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 
Abstract—The Multi-Commodity Capacitated Multi-facility 
Weber Problem (MCMWP) is concerned with locating I 
capacitated facilities in the plane to satisfy the demand of J 
customers for K commodities with the minimum total 
transportation cost. The MCMWP is a non-convex 
optimization problem. Customer locations, demands and 
capacities for each commodity are known a priori. The 
transportation costs, which depend on the commodity type, are 
proportional to the distance between customers and facilities. 
We first present a branch and bound algorithm then we 
propose a beam search heuristic for the MCMWP. According 
to our computational experiments on randomly generated test 
instances, we can say that the proposed beam search heuristic 
yields comparable results with the previous best heuristics. 
 

Index Terms—Location-allocation, transportation branch 
and bound, beam search 
 

I. INTRODUCTION 

he Multi-facility Weber Problem (MWP) is an 
extension of the well-known Weber Problem (WP) 
which has first been addressed in [1]. The MWP deals 

with the location of I uncapacitated facilities in the plane to 
satisfy the demand of J customers at minimum total 
transportation cost of sending products between facilities 
and customers. As further extensions of the MWP, we can 
mention the Capacitated Multi-facility Weber Problem 
(CMWP) and the Multi-Commodity Multi-facility Weber 
Problem (MCMWP). Given the locations of J customers 
and their demands, the CMWP deals with locating I 
capacitated facilities in the plane and satisfying the demands 
of J customers at minimum total transportation cost. The 
CMWP is shown to be NP-Hard in [2] even when customers 
are aligned on a straight line. On the other hand, the 
MCMWP considers the situation where K distinct 

commodities are shipped from I capacitated facilities to J 
customers with known demands. The transportation costs of 
both the CMWP and the MCMWP are assumed to be 
proportional to both the amount shipped and the distance 
between the facilities and customers. Note that the CMWP 
reduces to the MWP when the capacity restrictions on 
facilities are ignored, and the MCMWP reduces to the 
CMWP when K = 1 holds. In this work we concentrate on 
the MCMWP which uses ℓr-distance with 1 < r ≤ ∞. 
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Since its introduction in [3], a considerable amount of 
research interest has been devoted to the CMWP. As 
heuristic approaches, we can cite Cooper's [3] early 
Alternate Location-Allocation (ALA) type heuristic and 
Aras et al.'s [4] Discrete Approximation (DA) heuristic 
which is famous for its accuracy. There are also several 
exact solution approaches. We can mention the complete 
enumeration procedure in [3] for the Euclidean distance 
CMWP as an early exact solution algorithm. Then, Sherali 
and Tunçbilek [5] and Sherali et al. [6] propose branch and 
bound (BB) algorithms which employ Reformulation 
Linearization Technique (RLT) (see e.g. [7]) based lower 
bounding formulations for the squared Euclidean distance 
CMWP and rectilinear distance CMWP, respectively. The 
most recent exact solution approach is the BB algorithm 
developped in [8] for the CMWP which uses ℓr-distance 
with 1 < r ≤ ∞. On the other hand, as far as we know, very 
few studies address the MCMWP. Among them, Akyüz et 
al. [9] propose a confidence interval approach to estimate 
lower and upper bounds on the optimal value of the 
MCMWP. The authors employ several heuristics including 
an ALA type heuristic, namely the MCALA heuristic, and a 
randomized DA heuristic. Later on, Akyüz et al. [10] devise 
approximating MILP formulations and DA heuristics for the 
MCMWP. These DA heuristics compute both accurate 
lower and upper bounds on the optimal objective value of 
the MCMWP by exploiting the properties of the block 
norms. Recently, a subgradient-like heuristic is suggested in 
[11] where the authors apply a column generation procedure 
within a Lagrangean Relaxation (LR) scheme on the 
MCMWP.  Since the MCMWP is more difficult than the 
CMWP efficient and accurate heuristics are needed for the 
MCMWP. The motivation of this work is to propose a 
specially tailored Beam Search (BS) heuristic for the 
MCMWP. We have tested the proposed BS heuristic on 
randomly generated test instances and we have observed 
that the proposed BS heuristic outperforms the best known 
upper bounding heuristics (i.e. DA heuristics in [10] and 
[12]) in the literature. 
 

T 



 

The remainder of this work is organized as follows. In the 
next section, we present a mathematical programming 
formulation of the MCMWP. Then in Section 3 we present 
the location based BB (LBB) algorithm for the MCMWP. 
Section 4 is where we present the BS heuristic. The 
computational results and our experiments are reported in 
Section 5. Finally, we conclude with Section 6. 
 

II. THE MCMWP FORMULATION 

Given K commodities, consider a set of J customers for j = 
1,…,J, whose known locations are denoted by 

with a demand of qjk for each commodity 

k and a set of I facilities for i = 1,…, I, whose unknown 

locations are denoted by with a capacity of 

sik for each commodity k. In addition to the supply quantities 
sik and demand quantities qjk, the MCMWP considers also 
capacity restrictions uij on the amount of total flows between 
facility i and customer j. Furthermore, let us define decision 
variables wijk which stand for the unknown amount of 
commodity k shipped from facility i to customer j having the 
unit shipment cost of cijk  per unit distance which is 
measured by the ℓr-distance  function  
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with 1 < r ≤ ∞ between facility 

i and customer j. Notice that the MCMWP includes two 
decision variables: the location variables  for i = 1,…, I 

and the allocation variables wijk for i = 1,…, I; j = 1,…, J;k = 
1,…, K. Now we introduce a mathematical formulation of 
the MCMWP:  
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This formulation assumes that the MCMWP is balanced, i.e. 
the total demand and total supply are equal for each 
commodity. The objective function (1) consists of the sum 
of total transportation costs. Constraints (2) make sure that 
the total amount of commodity k produced by facility i 
should be exactly shipped. Constraints (3) state that the total 
amount of commodity k required by customer j should be 
exactly satisfied. Constraints (4), which are also called as 
bundle constraints, enforce that the total amount of 
allocations on a connection between facility i and customer j 
should not be larger than the given upper bound uij. The 
MCMWP has an optimum solution which always occurs at 
one of the extreme points of the polyhedron defined by the 
Multi-commodity Transportation Problem (MTP) polytope 
which is represented with constraints (2) – (4).  Note that 

this is guaranteed as long as the transportation costs are 
expressed as a function of only location variables of the 
distance . Given such an extreme point and 

feasible allocations, the MCMWP reduces to pure location 
problem which further decomposes into I WPs where each 
of them can be solved by using Weiszfeld's algorithm [13] 
or its generalizations [14]. The convergence of the 
Weiszfeld's algorithm for ℓr-norm with 1 < r ≤ 2 is shown in 
[13]. Therefore, an unconstrained minimization algorithm 
can be used for the case when r > 2 in order to find the 
optimal facility locations since the ℓr-norm function is 
convex.  
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III. LOCATION BASED BRANCH AND BOUND ALGORITHM FOR 

THE MCMWP 
 

As far as we know, location based BB algorithms date back 
to the seminal study [15] where the authors suggest the so-
called “Big Square Small Square" (BSSS) technique to 
solve the Obnoxious Facility Problem (OFP). The BSSS 
technique partitions the plane into smaller squares in which 
a facility is enforced to be located. The BSSS technique 
calculates lower and upper bounds for each square. 
Whenever a lower bound value calculated for a square 
exceeds the current best known upper bound value, namely 
the incumbent solution value ZBUB, that square is discarded 
from further consideration. Otherwise, the BB search 
process continues with partitioning of this square into four 
subsquares. Later, Drezner and Suzuki [16] propose to 
employ triangles instead of squares, namely the “Big 
Triangle Small Triangle" (BTST). Drezner and Suzuki [16] 
solve both the OFP and the Weber problem with attraction 
and repulsion (WAR) by using their BTST technique.  A 
generic approach to solve various single facility location 
problems by employing the BTST technique is presented in 
[17]. The underlying idea of both the BSSS and the BTST 
techniques is to partition the plane into polytopes in which a 
single facility can be placed. Henceforth, without loss of 
generality, we employ the terms polytopes and regions 
interchangeably, in the sequel. To the best of our 
knowledge, neither the BSSS nor the BTST technique is 
employed for the MCMWP. Hence, several issues should be 
carefully handled in order to generalize the BSSS or BTST 
techniques for the MCMWP. First of all, both of the BSSS 
and BTST techniques assume that the allocation values are 
fixed and known a priori which is not the case for the 
MCMWP. Furthermore, both techniques are designed to use 
concave lower bounding functions whose minimums occur 
at one of the extreme points of the regions, namely squares 
for the BSSS technique and triangles for the BTST 
technique. Hence, we need novel specially tailored lower 
bounding methods for the MCMWP. Another critical issue 
that must be carefully resolved is that during the run of the 
LBB algorithm some regions can not be directly discarded 
from consideration for the MCMWP. The LBB algorithm is 
designed keeping in mind all these issues. We prefer to 
adopt a BSSS like strategy for the LBB algorithm. We 
employ a continuous binary partitioning of the location 
space. For that purpose, we define the following bounds on 
location variables  ix
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Initially these bounds are defined as 1 { }in j ,...,J ina min a   

and 1 { }in j ,...,J ina max a   for both axes n = 1, 2 and i = 

1,…, I. This implies that for each facility i the location 
space is initially selected as the smallest rectangle covering 
all customers. Observe that, it is also possible to obtain 
other types of regions than the rectangles defined by (6), by 
imposing various types of restrictions. These regions can be 
partitioned by using intersection of different half-spaces. 
During the run of the LBB algorithm a set of active nodes is 
kept in the BB tree T. At each step, an active node tT is 
picked up for exploration according to a predefined 

selection criterion. Let  denote 

facility-region (facility-rectangle) combinations at each 

node t. Then, a region  is selected and partitioned into 

two complementing subregions (sub-rectangles)  and 

. By complementing subregions, we mean that 

 holds after the partitioning of , and the 

interiors of  and  have no intersecting area (i.e. 

. This results in two subproblems 

which further restrict the possible location of facility i. 
Then, all bounds which restrict the location of the remaining 
facilities are directly inherited from Ct. A lower and upper 
bound is calculated for each subproblem, and the ones with 
a lower bound smaller than the incumbent solution value 
ZBUB can be added to the BB tree T. The incumbent solution 
value ZBUB is updated when a better upper bound is 
obtained. The LBB algorithm continues until T becomes 
empty or a stopping condition is satisfied.  
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We first describe two specially tailored lower bounding 
procedures for the MCMWP. They are basically LP based 
and block norm based approaches. After a brief introduction 
of each lower bounding procedure, we describe their usage 
in particular for the LBB algorithm. The lower bounds are 
used to eliminate unnecessary nodes before adding them to 
the BB tree T and to check the closeness of the incumbent 
solution value to optimality. Whenever a region R is 
partitioned, we face with the subproblems which consist of 
the constraints (1) – (5) and (6). In order to find lower 
bounds on these subproblems, we make use of the distance 
function properties. Given facility-region combinations 

, distances  are defined as the 

shortest distance between each facility i assigned to a region 

 and customer j. Note that,  

holds where  is the closest point of region  to 

customer j. Lower bounding distances  are previously 

proposed in [18]. For example, when the rectangles are 

considered the closest point a  can be situated on the 

rectangle  in three different ways. These three cases are 

illustrated with Fig. 1. In the first case,  = 
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 holds when 

customer j lies within the rectangle  (see Fig. 1a). In the 

second case,  is located on one of the borders of  (see 

Fig. 1b). In the third case (see Fig. 1c),  is situated at one 

of the extreme points of  when customer j is beyond the 

area constructed by drawing vertical and horizontal lines on 

the extreme points of the rectangle  containing it. In the 

first case  equals to 0. In the second case,  equals to 

either vertical or horizontal distance from the selected side 

of . In the third case,  equals to the ℓr-norm between 

the selected extreme point of  and customer j. Given the 

lower bounding distances , we solve the MTP within the 

LBB algorithm for the MCMWP. Observe that, the 

distances  are constant and do not depend on the location 

variables xi and  holds for i = 1,…, I; j = 1,…, 

J. Clearly,  implies that (6) is already satisfied and 

thus, the solution of the MTP provides a lower bound on the 
LBB subproblems which are represented by constraints (1) 
– (5) and (6). For the sake of clearness, the LP based lower 
bound for the MCMWP is explicitly stated as follows: 
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Fig. 1.  Three possible cases for the closest point a of a 

rectangle . 
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Now we introduce the implementation of the block norm 
based lower bounding scheme within the LBB algorithm for 

Fig. 2.  Candidate point sets within a rectangle R with ℓ1 
and ℓ∞-norms



 

the MCMWP. Given a facility- region combination Ct, when 
the block norms are used, candidate facility locations can be 
selected from a finite set of intersection points. That is to 
say, whenever a facility is enforced to lie within a rectangle, 
the set of candidate facility locations are restricted to lie on 
that rectangle. When there are no region restrictions on 
facilities, the optimal facility locations are at the intersection 
points of the lines drawn on customer locations within their 
convex hull along the extreme directions of the 
corresponding block norm. When, we restrict the facilities 
to be located within the rectangles, the extreme points of the 
rectangles also play a critical role in the determination of the 
intersection points. In this case, using the results in [19], the 
candidate locations consist of the intersection points of the 
fundamental rays drawn on both the customer locations and 

the extreme points of regions  for i = 1,…, I which are 

placed either on their borders or within the border. Fig. 2a 
and Fig. 2b illustrate the intersection points to be considered 
when ℓr-norm and ℓ1-norm are used, respectively. The 
rectangle restricting a facility location is denoted by R. 
Customers are indicated with squares and the intersection 
points are represented with filled circles. The fundamental 
rays are drawn on both customer locations and the extreme 
points of the rectangle R. The resulting candidate points are 
located either on the intersection of the borders of the 
rectangle R and a fundamental ray or on the intersection of 
two fundamental rays. A lower bounding MILP formulation 
can be proposed to find a block norm based lower bound for 
the LBB subproblems. Each facility i is restricted to be 

opened within a region  for the LBB subproblems and 

thus each facility i has its own candidate points within 

region . On large candidate facility location sets, it is 

possible to use LR schemes for the LBB subproblems to 
obtain block norm based lower bounds. For the sake of 
conciseness, we do not explicitly state these MILPs and LR 
schemes here. For an interested reader we refer to the 
studies [10] and [12]. 
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A node of the LBB tree can be prunned without further 
branching when the lower bound of the current node is 
larger than the incumbent solution value for the problem. 
Therefore, it is important to find an accurate upper bound 
ZUB, in order to reduce the number of branching operations 
performed during the run of the LBB algorithm. The initial 
upper bound value is calculated with the straightforward 
procedure proposed for the CMWP in [8]. Here, we adapt 
their approach for the MCMWP by considering all 
commodity types. The outline of the initial upper bound 
heuristic as follows.  
 
At the root node, MCALA heuristics are initialized with two 
different starting allocation sets. The MCALA heuristic 
solution with the smallest objective value is used as the 
initial value of ZBUB. For that purpose, the customer 
locations are enclosed within the tightest rectangle and this 
rectangle is sliced along the x-axis into I equally spaced 
intervals. Then, the demand quantities for each commodity 
in each slice are aggregated and sorted in increasing order. 
Facilities are also sorted in increasing order of their 
capacities for all commodities. Lastly, each aggregate 
demand is assigned to a facility with the same order and the 

demands of customers are split among facilities starting 
from left to right of the x-axis for each commodity. In other 
words, an unsatisfied demand of customer for a commodity 
in a slice is merged to the next slice and thus the next 
facility. Once a feasible transportation plan is obtained, the 
MCALA heuristic is run. This process is also performed for 
the y-axis. The best one of these two feasible solutions is 
considered as the initial upper bound value for the LBB 
algorithm. Other initial upper bounding procedures can also 
be implemented for the LBB algorithm. However, we have 
confined ourselves to use this procedure because of its 
effciency. Once a lower bound is found for an LBB 
subproblem, a feasible allocation vector is at hand for the 
MCMWP at the intermediate LBB nodes. We have also 
applied a MCALA heuristic and updated the incumbent 
objective value ZBUB throughout the run of the LBB 
algorithm when ZUB < ZBUB holds. 
 
The location space associated with an active node of the 
LBB tree is divided into two subregions. Each of these 
subregions yields subproblems of the form (1) – (5) and (6). 

At each partitioning step a rectangle (region)  

corresponding to facility i is selected and divided into two 
complementing rectangles (regions) separated by a line. All 
other facility-region combinations are inherited for new 
subproblems. A rectangle (region) can be partitioned either 
vertically or horizontally. For each subproblem, we prefer to 
partition a rectangle on its longest sides. This implies that if 
the horizontal (vertical) sides are longer than the vertical 
(horizontal) sides then, the rectangle is partitioned by 
connecting the midpoints of two horizontal (vertical) sides. 
Hence, this helps us to avoid the width (length) of the 
rectangles to be too large (small) on their vertical 
(horizontal) sides. As a result, the rectangles are uniformly 
partitioned on both of their vertical and horizontal sides. 
The LBB algorithm performs a Best First Search (BFS) 
strategy. We select an active node tT with the smallest 
lower bound value for partitioning. At every active node, we 
keep track of all facility-rectangle (facility-region) 

combinations (i.e. Ct and  for i = 1,…, I) where for each 

of which lower and upper bound values are calculated. 
Furthermore, for each rectangle (region) we keep record of 
its defining extreme points, its area and its parent rectangle. 
The branching at each node is performed by considering all 
its rectangles in order to obtain a balanced partitioning. That 
is to say, we partition the rectangles such that none of the 
rectangles of the active node t, which is under consideration, 
has an area greater than twice of the area of the smallest 
rectangle. Given t and its associated facility-rectangle 

(facility-region) combination Ct, the branching rectangle  

is selected with the following strategy.  

t
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i tR C (13) 

Notice that, the branching strategy (13) ensures a balanced 
partitioning of rectangles. Unless the branching strategy 
(13) is applied, it is possible to divide a rectangle and its 
sub-rectangles of the same facility many times which may 
result in a series of non-improving steps within the LBB 
algorithm. 
 
For each LBB subproblem, we calculate both lower and 
upper bound values ZLB and ZUB, respectively. Note that it is 



 

possible to partition the location space infinitely many times 
and this process will not end without applying a suitable 
stopping condition. Therefore, we can say that a stopping 
condition plays a crucial role on the termination of the LBB 
algorithm in acceptable number of iterations. For that 
purpose, we impose the condition ZLB ≥ (1- ε) ZBUB to prune 
the nodes. We set ε = 0.001 in order to avoid excessive 
computational effort. 

IV. A BEAM SEARCH HEURISTIC BASED ON THE LBB 

ALGORITHM 

 
BS is a BB based heuristic search method which dates back 
to the early study [20] on the speech recognition. BS 
heuristic performs a breadth-first search (BrFS) strategy on 
a truncated BB tree. In a complete BB tree search, 
branching is done such that all possible subproblems are 
produced and evaluated. This requires a bounding step to 
calculate lower and upper bounds for each resulting 
subproblem. On the other hand, BS heuristic considers only 
the most promising W nodes and performs branching on 
them. Here W is called as the beam-width and the set of 
most promising W nodes is named as the beam. In other 
words, the beam consists of the active nodes which will be 
considered for further branching in BS heuristic. An active 
node, which is one of the W nodes in the beam, is further 
partitioned such that all possible subproblems are generated 
and the most promising subproblem replaces this active 
node before the branching. This procedure is repeated for 
each of the W active nodes which are in the beam. Hence, 
BS heuristic applies a BrFS strategy in parallel for all W 
active nodes in the beam. However, the number of 
subproblems may become excessive to perform a bounding 
procedure for each of them when the branching width is 
quite large, namely there are too many subproblems after a 
branching step. 
 
In the suggested BS heuristic again only W nodes are 
allowed to be active in the BB tree. Hence, after each 
branching operation some of the nodes are discarded from 
consideration. Promising nodes of the BB tree are 
considered for further branching according to an evaluation 
function which is a cost based function. For each active 
node t, a value Zt is computed using the formula Zt  = (1- 

) t
LBZ  +  

t
UBZ  for 0 ≤  ≤ 1 where lower and upper bound 

values t
LBZ  and t

UBZ are associated with Zt. This evaluation 

function is originally devised in [21]. The BS heuristic 
performance is significantly affected by the evaluation 
function used. In our BS heuristic implementation we apply 
BFS strategy. That is to say, at each branching operation, 
the most promising active node is selected according to the 
evaluation function value Zt where tT such that |T| = W. 
Recall that when BrFS strategy is applied, all of W active 
nodes at the same level of the BB tree are considered for 
further branching. However, when BFS strategy is applied 
within the BS heuristic, only the most promising active node 
t with the smallest Zt value is considered for branching. 
After this single branching step, the most promising W 
nodes of the beam, namely the ones having W least Zt 
values, are kept for further exploration. Moreover, it is also 
possible to pursue a BrFS strategy in our BS heuristic and 
branch over W nodes in the beam. However, when BrFS 

strategy is employed within our BS heuristic, we have 
observed that it does not yield better outcomes than the case 
when the BFS strategy is used. In fact, both BFS and BrFS 
strategies are equivalent when W = 1. Furthermore, the BFS 
strategy has helped us to avoid from expensive lower and 
upper bounding procedures. Note that, in the BS heuristic 
we employed both LP based and block norm based lower 
bounding procedures and took into consideration only the 
one with the largest lower bound value. Lastly, in our BS 
heuristic for the MCMWP, we have carefully implemented 
three stopping conditions. The first one is four hour CPU 
time limit which seems reasonable for most of the instances. 
As the second stopping condition, whenever the lower 
bounds of all active nodes are 0.1% or closer to the 
incumbent solution value, then the BB tree exploration 
process is terminated. As the third stopping condition, the 
total number of the rectangles constructed is limited to be 
100,000.  

V. COMPUTATIONAL EXPERIMENTS 

 
All our experiments are performed on a Dell Server PE2900 
with two 3.16 GHz. All algoritms are coded in C++ 
language. Cplex 11.0 with default options is used as a 
subroutine to solve the resulting LPs and MILPs which are 
part of the suggested procedures implemented. The 
MCMWP test set includes two classes of randomly 
generated instances [12]. The first class consists of 27 
instances and the second class consists of 18 instances. The 
instances in the first class can be considered as “medium” 
instances and the ones in the second class can be named as 
“large” instances. As a rule of thumb, medium and large 
instances satisfy the formula 200 ≤ IJK ≤ 2000 and 2000 < 
IJK, respectively. For medium instances, I, J and K are 
chosen within the intervals [5, 10], [10, 30] and [2, 5]. On 
the other hand, for the large instances I, J and K are chosen 
within the intervals [10, 45], [100, 150] and [2, 5]. Table 1 
summarizes our experiments. The values are given as the 
average values obtained on medium and large instances. The 
first column indicates the methods considered. Note that, the 
DA heuristic which selects the candidate facility location set 
as the customer locations is the most accurate local search 
algorithm for the MCMWP (see [10] and [12]).  Thus in this 
study, the DA heuristic with candidate facility location set 
over customer locations (CL-DA) and its LR version, 
namely the CL-LRDA heuristics are considered for 
benchmarking purpose. The solutions obtained with the CL-
DA and CL-LRDA heuristics are reported in [12]. These 
results are presented here for the sake of a fair comparison. 
The six rows under the DA heuristics are devoted to the 
results obtained with the BS heuristic using several 
combinations of the beam-width parameter W and the 
evaluation function. They are indicated with “BS (,W)”. 
For example “BS (0,3)” stands for the BS heuristic results 
obtained with the evaluation function parameter  = 0 and 
the beam width W = 3. The percent deviations from the best 
known solutions for each heuristic, which are shown under 
the columns “Dev. (%)”, are computed using the formula 
100|ZH-ZR|/ZR. Here, ZH is the objective value computed by 
one of the heuristics and ZR is the best known solution value, 
in order to better expose the accuracy of the heuristics. The 



 

CPU times are also reported right after the percent deviation 
columns corresponding to each heuristic in seconds. 
 
As a general observation, we can assert that the BS heuristic 
yields better performance for large instances. Observe that, 
there is a trade-off between the performance of the BS 
heuristic and the beam-width W. Clearly, the larger the 
beam-width is, the higher the accuracy and running times 
are. In general, BS heuristic with beam width W = 3 yields 
more accurate solutions than the BS heuristic with the beam 
width W = 1 does. 
 
 
  
 
 Medium Instances Large Instances 
Heuristic 
Method 

Dev. 
(%) 

CPU  
(sec.) 

Dev. 
 (%) 

CPU  
(sec.) 

CL-DA 0.00 83.13 2.83 15680.54 
CL-LRDA 10.67 13.20 23.12 1338.18 
BS (0,1) 2.70 552.02 7.60 10419.35 
BS (0,3) 1.16 1356.46 8.44 12926.41 
BS (0.25,1) 1.55 688.03 8.36 10304.36 
BS (0.25,3) 0.67 1445.09 8.89 12344.93 
BS (0.5,1) 2.91 571.71 10.84 10828.77 
BS (0.5,3) 1.59 1477.38 6.99 12027.75 

 
According to our computational experiments we observe the 
following findings on medium instances. The BS heuristic 
finds very close solutions (less than 1%) to the best 
performing heuristic CL-DA. However, CL-DA heuristic 
yields more efficient results than the BS heuristic does on 
the average. The BS heuristic is 8% more accurate than the 
best performing LR heuristic, i.e. CL-LRDA, on the average 
at the expense of increased CPU times. On large instances, 
BS heuristic yields 6.99% percent deviations from the best 
known values in the average. This ratio is 23.12% for the 
CL-LRDA heuristic which is more efficient than the BS 
heuristic. However, the best performing heuristic CL-DA 
could not produce solutions in 7 out of 18 test instances 
within four hour of time limit on large instances. In 6 out of 
these 7 test instances for which the CL-DA could not even 
found solutions, the BS heuristic outperforms the CL-LRDA 
heuristic in terms of accuracy. On the average, the BS 
heuristic with the worst performing (,W) setting, namely 
with the setting (0, 3) has percent deviation of 9.79% while 
the CL-LRDA heuristic yields percent deviation of 23.26% 
on the average of these 7 instances. In short, BS heuristic 
produces highly competitive results with the DA heuristics 
which are famous for their accuracy. 

VI. CONCLUSION 

 
BS heuristics are popular algorithms which are based on BB 
procedures. The BS heuristic searches over a truncated BB 
tree using a BrFS strategy and branches only on its most 
promising W nodes. To the best of our knowledge, this is a 
pioneering work which suggests a BS heuristics on the 
MCMWP. Moreover, the proposed BS heuristic yields 
promising performance. According to our extensive 
computational experiments on randomly generated test 
instances, we have observed that the proposed BS heuristics 
yield comparable results with the best heuristics from the 

literature. In more than half of the test instances, the BS 
heuristic yields the best solutions.  
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