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Abstract—A combinatorial optimization problem, namely k-
Minimum Spanning Tree Problem, is to find a subtree with
exactly k edges in an undirected graphG , such that the
sum of edges’ weights is minimal. where graphG is made
up of a set of vertices and weight attached edges. Since
this problem is NP-hard, heuristic and metaheuristic methods
are widely adopted for solving large instances. In this paper,
we propose a new hybrid algorithm to solve this problem,
by using Memetic Algorithm as a diversification strategy for
Tabu Search. Especially, the genetic operator in our Memetic
Algorithm is based on dynamic programming algorithm, which
finds the optimal subtree in a given tree efficiently. The proposed
algorithm is tested on thek–Minimum Spanning Tree problems
with other exiting algorithms, The experimental results show
that the proposed algorithm is superior to all the exiting
algorithms in precision and updates some of the best known
results.

Index Terms—k-minimum spanning tree, memetic algorithm,
tabu search, combinatorial optimization, hybrid algorithm.

I. I NTRODUCTION

T HE k-minimum spanning tree problem also referred
to the k-cardinality tree problem, is a combinatorial

optimization problem. LetG = (V,E) be an undirected
graph, which is made up by connecting a set of vertices
V and edgesE. For each vertexv ∈ V , it can connect to
any vertexv′ ∈ V , through one edge or edges. Each edgee
is attached with a nonnegative valuewe, called weight. The
goal is to find a tree with exactlyk(k ≤| V | −1) edges, so
that the sum of edges’ weightsf(Tk) is minimal. It can also
be considered in another view point, that is to connect exactly
k + 1 vertices byk edges without cycle, such that the sum
of edges’ weights is minimal. The mathematical program is
shown as below:

minmize f(Tk) =
∑

we ∗ xe

subject to Tk ∈ Tk∑
xe = k

xe =

{
1 e ∈ E(Tk)
0 otherwise

Manuscript received August 26, 2011; revised October 16, 2011.
Q. Guo is with the Department of System Cybernetics, Graduate School of

Engineering, Hiroshima University e-mail:guoqingqiang@hiroshima-u.ac.jp
H. Katagiri is with the Department of System Cybernetics, Graduate

School of Engineering, Hiroshima University e-mail:katagiri-h@hiroshima-
u.ac.jp

I. Nishizaki is with the Department of System Cybernetics, Graduate
School of Engineering, Hiroshima University e-mail:nisizaki@hiroshima-
u.ac.jp

T. Hayashida is with the Department of System Cybernetics, Graduate
School of Engineering, Hiroshima University e-mail:hayashida@hiroshima-
u.ac.jp

whereE(Tk) is the edges set of treeTk, andTk is the set
containing all feasible solutions withk edges in the graph
G.

The k-minimum spanning tree problem was firstly raised
by Hamacheret al. [1], and has been applied very broadly,
such as oil-field leasing [2], facility layout [3], open pit
mining [4], matrix decomposition [5], telecommunication
[6], and image processing [7].

This problem has been proved to be anNP-hard problem
by several researchers [1] [8] [9]. In two cases the problem
can be polynomially solved. One case is that there are only
two distinct weights in the graph [9], the other case is that
the graph is a tree itself [10].

Many solving methods were proposed for dealing with the
k-minimum spanning tree problem, due to various applica-
tions of this problem. The first exact algorithm was presented
by Fischettiet al. [8]. In which, thek-minimum spanning
tree problem was formulated into an integer linear program
(ILP) based on generalized subtour elimination constraints.
Recently, Quintaoet al. [11] also proposed two integer
programming formulations, a Multiflow Formulation and a
formulation based on the Miller-Tucker-Zemlin constraints,
for thek-Cardinality Tree Problem. In which, the comparison
of the two formulations and a Lagrangian heuristic based on
the first reformulation were also implemented.

Besides the exact methods, a lot of approximation algo-
rithms were also proposed for thek-minimum spanning tree
problem. At first anO(

√
k)-approximation algorithm for the

vertex-weighted problem on grid graphs was proposed by
Woeginger [12]. Later, a2(

√
k) approximation was obtained

by Maratheet al. [9], and then a 3-approximation algorithm
for a rooted case was proposed by Garg [13]. Based on the
[13], a (2 + ε) approximation algorithm with complexity
nO(1/ε) for any ε > 0 was obtained by Aroraet al. [14].
These papers represent ongoing improvement algorithms
until a constant approximation factor could be obtained.

Since the problem is NP-hard, heuristic and metaheuristic
methods were also widely proposed. Heuristics based on
greedy strategy and dynamic programming were proposed
by Ehrgott et al. [15]. And a heuristic based on variable
neighbourhood decomposition search (VNDS) which has a
good performance for small size problems, was proposed by
Urosevicet al. [16].

Then Blum [17] proposed a dynamic programming ap-
proach for finding an optimal subtree in a graph. Firstly all
the vertices in the graph is connected to be a spanning tree,
then the optimal subtree is generated from the spanning tree.
This algorithm was proved to be efficient even for large size
problems.
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Fig. 1. A k-spanning tree(k=4, {v2, v5, v6, v8, v9}, {e4, e7, e9, e10})

Concerning the metaheuristics, three metaheuristic ap-
proaches, namely Tabu Search, Evolutionary Computation
and Ant Colony Optimization approach, for the edge-
weighted k-cardinality tree problem were introduced in [18].
It also showed that the performances of three metaheuristics
depend on the characteristics of the tackled instances, as
well as the cardinalities. Recently a hybrid algorithm based
Tabu Search and Ant Colony Optimization was proposed
by Katagiri et al. [19] and the experimental results showed
that their hybrid algorithm provided a better performance
with solution accuracy over existing algorithms. It can be
observed that metaheuristic are attracting more and more
interests recently for solving thek-minimum spanning tree
problem.

The remainder of this article is organized as follows. Sec-
tion II introduces preliminary background of this paper, in-
cludingk-spanning tree structure, Local search, Tabu Search
and Memetic Algorithm. We will describe the proposed
hybrid algorithm in Section III. Our new experimental results
and analysis are described in Section IV. Finally, Section V
gives the conclusions.

II. BACKGROUND

In this section, we start from the solution representation
and then briefly describe ultimate principles of Local Search,
Tabu Search and Memetic Algorithm.

A. k-spanning tree structure

Recall that ak-spanning tree is constructed by connecting
k+1 vertices withk edges into a tree in graphG. Like other
existing data structures of trees, we represent the solution of
the k-minimum spanning tree problem as an ordered list of
vertices and a list of edges. One example is shown in figure
1.

B. Local Search

Before proceeding to the description of metheuristic meth-
ods, we firstly focus on local search. A local search is
often conducted via some move operators. To be exactly,
it translates a solutions to a new ones′(s′ ∈ N(s)),
where N(s) is a set of the neighbourhood solutions. In
other words, the solution is improved by replacing it with
a new one. If a movement is carried out once a new solution
with a smaller objective function value is met, we call it
first improvement. If a movement does not carry out
until finding a solution with the smallest objective function
value from its neighbourhood solutions, we call itbest

x

f(
x
)

A
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B

x*

Fig. 2. A Minimization Problem

improvement. Though the solution can be improved based
on the move operators smoothly at first, it may not reach
to the best solution in most cases. The local search may
repeatedly search some areas where had been searched,
becoming a cycle in the worst case if it meets a local optimal
solution. The search may fall into local optimum easily, in
other words.

C. Tabu Search

Tabu Search, firstly proposed by Gloveret al. [22] [23],
is one of the most usually used metaheuristics for solving
combinatorial optimization problems. It is considered as
a variety of iterative local search strategies for discrete
optimization.The most important characteristic of tabu search
is that it uses a concept ofmemory to control movements via
a dynamic list of forbidden moves. To be more specifically,
the area that has been searched will be “tabu” (prohibited)
to visit for a while. This mechanism allows Tabu Search
to intensify or diversify its search procedure in order to
escape from local optima. Many experiments showed that
Tabu Search can lead to a significant improvement in terms of
solution quality, and may even accelerate convergence of the
algorithm. Tabu Search has also been proved to be effective
in solving k-minimum spanning tree problem [18].

D. Memetic Algorithm

As a rising field of Evolutionary Computation, Memetic
Algorithm was first introduced by Moscato in 1989 [24]. Tra-
ditional Evolutionary Computation (eg. Genetic Algorithm)
have been applied widely to solve optimization problems
because of their good search abilities. However, they may
not be efficient to some problems which contain many local
optima. For example, for a minimization problem showed in
Figure 2, it seems difficult to reach the best solutionx∗ by
Evolutionary Computation directly. But it is easy to find the
best solution by local search if the search starts from solution
B. Usually solutionB can be easily generated by evolu-
tionary computation operators ( eg. crossover or mutation).
As a matter of fact, an efficient method, calling Memetic
Algorithm, is constructed by combining local search with
Evolutionary Computation.

For a k-spanning tree problem with a small graph, the
best solution may be found by Tabu Search easily. Because
in Tabu Search, tabu list is applied to prevent falling into
local optima, However, for the problem with a large graph,
the length of tabu list may become very long in order to
enlarge the search area. Accordingly, the computing cost
would be expended rapidly with the increasing of the length.
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Fig. 3. Proposed Algorithm

As a result, Tabu Search may no longer be so efficient for
the problem with a large graph. Memetic Algorithm, with
evolutionary computation operators, is expected to help Tabu
Search overcome this shortcoming. The proposed hybrid
algorithm will be described in the next section.

III. PROPOSED ALGORITHM

As described in previous section, Tabu Search and
Memetic Algorithm have their own advantages on solving
optimization problems respectively. In this section, we would
like to describe the proposed hybrid algorithm, in which
Memetic Algorithm is used as a diversification strategy for
Tabu Search. Without loss of generality, the flowchart of the
proposed algorithm is shown in figure 3.

A. Generate Initial Solution

Let ei denote an edge, one of its vertices belongs tok-
spanning treeTk and the other one does not. The set of all
the ei for a k-spanning treeTk is denoted byENH(Tk),
which means a neighbor edges set forTk. To generate ak-
spanning tree, firstly a vertex is selected as the initial vertex
for Tk at random. Then edges will be added toTk one by
one until ak-spanning tree is completely constructed. The
added edgee is selected ase := argmin{we|e ∈ ENH(Tk)}
under a probabilityp, or selected randomly fromENH(Tk)
under probability1 − p, otherwise. In an extreme case,k-
spanning tree would be constructed in a greedy strategy

if the probability p = 1, or be constructed randomly if
the probability p = 0. A good balance will be built up
between generating good initial solutions and maintaining the
diversity of initial solutions, if a proper probabilityp is found.
In this research, we determine the probabilityp = 0.85 due
to numeral experiments beforehand.

B. Tabu Search

The Tabu Search used in this paper is similar to the method
in [20], in which aspiration criterion and dynamic length
of tabu lists were used. In this section, the details on Tabu
Search will be described.

1) Local Search: In local search, the current tree is
considered to be translated into a new one, by exchanging
one vertex contained in current tree with one that not be
contained. Firstly, the set including all the vertices ofk-
spanning treeTk, is denoted byV (Tk). And we define the
neighbourhood vertex set ofTk as follows:

VNH(Tk) := {v|(v, v′) ∈ E, v /∈ V (Tk), v
′ ∈ V (Tk)}. (1)

Then letTNH
k be a newk-spanning tree obtained by adding

one vertexvadd ∈ VNH(Tk) to Tk and deleting another
vertex vdel ∈ V (Tk). And the set of neighbourhoodk-
spanning treesTk, denoted byNH(Tk), contains all the
possiblek-spanning treesTNH

k in G.
In order to obtain a better solution,best improvement is

used in the proposed local search algorithm. Thek-spanning
treeTNHbest which has the smallest objective function value
in the neighbourhoodk-spanning tree set ofTk is selected
as follows:

TNHbest := argmin{f(TNH
k )|TNH

k ∈ NH(Tk)}. (2)

However, in traditionalbest improvement, constructing and
evaluating of all theNH(Tk) would cost a lot of computing
time. In order to make the local search more efficient, we
construct thek-spanning trees by adding or deleting only the
“necessary” vertices, so that we can find theTNHbest early
before all theNH(Tk) be constructed. The added vertex is
selected as follows:

vadd := argmin

{ ∑
w(e)

degree(v)

∣∣∣e = (v, v′)

}
(3)

where degree(v)is the number of edges that can be connected
to current treeT cur

k , andv ∈ VNH(Tk), v
′ ∈ V (T cur

k ).
The deleted vertex is selected as follows:

vdel := argmax

{ ∑
w(e)

degree(v)

∣∣∣e = (v, v′)

}
(4)

where degree(v)is the number of edges that now contained
in the current treeT cur

k , andv ∈ V (T cur
k ), v′ ∈ V (T cur

k ).

2) Parameters:The core procedure of Tabu Search is to
forbid some movements based onmemory. In the proposed
algorithm, the“tabu” (forbiddance) is applied to edges that
has added or deleted to thek-spanning tree recently, and
tabu lists are used as memory to record edges that should
be forbidden. To be concretely,InList and OutList are
adopted keep the records of removed edges and added edges
respectively. Tabu tenure, determined by the length of tabu
lists, is a period for which it forbids edges in the tabu
lists from adding or deleting. The lengths of tabu lists are



dynamic in proposed algorithm, which help the local search
implement centralization and diversification strategies. If the
best solution in this iteration has not been updated fornicmax

movements, the length of tabu lists will be increased bytlinc.
The search stops if the length of either of tabu lists is larger
than tlmax. Some parameters are defined as follows:

tlmin := min

{⌊
|V |
20

⌋
,
|V | − k

4
,
k

4

}

tlmax :=

⌊
|V |
5

⌋

tlinc :=

⌊
tlmax − tlmin

10

⌋
+ 1

nicmax := max{tlinc, 100}

where |V | is the number of vertices inG, k is the
cardinality ofk-spanning tree,tlmin is the initial length and
tlmax is the max length of tabu list.

3) Aspiration Criterion : The “tabu” mechanism that
forbids some of the movements, helps the algorithm avoid
falling to local optimal. However, it may also cause a loss
of some information that the best solution may contained
in. In order to avoid losing information, a procedure called
aspiration criterion is used in the proposed algorithm.
That is, if γe > f(TNH

k ) is satisfied, the movement will
be acceptable evene is included inInList or OutList. The
parameterγe calledaspiration criterion level are given to
all of edges and are initially set to be:

γe =

{
f(T cur

k ) e ∈ E(T cur
k )

∞ e /∈ E(T cur
k )

(5)

For each explored solutionTk, γe is updated asγe := f(Tk)
for eache ∈ E(Tk).

C. Memetic Algorithm

If a solution could not be improved any more by Tabu
Search, we would like to try Memetic Algorithm as a
diversification strategy to improve the solution once more.
This procedure is used to make the algorithm escape from
local optimum by evolutionary computation operators. The
proposed Memetic Algorithm is shown in the following:

Memetic Algorithm

Step 1P := Initialize(P )
while stop criterion not satisfied do
Step 2P ′ := Genetic Operations(P )
Step 3P ′ := UpdatingPopulation(P ′)
Step 4P ′ := Replace(P ∪ P ′)
Step 5P ′′ := Tabu Search based Local Search(P ′)
Step 6P ′′ := UpdatingPopulation(P ′′)
Step 7P := Replace(P ∪ P ′′)
endwhile
Step 8Return(P )

whereP means the population of individuals now,P ′ means
the individuals which are generated from the Genetic Oper-
ations, andP ′′ denotes the individuals improved by Tabu
Search based Local Search.

1) Generating Initial Population:Firstly, the size ofP
should be determined. Obviously the larger the size is,
the more new individuals would be generated. However,
considering the computing cost for large size problems, we
select the size ofP as 4 in this study. The initial popu-
lation P includes one individual obtained by Tabu Search
and individuals generated under the procedure described in
section 3.A. Additionally, in order to make sure that the
structures of all the individuals are not the same, we replace
the reduplicate individuals with new generatedk-spanning
trees.

2) Genetic Operation:In this paper,crossover, usually
adopted in Evolutionary Computation, is used as the Genetic
Operation. We use crossover operator to enlarge the explored
domain, so that the algorithm can escape from local optima
easily. The crossover operator is completed by two proce-
dures:

Firstly, each individual exceptTk itself in P is considered
to be a cross partnerTC

k for Tk. More concretely, ifTk and
its cross partnerTC

k have at least one common vertex, then a
vertex setV (GC) is defined as:V (GC) = V (Tk)

∪
V (TC

k ).
Otherwise, edges and vertices and edges should be added
to Tk until at least one common vertex is found, by the
procedure we described insection 3.A under probability
(1 − p). Then a spanning treeTSP , which contains all the
vertices ofV (GC), is constructed under the procedure we
introduced insection 3.A.

Then, a Dynamic Programming algorithm, originally intro-
duced in [17], is applied to the spanning treeTSP for finding
out the bestk-spanning tree. Since the Dynamic Program-
ming algorithm is very efficient, the crossover operator will
help us get a good solution in a very short time.

3) Updating Population: Since there are so many im-
provements for individuals under the operators above, some
of the individuals may be the same in offspring populations.
In order to avoid redundancy searching, an updating oper-
ator is applied to the offspring populations. Concretely, the
updating operator is to replace the repeated individuals with
k-spanning trees constructed by the procedure introduced in
Section 3.A under probability(1− p).

4) Tabu Search based Local Search:After Genetic Opera-
tion, each offspring will be further improved by local search.
In the previous section, we introduced the procedures and
parameters of Tabu Search, which is considered to be very
useful. Now we want to make use of these concepts to con-
duct local search effectively. Consequently, the local search
here used is the same as the one described inSection3.B,
excepting tabu list length set to be definite numbers.

5) Stopping criteria of Memetic Algorithm:We define a
generation as anidle generation if the objective function
value is not improved in that generation. If idle generation
occurs continuously for several times, the Memetic Algo-
rithm stops. In order to have a complete searching, the
Memetic Algorithm will not end until the number of idle
generations is twice as much as the largest idle generations
happened before. The stopping criteria function is shown as
below:

i := argmax{is, 2 ∗ imax} (6)

wherei is the number of continuously occurred idle genera-
tions, is is the smallest number of idle generations which is



determined in advance, andimax is the largest idle generation
happened before.

D. Centralization strategy

Centralization strategy is also concerned in the proposed
algorithm. We would not finish the algorithm after doing
the Memetic Algorithm instantly. A deeper search is needed,
because the best solution may exist near to where Memetic
Algorithm just searched. More concretely, the best solution
generated from Memetic Algorithm is regarded as the initial
solution for Tabu Search to restart the algorithm.

E. Stopping criteria

The stopping criteria of the proposed algorithm is as same
as that we described inSection 3.C.5. The algorithm ends if
the objective function value is no longer improved for several
iterations.

IV. EXPERIMENTAL STUDY

In order to evaluate the efficiency of the proposed algo-
rithm, numeral experiments have been carried out. Beside
the proposed method (Hybrid Algorithm Based on Memetic
Algorithm and Tabu Search: HMATS), three state-of-the-
art existing algorithms were also experimented. One is a
Hybrid algorithm (Hybr.K) based on the Tabu Search and Ant
Colony Optimization, originally proposed by Katageriet.al
[19]. The other two algorithms are Tabu Search algorithm
(TSB) and Ant colony Optimization algorithm (ACO), both
introduced by Blumet al. in [18]. The proposed algorithm
was coded in C language and compiled with C-Compiler:
Microsoft Visual C++ 7.1. All the algorithms were carried
out under the following compute environment: CPU: Pentium
4 3.06 GHz, RAM: 1 GB, OS: Microsoft Windows XP. The
parameter settings as well as the source code used for all the
experiments in this study were as same as the those provided
by Katageri et al. and Blum et al.. The k-spanning tree
problem benchmark instances were downloaded from [21].
All of the 75 instances were created based on 15 different
graphs, by changing the cardinality (k). In particular, for
small instances, the number of edges in the graph are less
then or equal to 2000, theLimit T ime was set to be 300
(s), and experiments were executed for 30 independent runs.
For larger instances, the number of edges in the graph are
larger than 2000, theLimit T ime was set to be 6000 (s),
and experiments were executed for 10 independent runs. Part
of experiment results are reported in this paper.

Tables I-X show the results of experiments for several
benchmark instances.|V |, |E| indicate the number of vertices
and edges of graphG and k denotes the number of edges
that thek-spanning tree contains separately.BKS means the
best known solutions which have been obtained by Blumet
al. through their tremendous experiments. The rows headed
“Best value”, “Mean value” and “Worst value” provide
the best results, average results, and the worst results of
each experiment. Results highlighted in bold means that the
algorithm achieved the best solution among the compared
methods for an instance. The values marked by∗ denote
that the best known solutions were updated by the proposed
algorithm. Table XI summarizes the outperformed instances
among the compared methods. For example, a row headed

“Best value” indicates that the number of instances reached
the best results among four methods out of all the benchmark
instances.

Firstly, we can see from tables I-V, showing the results for
the instances with small graphs (|E| ≤ 2000), that perfor-
mance of the proposed method is better than existing algo-
rithms considering “Best value”. Then, tables VI-X, showing
the results for the instances with large graphs (|E| > 2000),
show that the performance of the proposed method is better
than existing algorithms considering “Best value”, “Mean
value” and “Worst value” . The better performance is due
to the effect of the diversification strategy based on Memetic
Algorithm, which enlarges the search area through genetic
operators. Considering the performance of the proposed
method, another feature is that the larger the graphs are, the
better the results are than other existing methods. Finally,
from the row headed “Best value” in table XI, it can be found
that the proposed method obtained the best solutions out of
75 instances, which is significantly better than all the other
algorithms. Furthermore, the proposed algorithm reaches 47
best known solutions out of 75 cases. We can also judge
that the proposed algorithm is robust, since it has the most
instances (59 cases) in the row headed “Mean value”. Thus
it can be concluded that the proposed method is superior in
terms of solution quality for all kinds of graphs.

V. CONCLUSION

In this paper we proposed a hybrid algorithm based
on Memetic Algorithm and Tabu Search fork-minimum
spanning tree problems. The experiments applied in existing
benchmark instances show that the proposed algorithm is
powerful in searching and has a stronger robust than other
algorithms. It can be observed that a proper combination
of metaheuristics is efficient for solvingk-spanning tree
problems.

We will do some experiments with much larger size
of benchmark problems to show the effectiveness of the
proposed algorithm in future.
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TABLE V
|V |:1000 |E|:1250 k:600BKS:15916

Obejective function HMATS Hybr.K TSB ACOB
Best value 15917 16041 16132 16186
Mean value 15955.8 16084.9 16162.3 16285.7
Worst value 15998 16111 16218 16384

TABLE VI
|V |: 2500 |E|:4900 k:500BKS:8150

Obejective function HMATS Hybr.K TSB ACOB
Best value ∗8146 8621 8722 8406
Mean value 8259.4 8673.9 8824.5 8481
Worst value 8356 8811 8874 8605

TABLE VII
|V |:2500 |E|:4900 k:1000BKS:17437

Obejective function HMATS Hybr.K TSB ACOB
Best value 17508 18343 18374 17973
Mean value 17810.2 18663.8 18465.2 18155.5
Worst value 18242 19031 18624 18358

TABLE VIII
|V |:2500 |E|: 4900 k:1500BKS:28683

Obejective function HMATS Hybr.K TSB ACOB
Best value ∗28549 29771 29878 30410
Mean value 28748 29938 30097.4 30518.2
Worst value 29353 30061 30404 30722

TABLE IX
|V |:2500 |E|:4900 k:2000BKS:43627

Obejective function HMATS Hybr.K TSB ACOB
Best value ∗43558 44101 43955 45520
Mean value 43597.7 44411.3 44059.7 45697.7
Worst value 43646 44876 44151 45940

TABLE X
|V |:2500 |E|:4900 k:2250BKS:53426

Obejective function HMATS Hybr.K TSB ACOB
Best value ∗53407 53494 53825 55780
Mean value 53411.4 53494 53907.8 55959.3
Worst value 53418 53494 53988 56081

TABLE XI
PERFORMANCES FOR EACH ALGORITHMS

Obejective function HMATS Hybr.K TSB ACOB
Best value 75(instances) 30 15 18
Mean value 59 27 4 11
Worst value 47 35 5 13

BKS 47 30 15 17




