 1) waist circumference data on 
healthy project and 2) monthly rainfall data. The results also 
confirmed that the Copulas was the most effective method 
which was consistent with the simulation studies.  
 

Index Terms— Markov Chain Monte Carlo, Copulas, 
missing at random, repeated measuremens. 
 

I. INTRODUCTION 

N repeated measures data analysis, it often faces with the 
problem of incomplete data when a subject has one or 

more missing values during the subsequent waves of data 
collection. The occurrence of missing values may due to any  

causes related to a study unit such as nonresponse, 
refusal, drop out, lost of follow up, illness or death. In the 
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meantime, missing values can be generated from human 
errors on either forget to ask a question or forget to record 
the answer. The patterns of missing data may be one of 
these special patterns: 1) univariate missing data, 2) unit 
nonresponse, or 3) monotone missing data. Firstly, the 
“univariate” missing data are restricted to missing values on 
a single variable while the other variables are fully recorded. 
Secondly, the “unit nonresponse” missing data have missing 
values on a block of variables for the same set of cases, and 
the rest of variables are all complete. Thirdly, the 
“monotone” missing data have the pattern of missing values 
after all variables are arranged such that   1 2X ,X ,…,X :j

1,2, , 1;  >1= −…j k k X j

1X j+

, then the variable  will be 

observed whenever the variable  is observed [8], [12]. 

To handle problems of missing data, one simplest approach 
is to focus on a complete-case analysis, but its disadvantage 
is the decreasing on statistical power from the smaller 
sample size [9], [10]. Another approach for analyzing 
incomplete data is using imputation methods to impute the 
best estimate of a missing value of the variable [7], [12]. 
Imputation methods base on three types of missingness as 
follows: 1) missing completely at random (MCAR, if the 
missingness is independent of both unobserved and 
observed data), 2) missing at random (MAR, if the 
missingness depends on observed data, but not on 
unobserved data), and 3) missing not at random (MNAR, if 
the missingness depends on unobserved data) [7], [13].  
Multiple imputation (MI), under imputation approach, is 
proposed by Rubin [2] to analyze incomplete data under 
MAR mechanism. The idea of MI procedure is to replace 
each missing value with a set of M possible values. These 
values are drawn from the distribution of the study data 
under the uncertainty about the right value to impute. Then, 
analyze the imputed data sets from standard procedure for 
complete data and combine the results from these analyses 
[1], [13]. According to the MI concepts, this study aims to 
1) present the possibilities of using two imputation methods:  
Markov Chain Monte Carlo (MCMC) and Copulas to 
impute the best estimates of missing values under MAR 
mechanism in repeated measurements, and 2) compare the 
performance of the MCMC and Copulas methods in 
estimating the missing values.  
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II. METHODS 

A. Generating Datasets with Missing Values 
A number of complete datasets were generated to have 

data on all three repeated measurements. Let 1 2Y ,Y , and 

3Y  be three continuous variables for three measurements on 

each subject at time point 1, 2, and 3, respectively. Under 
the assumption of a multivariate normal distribution with 
zero mean vector and variance-covariance matrix ∑ , 

              ,   
11 12 13

21 22 23∑ =

⎡ ⎤σ σ σ
⎢ ⎥σ σ σ⎢ ⎥
⎢ ⎥σ σ σ31 32 33⎣ ⎦

⎣ ⎦

1 2Y ,Y ,

C S =

and are correlated under two types of 

correlation structures, including compound symmetry (CS): 

  

3Y
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and first order autoregressive (AR(1)) : 
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where ij
ij ;  i, j =  1, 2, 3.

σ
ρ =

σ σii jj

3 3 3 72× × × =

0 1 2 3X ,X ,X ,X , ,X…

i 0 0 1 1 i 1 i 1

i i 1 i 1

P[X x | X x ,X x , ,X x ]

P[X x | X x ].
− −

− −

  

The correlation among repeated observations under each 
subject was determined at low level (ρ =0.3), middle level 
(ρ =0.5), and high level (ρ=0.7).  Sample sizes considered 
were 30, 70, and 100 subject units. Additionally, data were 
assumed MAR at the last occasion of measurement, , 

with missing rate of 5%, 10%, 20% and 30%, respectively. 
All possible combinations of these conditions gave rise a 
total of 2  different situations for 72 
different datasets.  

3Y

B. Imputation Methods 
In each dataset, a simple imputation method was used to   

replace the missing value with a single value of the 
variable’s mean of the complete cases. This single 
imputation did not reflect the uncertainty about the 
prediction of the unknown missing values. Then, two 
advanced imputation methods, MCMC and Copulas, were 
used to estimate the missing value under MAR mechanism 
in repeated measures.  

C. MCMC 
MCMC is a numerical method for generating pseudo-

random drawn from probability distributions via Markov 
Chains. A Markov chain is a sequence of random variables 

i in which the distribution of each 

element given all previous ones depends only on the most 
recent value, i.e. for all i ,  

< = = =
= < =

…
 

A chain of random variables must be created long enough 
to approach to the approximate stationary distribution. By 
repeated simulation steps of the chain, one simulates draws 
samples from the stationary distribution [1], [7].    

Reference [7] suggested using MCMC to impute missing 
values by assuming: 1) data is from a multivariate normal 
distribution, 2) data are MCAR or MAR, and 3) the missing 
data pattern can be either monotone or arbitrary.  To begin 
the MCMC process, a vector of means ( μ ) and a variance-

covariance matrix ( Σ ) from the complete data (or available 
cases) are computed and used as the initial estimates for the 
Expectation-Maximization (EM) algorithm. The resulting 
EM estimates are used to be the starting values to estimate 
the parameters of the prior distributions for means and 
variances of the multivariate normal distribution with 
informative prior. In MCMC, the imputation step (I-step) 
simulates values of missing items by randomly selecting a 
value from the conditional distribution of missing values, 

, given the observed values, . Next, the 

posterior step (P-step) updates the posterior distribution of 
the mean and covariance parameters (e.g., normal 
distribution for the means and inverted Wishart distribution 
for covariance matrix [3]). Then, the vector of means and 
covariance matrix are simulated from the posterior 
distribution based on the updated parameters. The new 
estimates will be used in the I-step. Both the I-step and the 
P-step are iterated until the mean vector and covariance 
matrix are unchanged. The imputation from the final 
iteration will be used to form a complete data set.  

)miss(iY )obs(iY

k ))

This study applied the MCMC method with the 
predetermined 72 different situations of repeated 
measurements. Each defined situation was repeated 1,000 
times by using SAS procedures and each missing value was 
replaced with a set of five plausible values from posterior 
predictive distribution that represent the uncertainty about 
the right value to impute.  Finally, the results from the five 
plausible values of each missing value were combined and 
used their average value to be the best estimates of each 
missing value.  

D. Copulas 
In general, the imputation of missing value is based on 

the conditional distribution that we need to know the joint 
distribution of repeated measures those are prior to the 
observation with missing value. Let observation at the  kth 
occasion of measurement have  missing value. The idea of  
using Copulas is to create a joint distribution from marginal 
distribution of the 1st, 2nd, 3rd,…, (k-1)th occasion of 
measurement. Then, we can find a conditional distribution 
of the kth measurement given the 1st, 2nd, 3rd,…, and (k-1)th  
measurement [1], [5], [6 ]. The Copulas is a function that 
links univariate marginal distributions to their joint 
multivariate distribution function as the following equation:  

1 2 k 1 1 2 2 kF(x ,x , ,x ) C(F (x ),F (x ), ,F (x=… …       (1) 



 

where 
        F is the distribution function on  kℜ
       are univariate marginal distributions, 1 2 nF ,F , ,F…

  is a multivariate 

distribution function with marginals ,  
1 1 2 2 n nC(F (x ),F (x ), ,F (x ))…

1 2 nF ,F , ,F…
and C is copula function. 

 
If one knows the joint distribution of X =   

 a vector of random variables, then one 
can impute the missing value from a conditional distribution 
of , a vector with missing values, given 

1 2 kX X X( , , , )…

kX

,

H =  

which is a vector with complete data in 
history.   

1 2 kX X X( , , , −… 1 )

)),

In this study, we applied the Gaussian copula in which 
the k-variate Gaussian copula with k Gaussian marginals 
corresponds to the k-variate Gaussian distribution. That is 
the multivariate normal distribution has normal marginal 
distributions and Gaussian copula dependence. Gaussian 
copula handles the dependence among univariate marginal 
distributions via the correlation matrix R of pairwise 
dependencies between variables.  The multivariate Gaussian 
copula is defined as: 

1 1 1
( ( u ) , ( u ) , ... , ( u

k 1 1 1 2 1 k
C ( u , u ,... , u ; R)k 1 2 k

− − −
Φ Φ Φ Φ=

ju (0,1)∈ kΦ

jX

jF jY
-1

1Φ
j j j

Y [F (X )],=
-1

1Φ

where , j = 1, 2,…,k ; is the standard k 

variate normal distribution function with the correlation 
matrix R. For modeling the repeated measurements using 
The multivariate Gaussian copula, let  have a continuous 

distribution function  , j = 1,2, … , k, and let  be its   

normalizing transformation as where 

 is the inverse of the standard univariate Gaussian 
distribution function. Then, the joint multivariate 
distribution function is:   

1 2 k k 1 2 kF (y , y ,... , y ; R) C ( u , u ,... , u ; R)= =
1 1 1

k 1 1 1 2 1 k
[ ( u ) , ( u ) , ... , ( u ); R]− − −

Φ Φ Φ Φ

 

.                                    (2) 

Then, we can find the MLE of missing value  from the 

conditional distribution of . Lastly, the missing 

value ( ) can be replaced by:                 

ky

kf (y |H ,R)

ky
k 1

CS
k

j 1

ŷ
1 (k 2) jy ;

=

ρ
=

+ − ρ ∑
−

 if R is under CS structure,  

and ; if R is under 

AR1 structure, where  and  are standard deviation 

at the (k-1)th and the kth occasion of measurement [5], [6].  

k1k1k
1k

kAR
k Y)Yy(

S
Sŷ +−ρ= −−

−

k 1S − kS

 

E. Comparison of Imputation Methods 
Once the MCMC method has been implemented, it is 

necessary to check the convergence of the simulated 
sequence of random variables to the stationary distribution.  
However, it is not too difficult to apply the MCMC method 
for multiple imputations of missing values because it has 
commands available on some statistical packages such as 
PROC MI and PROC MINIMIZE in SAS program [1], [13].  
In opposite, the copulas method is easy for computation but 
it is not easy to replace the values of missing data when 
there are lots of missing items. In addition, the data on 
repeated measurements those are prior to the observation of 
missing value must be complete. It also needs to check 
whether the correlation structure among repeated 
observations is under CS or AR(1). The performance of 
each imputation method can be evaluated from its value of 
mean square error (MSE). The lower MSE would indicate 
the more effective method [10].  

 

III. RESULTS 
To meet the objectives of study, we compared among 

three imputation methods: simple mean, MCMC and 
Copulas for the best estimates of missing values under MAR 
mechanism in repeated measurements both in simulation 
and application of two real datasets. 

A. Simulation Study 
Table 1 and Table 2 showed the estimated MSE from 

simulation studies in 72 situations which are under different 
types of correlation structure, levels of correlation among 
repeated measurements, missing rates (%) at last 
measurement, and sample sizes. Results indicated that the 
Copulas method was the most effective in all situations. The 
MCMC method was more effective than the simple mean 
imputation method when the correlation structure was 
AR(1). 

B. Application of Two Datasetss 
We applied the MCMC and the Copulas algorithms for 

imputation of missing values in two real datasets with 
different correlation structure among repeated observations.  

 
Dataset 1: The waist circumference data 
The first dataset was obtained from a study on “healthy 

project” of the “Nopparat Rajathanee” hospital in Bangkok 
where the outcome of interest was waist circumference of 
each individual. The waist circumference data, including 
weight and height, were collected from participants on a 
monthly basis between November 2008 and February 2009. 
At least 105 participants have waist circumference values 
more than 80 and 90 centimeters and 44 participants were 
completely followed up for four months. The correlation 
among repeated observations of waist circumference under 
each subject was assigned at high level ( ρ ) 
from the assuming CS correlation structure as data 
evidence-based shown in the below: 

0.91625 0.9= ≈

 



 

⎤
⎥
⎥
⎥
⎥
⎦

       
CS

1 0.93662 0.92046 0.85249

0.93662 1 0.94599 0.83225

0.92046 0.94599 1 0.91625

0.85249 0.83225 0.91625 1

R

⎡
⎢
⎢=
⎢
⎢
⎣

The data on the last occasion of measurements were 
assigned missing at random with missing rate of 5%, 10%, 
20% and 30%, respectively. Next, we tested for the normal 
distribution of the waist circumference data containing 
missing values, checked for convergence of mean vector 
and covariance matrix under the MCMC process for MI, 
and compared the performance of three imputation methods: 
simple mean, MCMC, and Copulas. The result of study 
showed that the MSE of the Copulas method is smallest at 
all level of missing rate (Fig. 1(a).) when compares with 
those of other imputation methods. For this dataset, the 
Copulas shows the most effective method for data 
imputation under CS correlation structure.  
 

Dataset 2: The monthly rainfall data 
The second dataset was from routine work of Thai 

Meteorological Department (TMD) where the outcomes of 
interest are the average of monthly rainfall in the northern 
region of Thailand. The data were collected from 28 local 
weather stations from June to August, 2009. The correlation 
among repeated observations of the average of monthly 
rainfall at each weather station was assigned at middle level 
( ) from the assuming AR(1) correlation 
structure as data evidence-based shown in the below: 

0.452 0.5ρ = ≈

               
AR(1)

1 0.3566 0.189

R 0.3566 1 0.452

0.189 0.452 1

⎡ ⎤
⎢ ⎥=⎢ ⎥
⎢ ⎥⎣ ⎦

The data on the average rain volume in August 2009 were 
assigned missing at random with missing rate of 5%, 10%, 
20% and 30%, respectively. Next, we tested for the normal 
distribution of the average of monthly rainfall data which 
included missing values, checked for convergence of mean 
vector and covariance matrix under the MCMC process for 
MI, and compared the performance of the three imputation 
methods: simple mean, MCMC, and Copulas.  The result of 
study showed that the MSE of the Copulas method is 
smallest at all level of missing rates (Fig. 1(b).) when 
compares with other imputation methods. For this dataset, 
the Copulas also shows the most effective method for data 
imputation under AR(1) structure.  

IV. DISCUSSION 
Although the results from simulation studies indicated 

that the Copulas method was superior to the MCMC and the 
simple mean imputation methods, its performance depended 
on these factors, including missing rate (%) and level of 
correlation among repeated observations.  If the sample size 
was fixed and the missing rate increased from 20% to 30%, 
there were much more difference in the values of MSE 
obtained from either the Copulas or the MCMC method.  
Except for the fixed sample size 70 under the CS correlation 
structure of repeated observations, the estimated MSE from 

both the Copulas and the MCMC method under missing rate 
20% or 30% were closer in values. That is the performance 
of both imputation methods are almost equivalence when 
the level of missing rate was increased and the sample size 
is 70 or larger. Moreover, we found that the MSE values 
from all imputation methods of the simple mean, the 
MCMC and the Copulas would decrease when the level of 
correlation among repeated observations was increased 
under the condition of fixed sample size and fixed level of 
missing rate.  In sum, the performance of the simple mean 
and the Copulas methods were higher than the MCMC 
when the level of correlation among repeated observations 
was increased under the CS structure. The MCMC and the 
Copulas gave better performance than the simple mean 
method under AR(1) structure when the level of correlation 
among repeated observations was increased. 

V. CONCLUSION 
The results from the simulation studies showed that the 

Copulas method was the most effective in all situations. The 
MCMC method was more effective than the simple mean 
imputation method when the correlation structure was under 
AR(1). For application, both imputation methods were 
applied with two datasets in practices: 1) waist 
circumference data on healthy project and 2) monthly 
rainfall data.  
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Table 1 
Comparison of MSE among three imputation methods (simple mean, MCMC, and Copulas) from the simulation study under CS 

correlation structure, level of correlation among repeated measurement ( ρ ), missing rate of  last measurement (% ) and sample size 
MSE 

ρ = 0.3 ρ = 0.5 ρ = 0.7 Sample 
size 

missing 
rate 
(%) Mean MCMC Copulas Mean MCMC Copulas Mean MCMC Copulas 
5 1.0250 1.0171 0.8985 0.6712 0.7434 0.6539 0.5321 0.6773 0.4351 
10 1.0240 1.0229 0.8536 0.7347 0.7782 0.6610 0.5431 0.5790 0.4436 
20 1.0421 1.0440 0.8595 0.7221 0.8705 0.6724 0.5512 0.5494 0.4492 30 

30 1.0500 1.1163 0.8561 0.7591 0.8942 0.6493 0.5578 0.5673 0.4343 
5 1.0399 1.0536 0.8298 0.7386 0.8930 0.6587 0.4631 0.5678 0.4399 
10 1.0449 1.0620 0.8417 0.7783 0.8977 0.6583 0.4849 0.5679 0.4403 
20 1.0872 1.0643 0.8484 0.7646 0.8427 0.6612 0.4690 0.5355 0.4418 70 

30 1.0295 1.0137 0.8518 0.7581 0.7869 0.6830 0.4920 0.5008 0.4642 
5 1.0399 1.0079 0.8636 0.8515 0.8882 0.6796 0.5703 0.5663 0.4516 
10 1.0210 1.0620 0.8648 0.8223 0.8270 0.6760 0.5349 0.5273 0.4494 
20 1.0584 1.1036 0.8668 0.7874 0.8703 0.6722 0.4923 0.6480 0.4473 100 

30 1.0558 1.0751 0.8638 0.7770 0.8383 0.6717 0.4806 0.5326 0.4473 
 
 

Table 2 
Comparison of MSE among three imputation methods (simple mean, MCMC, and Copulas) from the simulation study under AR(1) 
correlation structure, level of correlation among repeated measurement ( ρ ), missing rate of last measurement (% ) and sample size 

MSE 
ρ = 0.3 ρ = 0.5 ρ = 0.7 Sample 

size 

missing 
rate 
(%) Mean MCMC Copulas Mean MCMC Copulas Mean MCMC Copulas 
5 1.2283 1.1165 0.9350 1.2283 0.9196 0.7777 0.6394 0.6253 0.5367 

10 1.4438 1.0514 0.9220 1.2251 0.8479 0.7643 0.6417 0.5736 0.5268 
20 1.2449 1.1752 0.9342 0.9884 0.9110 0.7776 0.6525 0.6451 0.5393 30 

30 1.2571 1.2290 0.9667 0.9974 0.9448 0.8049 0.6972 0.6860 0.5600 
5 1.2321 0.9474 0.8125 0.9805 0.8544 0.7651 0.6983 0.6149 0.5698 

10 1.1231 0.8816 0.8108 0.9762 0.8816 0.7594 0.6471 0.5960 0.5682 
20 1.3218 0.9089 0.8091 0.9790 0.9089 0.7638 0.6571 0.6175 0.5685 70 

30 1.1973 0.9196 0.8065 0.9812 0.9196 0.7645 0.6982 0.6671 0.5687 
5 1.2443 1.1152 0.9250 0.9982 0.9187 0.7631 0.6831 0.6243 0.5655 

10 1.2579 1.1126 0.9314 0.9976 0.9176 0.7685 0.6580 0.6242 0.5682 
20 1.2680 1.2100 0.9350 0.9821 0.8942 0.7718 0.6972 0.6757 0.5712 100 

30 1.2633 1.1391 0.9342 0.9781 0.8946 0.7715 0.7123 0.6369 0.5722 
 
     
         

 
                                                1(a)                                                                                                                        1(b) 
             
                   Fig.  1(a).  MSE from three imputation methods (simple mean, MCMC, and Copulas) from the waist circumference data.    
                   Fig.  1(b).  MSE from three imputation methods (simple mean, MCMC, and Copulas) from the monthly rainfall data.    
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