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Interactive Fuzzy Decision Making for
Hierarchical Multiobjective Stochastic Linear
Programming Problems

Hitoshi Yano

Abstract—In this paper, we focus on hierarchical multiobjec- hierarchical multiobjective linear programming problems. On
tive stochastic linear programming problems (HMOP) where the other hand, in the actual decision making situations,

multiple decision makers in a hierarchical organization have ha gecision makers often encounter difficulties to deal with
their own multiple objective linear functions together with

common linear constraints. In order to deal with HMOP, a vague information or uncertain data. Sakawa et al.[5],[6] for-
probability maximization model and a fractile optimization ~Mulated multiobjective stochastic linear programming prob-
model are applied. By considering the conflict between permis- lems through a probability maximization model and a fractile
sible objective levels and permissible probability levels in such gptimization model, and proposed interactive algorithm to

two models, it is assumed that each of the decision makers 5yqin g satisfactory solution from among a Pareto optimal
has fuzzy goals for permissible objective levels and permissible

probability levels, and such fuzzy goals can be quantified by S°|Ut_'0n se_t. _US|_ng a probat_)lll_ty max!mlzatlon model_o_r a
eliciting the membership functions. Through the fuzzy decision, fractile optimization model, it is required for the decision

such membership functions are integrated. In the integrated maker to specify parameters called permissible objective
membership space, Pareto optimality concept is introduced. |evels or permissible probability levels in advance. However,

The interactive algorithm to obtain a safisfactory solution from ; saems to be very difficult to specify such values in advance.
among a Pareto optimal solution set is proposed on the basis

of linear programming technique, in which the hierarchical In order to cope with such d|ff|(.:ult!es,. Yano et 3"[10]
decision structure is reflected by the decision power and the Proposed fuzzy approaches to multiobjective stochastic linear
proper balance between permissible objective levels and the programming problems, where the decision maker has fuzzy
corresponding probability function is attained. goals for permissible objective levels and permissible proba-
Index Terms—hierarchical multiobjective stochastic linear bility levels, and such fuzzy goals are quantified by eliciting
programming, decision power, a probability maximization the membership functions. Unfortunately, in the proposed
model, a fractile optimization model, interactive decision mak- method, it is assumed that the decision maker adopts the
Ing. fuzzy decision [4] to obtain the satisfactory solution.
In this paper, we focus on hierarchical multiobjective
|. INTRODUCTION stochastic linear programming problems, and propose an
The decision makers in practical hierarchical decisidfteractive algorithm to obtain a satisfactory solution from
making situations often encounter two kinds of decisioRMong & Pareto optimal solution set. In the proposed method,
making processes, one is well known as a multi-level pr8Y considering the conflict between permissible objective
gramming process and the other is the interactive decisitiYe!s and and permissible probability levels, the corre-
making process [3]. The Stackelberg games are well-knogROnding membership functions are integrated through the
as multilevel programming problems with multiple decisiofizzy decision. In the integrated membership space, Pareto
makers, in which the decision maker in each level mak@@timal concept is introduced. In section I, hierarchical
his/her decision independently in order to optimize his/h&ultiobjective programming problems through a probability
own objective function [1], [8]. On the other hand, thdmaximization model is formulated. In section lll, hierarchi-
interactive decision making process can be found in lar§8! Multiobjective programming problems through a fractile
scale hierarchical organizations such as multi-hierarchicdptimization model is formulated. It is shown that the two
companies, in which the decision maker in each level makg§ds of formulations to obtain Pareto optimal solutions are
his/her decision through the interaction between the decisi®@Me- In section IV, an interactive algorithm based on linear
makers and the lower level decision makers submit thlF°9ramming technique is proposed to obtain a satisfactory
own decision and then such decision is modified by tfolution.
upper level decision makers with considerations of the overall

benefits [3] In order to deal with such an interactive decision 1. HIERARCHICAL MULTIOBJECTIVE STOCHASTIC
making process, Lai [2], Shih et al.[7] and Lee et al.[3] | ;NEAR PROGRAMMING PROBLEMS THROUGH A
introduced concepts of memberships of optimalities and PROBABILITY MAXIMIZATION MODEL

degrees of decision powers and proposed fuzzy approaches ] ] ) ) S

to obtain a satisfactory solution. As a natural extension of e consider the following hierarchical multiobjective

their approaches, Yano [9] proposed a fuzzy approach glpchastic linear programming problem (HMOP), where each
of the decision makers (DMr = 1,---,q) has his/her own
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[HMOP1] values conflict with each other, the less value of permissible

first level decision maker : DM, objective level results in the less value of the corresponding
mig{ zZi(x) = (Z11(x), -, Z1g, () probability function. Therefore, it is very important for each
re

decision maker (DM) to determine appropriate values of
permissible objective level§,. Unfortunately, it seems to
g-th level decision maker : DM, be difficult for the decision maker to find appropriate values

min Z,(z) = (Zg1 (@), -, Zqx, (2)) of pern_ussmle objective levels. In order to circumvent such

Trex difficulties, Yano et al. [10] proposed a fuzzy approach
where & — (x17x27._.,xn)T is n-dimensional decision for mult|ot_)Je_Ict|ve ;tochfast_lc Im_ear prggrfammmg problems.
column vector whose elements,i — 1,---,n are non- From a similar point of view, instead of HMOPR), we

negative, X is a linear constraint set with respect o consider the following multiobjective programming problem
Each objective function of DMr — 1, ---, ¢ is defined by in which permissible objective levels are not constant values

ETZ(Q;) = Cyx+ 04y, Crp = cig“”{rlcgg, Qpp = a71%+{r£a3€7 [b:,t/ltgifj]e(:ls'on variables.

wherec,,,/ =1,---, k, aren dimensional random variable ! o

fOW VeCtors e, £ = 1, -, k, are random variables, arigy 'St 1evel decision maker : DM,

is a random variable whose cumulative distribution function  MaX  (P11(@; fir), s Piws (s fiwa)s —fins o5 = fiwa)
T,4(-) is assumed to be strictly monotone increasing anc X f et

continuouSs. e

_Similar to the formulations of multilevel _Iir_1ear program- . |avel decision maker: DM,
ming problems proposed by Lee et al.[3], it is assumed that
the upper level decision makers make their decisions wiy‘éXIT}aXequ (P (@, fa1)s - Paky (®, far,)s = fars -+ = far,)
consideration of the overall benefits for the hierarchical or- !
ganization, although they can take priority for their objective Considering the imprecise nature of the decision maker's
functions over the lower level decision makers. judgment, it is natural to assume that the decision maker
In order to deal with HMOP1, we adopt stochastic linedtave a fuzzy goal for each objective function in HMOP3.
programming techniques. Using a probability maximizatiot this section, it is assumed that such a fuzzy goal can
model [6], we substitute the minimization of the objectivé€ quantified by eliciting a corresponding membership func-
function z,,(x) for the maximization of the probability thattion. Let us denote a membership function % (z, fv)
z.¢(z) is less than or equal to a certain permissible objecti@ 5. (Pre(x, fre)), and a membership function of, as
level f,,. Such a probabilityp,,(x, f.¢) can be defined as #f,,(fr¢) respectively. Then, HMOP3 can be transformed to

follows. the following multiobjective programming problem.
dof [HMOP4]
pre(x, fre) = Pr(w | zre(z, w) < fro), (1) first level decision maker : DM,

where Pr(-) denotes a probability measure,is an event, max (15, (P11(2, F11)), -+t

and z..(xz,w) is a realization of the random objectivexex,f, cr* !

function z,.,(x) under the occurrence of each elementary (pik, («’E,flkl)),uf (fn)w'wuf (fir,))
eventw. Each of the decision makers (DM = 1,-- -, ) " t

subjectively specifies certain permissible objective levels: - e
fo=mfon)r=1,.a,f =(f1,---, f,). Then, g-th level decision maker: DM,
HMOP1 can be transformed into the following problem

involving permissible objective levels as parameters. zex f eRba (501 (Par (2 far))s s M,

[HMOP2 (£)] ' i .

first level decision maker : DM, Pk, (2 Jak))s g, )bz, (San,))
%g)}g(pn(m,fn),~~~,p1k1($, fik,)) Throughout this section, we make the assumptions that

ufﬂ(fﬁ) is strictly monotone decreasing and continuous
with respect tof,,, and p3,,(pre(z, fr¢)) is strictly mono-

g-th level decision maker: DM, tone increasing and continuous with respectie(x, f,¢)

max (pg1 (T, fg1)s *» Pak, (T, fak,)) foranyr=1,---,¢,£=1,-- k,.

Lex It should be noted here thaty;,,(p.(x, f.¢)) and

Under the assumption that?,x+a?, > 0,r = ujz (fre) are conflict each other for any € X. Here, let us
1,---,q,f =1,---, k., the objective functiorp,,(x, f,,) in assume that the decision maker adopts the fuzzy decision
HMOPI(f) is expressed as follows. [4] in order to integrate both the membership functions
e (Pre(®, fre)) @and pg (fre). Then, the integrated mem-
pre(®, fre) = Pr(w|z(®,w) < fro) bership function can be defined as follows.

T, (fre — (e} + aiz))

cx + a2, i, , (@, fre) = min{pg (fre), i, (pre(, fr0))} (2)

In HMOP2(f), each decision maker (DM seems to Using the integrated membership functiops,  (, fr¢),
prefer not only the less values of permissible objectiMdMOP4 can be transformed into the following form.
levels f,., but also the larger values of the correspondindgiMOP5]

distribution functionsp,.¢(x, fr¢),¢ = 1,---, k.. Since these first level decision maker : DM;
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ey max (“Dm(‘”’fll)f"’“f’ml (ac,flkl))> Since pp,, (pre(x, fre)) is strictly monotone increasing and
EXSUERLE=L continuous and:?,x + a2, > 0, the constraint (9) can be

~~~~~~~~~~~~~~~~~~~~ transformed as follows.

g-th level decision maker: DM,

it = 15, (Dre(, fre)) < My,
<'quq1(1’7fq1)»"',/Jqukq(J:7quq))) fire = 15,0 (Pre(, fre)) < Aw

max 1,
TeX, fqe€R £=1,--kq e pr/(x frﬂ) Z ,Uf[,M (,UJT*Z - )\wr)y

In order to deal with HMOPS5, we introduce B,-Pareto o l(fr@ (c 71ex+04714)> > 1= (fing — Muoy)
optimal solution concept. " iz +a?, = PP "
Definition 1. ) & fr—(chx+al)
e X, ff,eR,r=1,---,¢q.=1,--- k, is said to be a —1/, —1/n 2 2
Dp—ParetopoptimaI solution to HMOPS5, if and only if there > Ty (g, (fire = Awr)) - (€ + agy). (11)
does not exist anothet ¢ X, f., ¢ Rl,r =1,-- -,q,ﬁ = Whereugfl() andT;Zl(-) are inverse functions with respect

-, k. such thatuD (@, fre) = pp, (@, ), = 1O pp, Z(-) and T,,(-) respectively. Moreover, it holds that
1, ---,q,0=1,--- k., with strict mequallty holdmg forat f., < M (/w — Awy), becauseuf (fre) is strictly mono-
least oner and/. tone decreasmg and continuous. As a result, the constraints

For generating a candidate of a satisfactory solution whi¢h) and (10) can be reduced to the following inequality where
is also D,-Pareto optimal, each decision maker (DMs a permissible objective level,, is removed.
asked to specify the reference membership valigs=

1 1
(fr1,- -+, firk,) [4]. Once the reference membership values Bz, (e = Mwy) = (epp + )
are specified, the corresponditig,-Pareto optimal solution > Tre (M;[([w —w,)) - (S +a2)  (12)
is obtained by solving the following minmax problem. "
[MINMAX1( )] Then, MINMAX2(f1, w) is equivalently transformed to the
. following problem.
min A 3) i
LEX,fre€RY,r=1,,q,l=1,- ki, AEA [MINMAX3 (f1, w)]
subject to mg}}%gleﬂ (13)
fire = Hp,o (Pre(®, fre)) <N, (4) subject to
fire = p,, (fre) <A ) ,u};t(ﬂrg —dw,) — (ctx +aly)
=1,--,q,0=1,---k, Y
ThrnerE R > T, () e = M) - (€2 + )
Where T:17"'7Qa€:17"'7k"r (14)
A= max fire — 1 min /w] (6) It should be noted here that the constraints (14) can be
r=L g b=l ke Leegi =1, reduced to a set of linear inequalities for some fixed value

It should be noted here that, in general, the optimal solution € A. This means that an optimal solutiofx*, \*)

of MINMAX1( jx) does not reflect the hierarchical structur@f MINMAX3 (f1,w) is obtained by combined use of the
betweeng decision makers where the upper level decisidpisection method with respect foand the first-phase of the
maker can take priority for his/her distribution functiongwo-phase simplex method of linear programming.

over the lower level decision makers. In order to cope with The relationship between the optimal soluti@ei*, \*) of
such a hierarchical preference structure betwgerecision MINMAX3 (41, w) and D,-Pareto optimal solutions can be
makers, we introduce the concept of the decision power [gfparacterized by the following theorem.

w = (wi,---,w,), where ther-th level decision maker Theorem 1.

(DM,) can specify the decision powew,,; in histher If  (x*,\*) is a unique optimal solution  of
subjective manner and the last decision maker (Phas no MINMAX3 (i, w), thenz” € X, [, = pi; (/w — Nw,),

decision power. In order to reflect the hierarchical preference=1,---,¢,{ =1,--- k. isaD, Pareto optlmal solution
structure between multiple decision makers, the decisitm HMOPS.
powersw = (w1, --,w,) have to satisfy the following (Proofd
inequality conditions. Since an optimal solutioriz*, \*) satisfies the constraints
(14), it holds that
wp=1>wg > - > Wg—1 > wg >0 (7) L .
. . . Bz, (e — Nwy) — (el + agy)
Then, the corresponding modified MINMAXA] is refor- T 2
¢z + a7,
mulated as follows.
[MINMAX2 (1, w)] = pre(a”, 17! (fire = Xwy))
i A 8 - — _
TEX,fr0 RV r—Lroig b=1 e ky AEA ®) E “iw (fire = XNwp)yr =1,--,q,0 =1, .
subject to Assume thatz* € X, ff, = (/Ltrlz(ﬂrg — Nw,),
R r = 1,---,¢,¢{ = 1,---,k. is not a D,-Pareto opti-
fire = Mg, (Pre(Z, fre)) < Awy, (9 mal solution to HMOPS5, then there exists € X .,
fire — pj,, (fre) < Awy, (10) r = 1,---,¢,¢ = 1,---,k such thatup,  (z, frz) =

r=1,,ql=1,-k min{yz , (fre), tp,. (Pre(®, fre))} = po, , (T ,/lf " (fire —
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Nw,)) = fipe — Nwp,r = 1,---,¢,f = 1,---, k., with not only the less value of the objective functigp (x, p,.)
strict inequality holding for at least one and ¢. Then it but also the larger value of the permissible probability level
holds that pre- From such a point of view, we consider the following

multiobjective programming problem which can be regarded

wi, (fre) 2 Hrt = A"wr, (15 45 a natural extension of HMOB).
Hpg (p,.g(ﬁﬂ, fr@ ) Z Hre — )\*wrv (16) [HMOPS]
r=1,-,¢0 =1 k. From the definition (1), the first level decision maker : DM, A A
inequalities (15) and (16) can be transformed into the in- 22% (fr(e,p11), -+ fie (T Pk, ), —Pras -5 =Py )

equalities, fre < 7t (fire = Nwr), fre > Tt (g (e — L
Nw,)) - (x4 a2,) + (cl,x + of,). This means that

there exists soma € X such thatujgl(/lrg ~ Afw,) > a-th level decision maker: DM,
-t

T 05 e — Awn) - (@ +02,) + (el + aty),  FER @k S @Bk ) B )

r = 1--,q¢ = 1,--- k, which contradicts the fact considering the imprecise nature of the decision maker's
that z* € X,A* € A is a unique optimal solution 10 jydgment, we assume that the decision maker has a fuzzy
MINMAXS3 (1, w). goal for each objective function in HMOPS8. Such a fuzzy

goal can be quantified by eliciting the corresponding mem-
[Il. HIERARCHICAL MULTIOBJECTIVE STOCHASTIC  bership function. Let us denote a membership function of
LINEAR PROGRAMMING PROBLEMS THROUGH A an objective functiorf,.((z, prc) aspz ,(fre(, pre)), and a
FRACTILE OPTIMIZATION MODEL membership function of a permissible probability leye}
If we adopt a fractile optimization model [5] for HMOP1,as x5 (pre) respectively. Then, HMOPS8 can be transformed
we can convert HMOP1 to the following multiobjectiveas the following problem.

programming problem. [HMOP9]
[HMOP6 (p)] first level decision maker : DM;
first level decision maker : DM; e (M (Fus (2, 51)) (f
. X 7 11\, P11) )5 U F 1k
mGX,flgglRIRZ:L“',k’T(fll7 Tt flkl) wEX,ﬁIE(OJ)kl f11 flkl 1

..................... (@, D1k 15, (11115, (ﬁ1k1)>
¢-th level decision maker: DM,

min f [ f kq ..
CL'€X7fqe€Rl7e:1»'”7kq( o k) g-th level decision maker: DM,
subject to ( .
« max 7 x, s
p'r‘é(mh]c?“f) Zp’!‘ear = 17"')Q7€: 17"'7k7' (17) CIIEX,ﬁqG(O,l)kq ,U/fql(fql( pql)) Mf‘lk'q (quq
wherep, = (Pr1,- -+, b, ), 7 = 1,-++,¢,p = (P1," -+, Pq) 2, b e (hy)e s (D )
oo o P ] ’ yPakq))s K3 \Pql), y Mg Pqkg
are vectors of permissible probability levels which are spec- (®: Pa,)) pql( n) p“k"q( o)
ified by the decision maker (DMr = 1,---,q) in his/her Throughout this section, we make the assumptions that
subjective manner. I 2(ﬁrg) is strictly monotone increasing and continuous
In HMOP§(p), the constraint (17) can be transformed intavith respect tg,.,, andﬂf*ﬁ(frg(él:,ﬁrg)) is strictly monotone
the following form. decreasing and continuous with respecttd, p,¢) for any
~ 'r'fclmﬁ’Oél Tzl’..'?Q7€:17"'7k7‘-
Pre < pro(@, fre) = T ( fre cz(wri - re)> It should be noted here that, from (18);  (fy(x, pre))
L ) , e and; (pre) are conflict each other for any € X. Here,
& fro 2 Ty (Pre) - (e + ) + (Crp + ayy) let us assume that the decision maker adopts the fuzzy
Let us define the right-hand side of the above inequality 4§cision [4] in orger to integrate both the membership func-
follows. tions iz, (fre(, pre)) and 1 (pre). Then, the integrated

o def i1y ) ) ) ) membership function can be defined as follows.
fo(maprf) = T7_[ (pTZ) ! (Cr€m+ar£) + (CTZCC+O‘TZ) (18)

def .
x,pre) = min{pz (Pre), 7 (fre(x, Dy 19
Then, HMOP®p) can be equivalently reduced to the follow- #Dy,, (@ Pre) {M”M Bre)s 1, (Frel@.re))} - (19)

ing simple form. Using the membership functions,, (z, pre), HMOP9 can
[HMOP7 (p)] be transformed into the following form.
first level decision maker : DM, [HMOP10]
min (fir(z,p11), -, fiw, (&, P1ky)) first level decision maker : DM;
€ ~ ~
..................... iBGX,ﬁuer(r(l)fll))i,é:L---,kl <,U'Df11 (x,p11), - KDy, (x,plkl)))

g-th level decision maker: DM,

. max (:U'Df (wvﬁql)v"'vﬂDf ) (mvﬁqk )))
In order to deal with HMOP@), the decision maker TEXPar€(0.1), =1,k " e ’
must specify permissible probability levefs in advance. In order to deal with HMOP10, we introduce [a;-Pareto
However, in general, the decision maker seems to prefgstimal solution concept.

g-th level decision maker: DM,
arzflelgl( (fql(wvﬁq1>7 Ty quq (w7ﬁqkq))
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Definition 2. Xw,)),r=1,---,¢,£ =1,---,k, is a Dy-Pareto optimal
z* ¢ X,p5, € (0,1),r = 1,---,¢,¢{ = 1,--- k. is solution.
said to be aDy-Pareto optimal solution to HMOP10, if (Proofd

and only if there does not exist another ¢ X,p,, € From (26), it holds that i, — MNw, <
(031)7T: 17"'3Q7£: 1a"'7k7' such that#tDm(ﬂ_f%ﬁré) Z Mfre(frf(w*vuglg(ﬂ’r‘f - )\*wr)))v ro= 1;"'3Q7£ =
NDfrl(m*7p:[) r = 1,---,¢q,4{ = 1,---,k,, with strict 1,---,k.. Assume thatz* € X, /’Lgl(,&rf . )\*wr)’

inequality holding for at least one and/. ro= 1,eqf = 1,---.k 18 not a Dy-
For generating a candidate of the satisfactory solutigs, ... 6ptin71a] sqution’. ’Then there exist
which is alsoD ¢-Pareto optimal, the decision maker is aske Xopo 7 = 1-.qf = 1 k. such that
to specify the reference membership values [4]. Similar to (@ s ’)’ _ ,min’{ i (hre) . EfT (@, pre)), )
MINMAX2( fx, w) in the previous section, once the reference’’ ’p’"z* . {f’w Pre)s B, At ’p”{k ’
membership valueg, = (i1, -, jir,) and the decision = HPrw (x ’“ix@(“”'[ - Auwy)) T e ™ A Wry
power w, ., are specified by each of the decision makefs = 1:-~*+@¢:¢ = 1,---, k., stict inequality holding

(DM,.,r = 1,---.¢), the corresponding;-Pareto optimal for at least one: and/. Then it holds that

iseorIT:Jtion is obtained by solving the following minmax prob- s (Pre) > fire — Nwy, (27)
. . ~ > ~ ¥
[MINMAX4( [:L,w)] Mf,,.e(f’l"f(w7p7"f)) — /1"1"[ A w’l") (28)
) min A 200 r = 1,---,¢,£ = 1,---,k.. From the definition (18),
| LEX Pre€(0,1),r=1,,q =1, kr, AEA the inequalites (27) and (28) can be transformed
subject to into the inequalities,p,, > ugl(ﬂﬂg — XNw,.),pre <
R R 1N w)—(CL T 4ol rt
fire = pi,, (Fre(®, pre)) - < Ay, @) g, (Lp e G ) This means
ot — 5 (Bre) < w @) . CrE T,
" Prg WTES = " that there exists somex € X such that
r=lena b=kt - ) — (b tal) > TG (e -
Because ofc,x + a2, > 0, the constraints (21) can beX*w,)) - (¢%,x +a?),r = 1,--+,¢,{ = 1,---,k,, which
transformed as follows. contradicts the fact that* € X, \* € A is a unique optimal

-1
5 Pl
Dre < Tr£ -

where ;71 (-) is an inverse function ofe; (). From the In this section, we propose an interactive algorithm to
constraigfzs (22), it holds that,, > /fl([:z — \) where obtain a satisfactory solution of the decision maker from
’ T - ;5 T

o ) ] . re among D-Pareto optimal solution set. Unfortunately, it
p; () is an inverse function ofu; (). Therefore, the js not guaranteed that the optimal solutigm*, \*) of
constraint (23) can be reduced to the following inequalityNMAX5( i, w) is Dy-Pareto optimal, if(z*, \*) is not
where a permissible probability levgl, is disappeared.  unique. In order to guarante®-Pareto optimality, we first

s il 1 assume thap_?_, k, constraints (26) of MINMAX5f, w)
H, (e = M) = (e + ) are active z%:thé optimal solutiofe*, \*). If one of the
> Tfl(M; 1[ (e — Awy)) - (chpm +o2,)  (24) constraints of (26) is inactive,e.,

(fire — dwy) = (e} + o)

solution to MINMAX5(i, w).
) (23)

2 2
Cre® + gy IV. AN INTERACTIVE ALGORITHM

Then, MINMAX4(jx, w) can be equivalently reduced to u}?l(ﬂre — Nw,) — (crex™ + any)
the following problem. DR . o w9
[MINMAXS5( 2, w)] > T (ny (e = Atwr)) - (eppa™ +agy), (29)
ol AN (25) we can convert the inactive constraint (29) into the active
) ’ one by applying the bisection method, where
subject to ot
—_ ~ Gr Ar ; Tl Ar *>\* r)Jr *a 7_1 Ar *>\* r)).
15— ) — i+ i) 7 3 0) X0
> T;1(M;;1([w ) - (S + o), [The bisection method for the inactive constraint]
e

Step 1. Setql, < Nw,, ¢ff < Nw, + 1.
r=1-,ql=1--k (26) Step 2. Setq,p + (qu + qﬁ)/z

It should be noted here that MINMAXE( w) is same as SteP 3. If Gre(gre) > 0 thengy;, « g,¢ and go to Step 2,

MINMAX3( /i, w). Therefore, an optimal solutiofiz*, \*) ©IS€ ifGre(gre) < 0 theng/} « g,, and go to Step 2, else if

of MINMAX5( i, w) can be obtained by combined use of’r¢(¢r¢) = 0, then update the reference membership value

the bisection method with respectiaand the first-phase of @S fir¢ <= dr¢ @nd stop.

the two-phase simplex method of linear programming. For the optimal solution(z™, ") of MINMAX5( &1, w),
The relationship between the optimal soluti@e*, \*) of whgrg the active conditions of the_ constraints (26) are

MINMAX5( 2, w) and D-Pareto optimal solutions can pesatisfied, we solve theé,-Pareto optimality test problem

characterized by the following theorem. formulated as follows.

Theorem 2 [Test problem for D-Pareto optimality]
. . . . . q kr
If * € X,\* € A is a unique optimal solution of o
MINMAXS(fiw), then z* € X5, = 4= (i - NS VUL B) BLURY
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subject to Step 5: If each of the decision makers (DM =1,---,¢q)
is satisfied with the current values of thes-Pareto opti-
mal solutionpp, (x*,py,).¢ = 1,---,k;, wherep;,
p= " (fire — X*),then stop. Otherwise, let theth level deci-
sioh maker (DM) be the uppermost of the decision makers
who are not satisfied with the current values. Considering
the current values of his/her membership functions, ,DM
Lépdates his/her decision poweg; and/or his/her reference
membership valuegi,, ¢/ = 1,---,ks according to the
following two rules, and return to Step 4.
Rule 1 wsy; must be set ass; < ws. After updating
Wy, If Wer1 <we,s+2 <t < q, we is replaced byws;
(wt — w5+1).

e _ Rule 2 Before updating DM's reference membership values
Dj-Pareto optimal solution. fise,! = 1,---, ks, the other decision makers’ reference

(Proof) o _ i - _ membership values are fixed as the current valugs, (—
From the active conditions of the constraints (26), i Dm(w*,ﬁig),rz Loqr#sl=1-- k).

holds that ,[Lrg - Nw, = ,Ll,f“[/(frg(.’B*,lugl(ﬂM —
e re

)\*wr)))ar = 17"'7Q7£: Lok If * € Xvﬂgl(ﬂrl -
e

Xwp),r = 1,---,¢,4£ = 1,--- k. is not a D;-Pareto

T&el(ugfe (fire = Nw,)) - (o + o)

Hep® + agy) + e

Tél(ugfé (fire = Xw,)) - (o™ + aly)
+(ctx +al),r=1,---,¢,0=1,--- k. (31)

For the optimal solution of the above test problem, th
following theorem holds.

Theorem 3.

Letx € X, ép > 0,r = 1,---,¢q,4 = 1,--- k. be an
optimal solution of the test problem (30)-(31). 4f = 0,
T* € X,Mgl(ﬂre—)\*wT),r =1,---,q,0=1,--- k- isa

V. CONCLUSION

In this paper, we have proposed an interactive decision
optimal solution, there exists some € X, p.,r making method for hierarchical multiobjective stochastic
Lq. 0 1.+ k. such that up, (x,pr) linear programming problems to obtain a satisfactory solution
min{ps (pre), g, (fre(,pre))} = pp; , (27, M;t(ﬂw — from among a Pareto optimal solution set. In the proposed
A) = fipg — A7 = 1,---,q,0 = 1,--- k., with strict method, by considering the conflict between permissible
inequality holding for at least one and¢. This means that objective levels and and permissible probability levels, the
the following inequalities hold. corresponding membership functions are integrated through
the fuzzy decision. In the integrated membership space, the
candidate of a satisfactory solution is obtained from among
Pareto optimal solution set by updating the reference mem-
) ~ bership values and/or the decision powers. In our proposed
r=Logl =100k This means that there existSyethod, it is expected to obtain the satisfactory solution,
somex € X, proyr = 1,090 = }71"'l{frASUCh in which the proper balance between permissible objective
that piz (fire = X*) = (e + apy) +T, (ks (Are = values and permissible probability levels are attained.

) - (2@ +a?,). Because of the active conditions of
the constraints (26), it holds thﬂ”j(ugl(ﬂre - %) -
(2™ +azy) + (cx* + ayy) > Tr_el(/v‘;i(ﬂré —A)
(c%£w+a%£) + (c}”ga: +a71~£)’ r= 1,-~-,q:€ =1,k
with strict inequality holding for at least oneand ¢. This

>
>

ﬂré - A*wr ) (32
(33)

:ui;re (ﬁr@)

/“L'fre (f'r‘[(mvﬁré)) /l'r‘Z - )\*U)»,‘,
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