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Abstract—A combinatorial optimization problem, namely k- where E(T},) is the edges set of tréB,, and 7}, is the set

Minimum Spanning Tree Problem, is to find a subtree with containing all feasible solutions with edges in the graph
exactly k edges in an undirected graphG , such that the -~

sum of edges’ weights is minimal. where graphG is made .Th f-mini ina t bl first] ised
up of a set of vertices and weight attached edges. Since € k-minimum spanning tree problem was Tirstly raise

this problem is NP-hard, heuristic and metaheuristic methods by Hamacheet al. [1], and has been applied very broadly,
are widely adopted for solving large instances. In this paper, such as oil-field leasing [2], facility layout [3], open pit
we propose a new hybrid algorithm to solve this problem, mining [4], matrix decomposition [5], telecommunication
by using Memetic Algorithm as a diversification strategy for [6], and image processing [7].

Tabu Search. Especially, the genetic operator in our Memetic .
Algorithm is based on dynamic programming algorithm, which This problem has been proved to befdR-hard problem

finds the optimal subtree in a given tree efficiently. The proposed DY several researchers [1] [8] [9]. In two cases the problem
algorithm is tested on thek—Minimum Spanning Tree problems can be polynomially solved. One case is that there are only
with other exiting algorithms, The experimental results show two distinct weights in the graph [9], the other case is that
that _the pr_oposeq _algorithm is superior to all the exiting the graph is a tree itself [10].
algorithms in precision and updates some of the best known . . .
results. Many solving methods were proposed for dealing with the
k-minimum spanning tree problem, due to various applica-
tions of this problem. The first exact algorithm was presented
by Fischettiet al. [8]. In which, the k-minimum spanning
tree problem was formulated into an integer linear program
|. INTRODUCTION (ILP) based on generalized subtour elimination constraints.
Recently, Quintaocet al. [11] also proposed two integer
T HE k-minimum spanning tree problem also referrediogramming formulations, a Multifiow Formulation and a
to the k-cardinality tree problem, is a combinatoriakormuylation based on the Miller-Tucker-Zemlin constraints,
optimization problem. LetZ = (V,E) be an undirected for the k-Cardinality Tree Problem. In which, the comparison
graph, which is made up by connecting a set of verticgs the two formulations and a Lagrangian heuristic based on
V and edgest. For each vertex € V, it can connect 10 tne first reformulation were also implemented.
any vertexv’ € V, through one edge or edges. Each edge Besides the exact methods, a lot of approximation algo-
is attached with a nonnegative valug, called weight. The (ithms were also proposed for tiheminimum spanning tree
goal is to find a tree with exactly(k <| V' | —1) edges, SO problem. At first anO(v/%)-approximation algorithm for the
that the sum of edges’ weighfgT},) is minimal. It can also vertex-weighted problem on grid graphs was proposed by
be considered in another view point, that is to connect exaCWoeginger [12]. Later, &(v/k) approximation was obtained
k + 1 vertices byk edges without cycle, such that the SUNby Maratheet al. [9], and then a 3-approximation algorithm
of edges’ weights is minimal. The mathematical program g, 3 rooted case was proposed by Garg [13]. Based on the

Index Terms—k-minimum spanning tree, memetic algorithm,
tabu search, combinatorial optimization, hybrid algorithm.

shown as below: [13], a (2 + ) approximation algorithm with complexity
minmize £(T,) = Zw . n®U/¢) for any ¢ > 0 was obtained by Arorat al. [14].
e These papers represent ongoing improvement algorithms
subjectto Ty € Tx until a constant approximation factor could be obtained.
Nr. =k Since the problem is NP-hard, heuristic and metaheuristic
[ 1 ee€E(Ty) methods were also widely proposed. Heuristics based on
Te =13 0 otherwise greedy strategy and dynamic programming were proposed

by Ehrgottet al. [15]. And a heuristic based on variable
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Fig. 1. A k-spanning tredk=4, {v2, vs, vs,vs,v9}, {ea, €7, €9,€10}) 9

improvement. Though the solution can be improved based

Concerning the metaheuristics, ‘hre‘? metaheuristic @h the move operators smoothly at first, it may not reach
proaches, namely Tabu Search, Evolutionary Computathon the best solution in most cases. The local search may

and Ant Colony Optimization approach, for the edge-
weighted k-cardinality tree problem were introduced in [18]cPc2tedly search some areas where had been searched,

._Pecomin le in the worst if it meets a local optimal
It also showed that the performances of three metaheunstlceco gacyce € worst case eets a local optima

depend on the characteristics of the tackled instances,zﬁitrlonc')r-gze search may fall into local optimum easily, in

well as the cardinalities. Recently a hybrid algorithm basec?]ﬁSI W '

Tabu Search and Ant Colony Optimization was proposed

by Katagiri et al. [19] and the experimental results showe&- Tabu Search

that their hybrid algorithm provided a better performance Tabu Search, firstly proposed by Glower al. [22] [23],

with solution accuracy over existing algorithms. It can bis one of the most usually used metaheuristics for solving

observed that metaheuristic are attracting more and ma@mbinatorial optimization problems. It is considered as

interests recently for solving the-minimum spanning tree a variety of iterative local search strategies for discrete

problem. optimization.The most important characteristic of tabu search

The remainder of this article is organized as follows. Sets that it uses a concept efemory to control movements via

tion Il introduces preliminary background of this paper, ina dynamic list of forbidden moves. To be more specifically,

cluding k-spanning tree structure, Local search, Tabu Searitte area that has been searched will be “tabu” (prohibited)

and Memetic Algorithm. We will describe the proposedo visit for a while. This mechanism allows Tabu Search

hybrid algorithm in Section Ill. Our new experimental resultso intensify or diversify its search procedure in order to

and analysis are described in Section IV. Finally, Section &cape from local optima. Many experiments showed that

gives the conclusions. Tabu Search can lead to a significant improvement in terms of

solution quality, and may even accelerate convergence of the

Il. BACKGROUND algorithm. Tabu Search has also been proved to be effective

In this section, we start from the solution representatidfl SCIViNg &-minimum spanning tree problem [18].
and then briefly describe ultimate principles of Local Search,

Tabu Search and Memetic Algorithm. D. Memetic Algorithm
As a rising field of Evolutionary Computation, Memetic
A. k-spanning tree structure Algorithm was first introduced by Moscato in 1989 [24]. Tra-

itional Evolutionary Computation (eg. Genetic Algorithm)
ave been applied widely to solve optimization problems
b&cause of their good search abilities. However, they may

the k-minimum spanning tree problem as an ordered list det be efficient to some problems which contain many local

. : ; - tima. For example, for a minimization problem showed in
vertices and a list of edges. One example is shown in fi : - .
1 g P gLiglggure 2, it seems difficult to reach the best solutionby

Evolutionary Computation directly. But it is easy to find the
best solution by local search if the search starts from solution
B. Usually solutionB can be easily generated by evolu-
Before proceeding to the description of metheuristic mettionary computation operators ( eg. crossover or mutation).
ods, we firstly focus on local search. A local search i&s a matter of fact, an efficient method, calling Memetic
often conducted via some move operators. To be exactgorithm, is constructed by combining local search with
it translates a solutiors to a new ones’(s’ € N(s)), Evolutionary Computation.
where N(s) is a set of the neighbourhood solutions. In For a k-spanning tree problem with a small graph, the
other words, the solution is improved by replacing it withbest solution may be found by Tabu Search easily. Because
a new one. If a movement is carried out once a new solutiom Tabu Search, tabu list is applied to prevent falling into
with a smaller objective function value is met, we call itocal optima, However, for the problem with a large graph,
first improvement. If a movement does not carry outthe length of tabu list may become very long in order to
until finding a solution with the smallest objective functiorenlarge the search area. Accordingly, the computing cost
value from its neighbourhood solutions, we call bi¢st would be expended rapidly with the increasing of the length.

Recall that &-spanning tree is constructed by connectinﬁ
k+1 vertices withk edges into a tree in gragh. Like other
existing data structures of trees, we represent the solution

B. Local Search
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if the probability p = 1, or be constructed randomly if
the probabilityp = 0. A good balance will be built up
between generating good initial solutions and maintaining the
[ Initalize t, tabulists aspiration, nic=0 | diversity of initial solutions, if a proper probabilityis found.
In this research, we determine the probabifity= 0.85 due

to numeral experiments beforehand.

Local search

B. Tabu Search
The Tabu Search used in this paper is similar to the method
in [20], in which aspiration criterion and dynamic length
NO of tabu lists were used. In this section, the details on Tabu

Update aspiration, tabu lists | Search will be described

NO 1) Local Search: In local search, the current tree is
w considered to be translated into a new one, by exchanging
YES one vertex contained in current tree with one that not be
[ initializetlnic=0 | [ nic=nic+1 ]  contained. Firstly, the set including all the vertices Jof

spanning tre€l},, is denoted byV (T}). And we define the
. . NO _ _
Q};Cm> neighbourhood vertex set @, as follows:
YES
Vvu (Ti) := {v|(v,v") € E,v ¢ V(Ti),v" € V(T))}. (1)

| Increase tl, nic=0 |

| Generate Initial Solution |

Then letT'# be a newk-spanning tree obtained by adding

NO .
w - one vertexv,gq € Vwm(Tk) to T) and deleting another

vertex vqe; € V(Ty). And the set of neighbourhood-

YES . .
LS Diversification (Memetic Algorithm) | spanning treed},, denoted byNH(T}), contains all the
possiblek-spanning tree§ ¥ in G.
In order to obtain a better solutiobgst improvement is
erminate condition . . .
- used in the proposed local search algorithm. E¥spanning

tree TN Hvest which has the smallest objective function value
in the neighbourhood-spanning tree set df}, is selected
as follows:

TNHvest .= qrgmin{ f(TY)| TN € NH(Ty,)}.  (2)

Fig. 3. Proposed Algorithm

As a result, Tabu Search may no longer be so efficient fblowever, in traditionabest improvement, constructing and
the problem with a large graph. Memetic Algorithm, withevaluating of all theV H (T}) would cost a lot of computing
evolutionary computation operators, is expected to help Tabme. In order to make the local search more efficient, we
Search overcome this shortcoming. The proposed hybrddnstruct thek-spanning trees by adding or deleting only the
algorithm will be described in the next section. “necessary” vertices, so that we can find tH&7v- early
before all theN H(T}) be constructed. The added vertex is

[Il. PROPOSED ALGORITHM selected as follows:

As described in previous section, Tabu Search and Vadd 1= argmin {2“’(6)‘6 = (v, U/)} ©)
Memetic Algorithm have their own advantages on solving degree(v)

optimization problems respectively. In this section, we wouldhere degree(v)is the number of edges that can be connected
like to describe the proposed hybrid algorithm, in whicko current treel’s*", andv € Vg (T%),v" € V(TF"").

Memetic Algorithm is used as a diversification strategy forhe deleted vertex is selected as follows:

Tabu Search. Without loss of generality, the flowchart of the S w(e) )
proposed algorithm is shown in figure 3. Vdel 1= argmax {degredv) =(v,v )} 4)

. ) where degree(v)is the number of edges that now contained
A. Generate Initial Solution in the current tregﬂ’gur’ andv € V(Tlgur%v/ e V(Tlgur)

Let e; denote an edge, one of its vertices belongs-to
spanning tre€l;, and the other one does not. The set of all 2) Parameters:The core procedure of Tabu Search is to
the ¢; for a k-spanning treel}, is denoted byEnxy(T:), forbid some movements based oremory. In the proposed
which means a neighbor edges set 1qr To generate &- algorithm, the“tabu” (forbiddance) is applied to edges that
spanning tree, firstly a vertex is selected as the initial vertbas added or deleted to thespanning tree recently, and
for T}, at random. Then edges will be addedTp one by tabu lists are used as memory to record edges that should
one until ak-spanning tree is completely constructed. Thie forbidden. To be concretelynlList and OutList are
added edge is selected a8 := argmin{w.|e € Exg(Tx)} adopted keep the records of removed edges and added edges
under a probabilityp, or selected randomly froft ;7 (T%) respectively. Tabu tenure, determined by the length of tabu
under probabilityl — p, otherwise. In an extreme cade, lists, is a period for which it forbids edges in the tabu
spanning tree would be constructed in a greedy stratelists from adding or deleting. The lengths of tabu lists are
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dynamic in proposed algorithm, which help the local search1) Generating Initial Population:Firstly, the size ofP
implement centralization and diversification strategies. If thehould be determined. Obviously the larger the size is,
best solution in this iteration has not been updatediioy,,, the more new individuals would be generated. However,
movements, the length of tabu lists will be increasediby.. considering the computing cost for large size problems, we
The search stops if the length of either of tabu lists is largeelect the size ofP as 4 in this study. The initial popu-

thantl,,... Some parameters are defined as follows: lation P includes one individual obtained by Tabu Search
- min{ {VJ VI-k k} and individuals generated under the procedure described in
2017 4 4 section 3.A. Additionally, in order to make sure that the

structures of all the individuals are not the same, we replace

Homan = {VJ the reduplicate individuals with new generatkespanning

5 trees.

tan — thin 2) Genetic Operation:In this paper,crossover, usually
tine = {HJJ +1 adopted in Evolutionary Computation, is used as the Genetic
Operation. We use crossover operator to enlarge the explored
NiCmagz = MaXxX{tline, 100} domain, so that the algorithm can escape from local optima

easily. The crossover operator is completed by two proce-

where |V is the number of vertices irG, k is the dures:
cardinality of k-spanning treetl,,;, is the initial length and  Firstly, each individual excepf}, itself in P is considered
tlmae 1S the max length of tabu list. to be a cross partnér{ for 7. More concretely, iff}, and

3) Aspiration Criterion : The “tabu” mechanism that its cross partnefc’ have at least one common vertex, then a
forbids some of the movements, helps the algorithm avowgrtex setl’ (G) is defined asV (G¢) = V(T},) U V(TF).
falling to local optimal. However, it may also cause a los®therwise, edges and vertices and edges should be added
of some information that the best solution may containdd 7} until at least one common vertex is found, by the
in. In order to avoid losing information, a procedure callegrocedure we described isection 3.A under probability
aspiration criterion is used in the proposed algorithm. (1 — p). Then a spanning tre&5”, which contains all the
That is, if v. > f(T]) is satisfied, the movement will vertices of V(G©), is constructed under the procedure we
be acceptable evenis included inInList or OutList. The introduced insection 3.A.
parametery, calledaspiration criterion level are givento  Then, a Dynamic Programming algorithm, originally intro-

all of edges and are initially set to be: duced in [17], is applied to the spanning tE&” for finding
out the bestk-spanning tree. Since the Dynamic Program-
e = { f(TEM) e € E(TET) (5) ming algorithm is very efficient, the crossover operator will
‘ 00 e ¢ E(Tg) help us get a good solution in a very short time.

3) Updating Population: Since there are so many im-
provements for individuals under the operators above, some
of the individuals may be the same in offspring populations.
In order to avoid redundancy searching, an updating oper-
) ) ator is applied to the offspring populations. Concretely, the
C. Memetic Algorithm updating operator is to replace the repeated individuals with

If a solution could not be improved any more by Tabdi-SPanning trees constructed by the procedure introduced in
Search, we would like to try Memetic Algorithm as ad¢ction 3.A under probability(1 —p).
diversification strategy to improve the solution once more. 4) Tabu Search based Local Seardkiter Genetic Opera-
This procedure is used to make the algorithm escape frdi@n. each offspring will be further improved by local search.
local optimum by evolutionary computation operators. Thé& the previous section, we introduced the procedures and

proposed Memetic Algorithm is shown in the following: ~Parameters of Tabu Search, which is considered to be very
useful. Now we want to make use of these concepts to con-

Memetic Algorithm duct local search effectively. Consequently, the local search
. here used is the same as the one describeskimion3.B,

St:.? 1P = IW‘?“Z@@ s tied d excepting tabu list length set to be definite numbers.
gtelp€2§§?? _CZZZ;;Z ZOte:ZZ;{ le( P) © 5) Stopping criteria of Memetic AlgorithmWe define a
Step 3P’ :: Upda tiﬁg P]’)Opula ti(l)n( P genergtion as aidle ge'neration if the. object.ive function.
Step 4P’ : Replace(P U P') value is not.lmproved in that gengratlon. If idle geperatlon
Step 5P" = Tabu Search based Local Search(P') occurs continuously for several times, the Memetlt_: Algo-
Step 6P” o Updating Population(P") rithm stops. In order_ to have a cgmplete searchmg, the
Step 7P : Replace(P U P") Memeng Alg_onthm will not end until the number of |dIe_
endwhile. generations is twice as mucr_l as t_he .Iargest _|dlel generations
Step 8Return(P) happened before. The stopping criteria function is shown as

below:
where P means the population of individuals no®, means
the individuals which are generated from the Genetic Oper-
ations, andP” denotes the individuals improved by Tabuwhere: is the number of continuously occurred idle genera-
Search based Local Search. tions, i is the smallest number of idle generations which is

For each explored solutiofi,, v, is updated as. := f(T%)
for eache € E(T}).

7= arg max{is, 2 % Z’ma(lﬁ} (6)
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determined in advance, angl,, is the largest idle generation“Best value” indicates that the number of instances reached

happened before. the best results among four methods out of all the benchmark
instances.
D. Centralization strategy Firstly, we can see from tables I-V, showing the results for

gl? instances with small graphiE( < 2000), that perfor-

Centralization strategy is also concerned in the propos  th d method is better th isti |
algorithm. We would not finish the algorithm after doin nance ot the p_rop?se me c,’, 'S betier than existing algo-
thms considering “Best value”. Then, tables VI-X, showing

the Memetic Algorithm instantly. A deeper search is needed,

because the best solution may exist near to where Mem ¢ retsr?lttst;or thefmstances \;V'ttr:] large grag|IE| (Th2go'0)’b it
Algorithm just searched. More concretely, the best soluti ow that the performance of In€ proposed method IS better

generated from Memetic Algorithm is regarded as the initid 2" ,?X'S“”Sl algonthms“ considering "Best value”, .Mean
solution for Tabu Search to restart the algorithm. value” and “Worst value” . The better performance is due

to the effect of the diversification strategy based on Memetic
) L Algorithm, which enlarges the search area through genetic
E. Stopping criteria operators. Considering the performance of the proposed
The stopping criteria of the proposed algorithm is as samgethod, another feature is that the larger the graphs are, the
as that we described ifiection 3.C.5. The algorithm ends if better the results are than other existing methods. Finally,
the objective function value is no longer improved for severgdom the row headed “Best value” in table XI, it can be found
iterations. that the proposed method obtained the best solutions out of
75 instances, which is significantly better than all the other
IV. EXPERIMENTAL STUDY algorithms. Furthermore, the proposed algorithm reaches 47
In order to evaluate the efficiency of the proposed alg®est known solutions out of 75 cases. We can also judge
rithm, numeral experiments have been carried out. Besith@t the proposed algorithm is robust, since it has the most
the proposed method (Hybrid Algorithm Based on Memetigistances (59 cases) in the row headed “Mean value”. Thus
Algorithm and Tabu Search: HMATS), three state-of-thdt can be concluded that the proposed method is superior in
art existing algorithms were also experimented. One istérms of solution quality for all kinds of graphs.
Hybrid algorithm (Hybr.K) based on the Tabu Search and Ant
Colony Optimization, originally proposed by Katagetial V.. CONCLUSION
[19]. The other two algorithms are Tabu Search algorithm
(TSB) and Ant colony Optimization algorithm (ACO), both
introduced by Blumet al. in [18]. The proposed algorithm

In this paper we proposed a hybrid algorithm based
on Memetic Algorithm and Tabu Search férminimum
spanning tree problems. The experiments applied in existing

was coded in C language and compiled with C_Compllzlg'enchmark instances show that the proposed algorithm is

Microsoft Visual C++ 7.1. All the algorithms were carrie . ;
. . i i - ‘powerful in searching and has a stronger robust than other
out under the following compute environment: CPU: Pentluﬁ)\

4 3.06 GHz, RAM: 1 GB, OS: Microsoft Windows XP. The90rithms. It can be observed that a proper combination
. f metaheuristics is efficient for solving-spanning tree
parameter settings as well as the source code used for all the
. Y .problems.
experiments in this study were as same as the those provide

by Katageriet al. and Blumet al.. The k-spanning tree ¢ b(;n\év#:ngi Sorcr:;)?erizp(te(;ms]ﬁg\t; tvr\:ghefr;:euc(t:ir\]/eféggroilztﬁe
problem benchmark instances were downloaded from [Zear.0 osed al oriFt)hm in future
All of the 75 instances were created based on 15 differdhCP 9 '
graphs, by changing the cardinalitg)( In particular, for
small instances, the number of edges in the graph are less REFERENCES
then or equal to 2000, théimit Time was set to be 300 [1] H.w. Hamacher, K. Jorsten, F. Maffioli, Weightédcardinality trees,
(s), and experiments were executed for 30 independent runs.Technical ReportPolitecnico di Milano, Dipartimento di Elettronica,
; ; Italy, 1991.
For Iarger instances, Fhe, number of edges in the graph ?j]eH.W. Hamacher, K. Jorsten, Optimal relinquishment according to the
larger than 2000, thdimit Time was ?et to be 6000 (S),” " Norwegian petrol law: a combinatorial optimization approathnical
and experiments were executed for 10 independent runs. PartRepor; No. 7/93, Norwegian School of Economics and Business
; ; ; Administration, Bergen, Norway, 1993.

of experiment results are reported n '[hIS_ paper. 5] L. R. Foulds, H.W. Hamacher, J. Wilson, Integer programming ap-

Tables |')_( show the reS_U“S_ of experiments for several proaches to facilities layout models with forbidden areésnals of
benchmark instanced/|, | E| indicate the number of vertices  Operations ResearcB1:405-417, 1998.

4] A. B. Philpott, N.C. Wormald, On the optimal extraction of ore from
and edges of grapﬁ: and k denotes the number of edgeé an open-cast mine, New Zealand: University of Auckland, 1997.

that thek-spanning tree contains separatdly<.S means the [5] R. Borndorfer, C. Ferreira, A. Martin, Decomposing matrices into

best known solutions which have been obtained by Btum blocks, SIAM Journal on OptimizatignVol. 9, No. 1, pp. 236-269,
al. through their tremendous experiments. The rows headed 1998 o .
“ 9 y " P “ " . d[%fi N. Garg, D. Hochbaum, A® (log k) approximation algorithm for the
Best value”, “Mean value” and “Worst value” provide k minimum spanning tree problem in the plardgorithmica Vol. 18,
the best results, average results, and the worst results ofNo.1, pp. 111-121, 1997. _ o _
each experiment. Results highlighted in bold means that tfk B: Ma, A. Hero, J. Gorman, O. Michel, Image registration with
| ith hi d the b Ui h d minimum spanning tree algorithniEEE International Conference on
algorithm ac ieve the best solution among the compared nage Processing2000.
methods for an instance. The values markedxbglenote [8] M. Fischetti, H.W. Hamacher, K. Jornsten, F. Maffioli, Weighted
that the best known solutions were updated by the proposed Sardinallly tiees: complexity and polyhedral structutiorks Vol
. . . , pp. 11-21, .

algorithm. Table XI summarizes the outperformed inStancR$ 1 varathe, D. Ravi, S.S. Ravi, D. Rosenkrantz, R. Sundaram, Span-

among the compared methods. For example, a row headedning trees short or smal§IAM J. Discrete Math9 (2), 178-200, 1996.
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TABLE |
1400 |E|: k:160 BK S:3062
|V :400 | E|: 800 S TABLE V
Obejective function| HMATS | Hybr.K TSB ACOB |V]:1000 | E|:1250 k:600 BKS:15916
Best value 2 S— -
Mean value 330%? 1 3%%(;72 3:(5)(;7108 3:3%6536 Obejective function| HMATS Hybr.K TSB ACOB
Worst value 308% 307'2 3076 30&; Best value 15917 16041 16132 16186
Mean value 15955.8 | 16084.9 | 16162.3 | 16285.7
Worst value 15998 16111 16218 16384
TABLE Il
|V]:400 | E|:800 k:240 BK S:5224
Obejective function| HMATS | Hybr.K TSB ACOB
Best value 5224 5230 5238 5228
Mean value 5226.5 | 5235.3 | 5247.2 | 5240.1 TABLE VI
Worst value 5241 5238 | 5257 | 5261 [V|: 2500 | E2]:4900 k:500 BK'S:8150
Obejective function| HMATS | Hybr.K TSB ACOB
TABLE IlI Best value %8146 8621 8722 8406
|V]:1000 | E|:1250 k:200 BK S:3456 Mean value 8259.4 | 8673.9 | 8824.5 8481
Worst value 8356 8811 8874 8605
Obejective function| HMATS | Hybr.K TSB ACOB
Best value 3456 3553 3588 3460
Mean value 3505.2 3600.1 | 3608.3 | 3471.3
Worst value 3569 3644 3636 3487
TABLE VII
TABLE IV [V]:2500 | E|:4900 k:1000BK S:17437
|V1:1000 | E[:1250 k:400 BK 5:8691 Obejective function] HMATS | HybrK | TSB | ACOB
Obejective function] HMATS | HybrK [ TSB | ACOB Best value 17508 18343 18374 17973
Best value 8692 8857 8941 8302 Mean value 17810.2 | 18663.8 | 18465.2 | 18155.5
Mean value 8739.3 | 8933.3 | 8997.4 | 8872.9 Worst value 18242 19031 18624 18358
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