
Numerical Transport Simulations in
Semiconductor Nanostructures on CPUs and GPUs

Jan Jacob, Lothar Wenzel, Darren Schmidt, Qing Ruan, Vivek Amin, and Jairo Sinova

Abstract—We present numerical simulations of charge trans-
port through semiconductor nanostructures performed within
the Green’s function formalism. The commonly used algorithm
to compute the conductance of nanostructures in this formalism
has been adapted for parallel execution on both multicore com-
puters and general-purpose graphics processing units (GPU).
Additionally, memory utilization has been optimized so that
larger systems may be simulated, enabling realistic device sizes.

Index Terms—numerical simulation, Green’s function, GPU,
multicore, algorithm.

I. INTRODUCTION

THE continuing miniaturization of circuits comes not
without side effects; as the dimensions of such devices

decrease, quantum effects become relevant to their operation.
While these effects can be detrimental to standard CMOS
devices, they also pave the way for new devices that have
the potential for performance improvements. Spin-based tran-
sistors, utilizing magnetic source and drain contacts along
with a spin-orbit coupled semiconductor channel, provide an
important example. Such devices would require less energy
for switching processes, since their channels no longer have
to be depleted completely [1]. By using gates, one can
influence an electron’s spin precession length and change
its spin orientation with respect to the magnetization of the
drain electrode [2]. Such controllable phenomena could lead
to a new spin-based information processing paradigm.
Although the physics of charge-based devices is well under-
stood, physicists and engineers still face challenges regarding
the experimental realization of their spin-based cousins.
While analytical predictions regarding these nanoscale de-
vices can be made, direct comparison with experiments is
challenging and often impossible due to the oversimplifi-
cation of the analytical model. However, numerical trans-
port simulations of nano-structured semiconductor devices
provide a very important bridge between analytical descrip-
tions and experimental results. Such simulations can account
for donor impurities, lattice imperfections, and interactions
within a sample that are ordinarily inaccessible to most

Manuscript received December 30, 2011; revised December 30, 2011.
This work was supported in part by the Deutsche Forschungsgemeinschaft
via the Graduiertenkolleg 1286 ”Functional Metal-Semiconductor Hybrid
Systems” and Project Me916/11-1 ”Spin-Filter Cascades in InAs Het-
erostructures”, the Free and Hanseatic City of Hamburg via the Center of
Excellence ”‘Nanospintronics”’, the Office of Naval Research via ONR-
N00014110780, and the National Science Foundation by NSF-MRSEC
DMR-0820414, NSF-DMR-1105512, NHARP

J. Jacob is with the Institute of Applied Physics, University of Hamburg,
Germany, e-mail: jjacob@physnet.uni-hamburg.de

L. Wenzel, D. Schmidt, and Q. Ruan are with National Instruments,
Austin, TX, USA e-mail: lothar.wenzel@ni.com, darren.schmidt@ni.com,
qing.ruan@ni.com

V. Amin and J. Sinova are with the Department of Physics and As-
tronomy, Texas A& M University, College Station, TX, USA, e-mail:
aminvp@physics.tamu.edu, sinova@physics.tamu.edu

analytical computations, providing researchers with more
accurate predictions to compare with experiments. Unfortu-
nately, it is extremely challenging to simulate these devices
with both realistic dimensions and appropriately minute grid
sizes, due to the large computational and memory load.
One of the common approaches to simulate transport in
semiconductor nanostructures is the non-equilibrium Green’s
function (NEGF) method [3]. Other popular approaches,
such as the stabilized transfer matrix algorithm [4], can be
translated in terms of the NEGF method; it exhibits a similar
mathematical structure and thus employs complementary
numerical techniques. In this work we explore optimized
implementations of the Green’s function method and their
scalability over multiple threads, as well as their portability
to general purpose graphics processing units (GPU).

II. MATHEMATICAL AND PHYSICS BACKGROUND

We briefly introduce the Green’s function method to simu-
late transport in mesoscopic structures [3] whose dimensions
are smaller than the coherence length. Here the conductance
must be calculated by the Landauer formula, where the trans-
mission probability T describes the transmission probability
of carriers through the sample from one contact to the other.
Overall the Landauer formula is given by

G =
2e2

h
T (1)

where e is the elementary charge and h is Planck’s constant.
In these systems there exist different quantum-mechanical
modes in which carriers can propagate through. We define
the matrix elements smn as the probability amplitudes for a
carrier entering the sample in the m-th mode of one contact
to leave in the n-th mode of the other contact.
If the conductor is much smaller than the phase-relaxation
length, then transport is coherent and the total transmission
probability can be decomposed into the sum of these ampli-
tudes squared. Thus one may write

G =
2e2

h

∑
m,n

Tmn, (2)

where,
Tmn = |smn|2 . (3)

Thus by determining the s-matrix of the microscopic sam-
ple, one can compute the conductance using the Landauer
formula. Green’s functions provide a convenient way to do
this. We begin by defining a Green’s function, for a system
governed by some Hamiltonian Ĥ(r)[

E − Ĥ(r)
]
G(r, r′) = δ(r − r′). (4)

Essentially we have rewritten the Schrödinger equation with
an added source term. From this perspective, one can imagine

the Green’s function to simply be the wave function given
in terms of the position vector r that describes the location
of the source. To calculate the Green’s function the above
concept is applied to a tight-binding model by the method
of finite differences, such that

G(r, r′)→ Gij , (5)

where i and j are indices denoting different lattice positions
corresponding to r and r′. As a result the aforementioned
differential equation becomes a matrix equation

[EI −H]G = I, (6)

where each row or column in the above matrices stands for
a particular lattice site within the entire sample. Therefore
the matrix for a two-dimensional system of Nx horizontal
sites and Ny vertical sites is of dimension NxNy ×NxNy .
Since we have converted the Hamiltonian from a differential
operator to a matrix operator, we must introduce discretized
derivative operators, given by[

dF
dx

]
x=(j+ 1

2)a
→ 1

a
[Fj+1 − Fj] (7)[

d2F
dx2

]
x=ja

→ 1

a2
{Fj+1 − 2Fj + Fj−1} . (8)

As an example of a Hamiltonian matrix for a one-
dimensional system, with a simple kinetic and potential term,
one can consider,

H =


· · · −t 0 0 0
−t U−1 + 2t −t 0 0
0 −t U0 + 2t −t 0
0 0 −t U1 + 2t −t
0 0 0 −t · · ·

 , (9)

where t = h̄2/2ma2 is the so-called hopping parameter and
Ui denotes the potential at each lattice site. Such a matrix
can be rewritten for two or three dimensional systems given
an appropriate labeling system. Written in this way, one can
compute G through matrix inversion.

G = [EI −H]
−1
. (10)

It should be noted that there exist two independent solutions
for G, normally referred to as the retarded and advanced
Green’s functions; often an imaginary parameter is added to
the energy in Eqn. 10 in order to force the solution to be
one or the other. For our present purposes we shall omit this
imaginary factor. As solutions like Eqn. 10 for Hamiltonians
such as Eqn. 9 only provide information about scattering
within a sample, the concept has to be expanded to include
the leads. One normally proceeds by assuming that the
sample is connected to the leads at various lattice sites, and
that only the directly neighboring sites within the lead itself
are relevant to compute the lead’s full effect on transmission.
If the leads are semi-infinite, homogeneous, and reflection-
less, one can show that this is an exact statement. We shall
consider the case in which there are two leads, labeled p
and q and the sample is denoted as c. Our sample shall be
represented by a Nx ×Ny grid, where the x-direction runs
horizontal and the y-direction runs vertical. Each lead shall
be connected fully to either vertical side of the sample, giving

Ny neighboring points in each lead. One can then rewrite the
Green’s function in block matrix form as

G =

Gc Gcp Gcq

Gpc Gp 0
Gqc 0 Gq

 . (11)

All carriers enter or leave the sample via Gcp or Gcq and
propagate throughout the sample via Gc. Propagation within
the leads themselves is included via Gp or Gq . One can see
through inspection of the block matrix that there is no direct
connection between differing leads; carriers must transmit
through the sample to travel between p and q. We assume
the following structure for G:

G =

EI −Hc τp τq
τ †p EI −Hp 0
τ †q 0 EI −Hq

−1 . (12)

Note that each element in the above block matrix has
different dimensions, depending on the number of lattice
sites corresponding to the portion they describe. By assuming
that a carrier may only enter the sample through a site
horizontally adjacent to the lead, one may write

[τp(q)]ij = tδij . (13)

and solve for Gc. One can show, after some algebra, that

Gc = [EI −Hc − Σ]
−1
, (14)

where

Σ =

t2gp 0 0
0 0 0
0 0 0

+

0 0 0
0 0 0
0 0 t2gq

 = Σp + Σq (15)

and
gp(q) =

[
EI −Hp(q)

]−1
(16)

The Σp(q) are NxNy ×NxNy matrices, while gp and gq are
Ny×Ny matrices. Equation 14 describes the Green’s function
in terms of the hopping parameter t, the Fermi energy E,
the conductor’s Hamiltonian Hc, and the lead’s Hamiltonians
Hp(q). The transmission probability is then calculated by

T =
∑
m,n

Tmn = Tr
[
ΓpGcΓqG

†
c

]
, (17)

where
Γp(q) = i[Σp(q) − Σ†p(q)]. (18)

III. BASIC IMPLEMENTATION

The straightforward implementation of this algorithm in-
cludes the following steps (see Fig. 1): First the potential
landscape of the sample, the Hamiltonian H for the system
as well as the transverse Hamiltonian Hy describing the
hopping within one transversal slice are defined. In the sec-
ond step the eigenvalues and vectors for Hy are determined.
They are used in step three to define the self-energies of the
leads. With these information the Green’s function can be
calculated in the fourth step. Step five creates the Γ matrices
to calculate in the sixth step the transmission probability.
The first step contains the user input processing and does
not require significant computational resources. However,
the matrix H is of the size (NxNy) × (NxNy), and gets
extremely big for large systems, causing memory issues

Fig. 1. Flowchart for the basic Green’s function algorithm

when implemented as a dense matrix. The Eigenvalue prob-
lem in the second step of the size Ny × Ny can take a
significant share of computing resources for extremely large
systems. The self energies ΣA and ΣR are created by simple
scalar operations in step three. The fourth step represents the
bottleneck of this basic implementation due to the inversion
of a (NxNy) × (NxNy) matrix in Eqn. 14, which will be
addressed extensively below. Creating the Γ matrices in step
five only involves scalar operations on the elements of ΣA

and ΣR and can be done in parallel to the more demanding
step four. The final step six obtains the transmission and
reflection coefficients from the traces given by Eqn. 17 and
includes the product of four matrices of (NxNy)× (NxNy).

IV. OPTIMIZATIONS

A. Analysis of the basic implementation
a) Problem 1: Memory efficiency of the matrix H: The

matrix H is of the size (NxNy)× (NxNy). As it grows fast
with system size this becomes the limiting memory factor.
However, the structure of the matrix allows optimization of
the memory performance:

HNxNy×NxNy
=


. . . Y 0 0
Y X Y 0
0 Y X Y

0 0 Y
. . .

 , with (19)

XNy×Ny
=


. . . B 0 0
B A B 0
0 B A B

0 0 B
. . .

 , (20)

YNy×Ny
= diag [C] (21)

where A = 4t+V (x, y), B = C = −t, with the the potential
energy at a given site V (x, y). Using the extreme sparsity of
this matrix significantly enhances the memory performance.
The same is true for the transverse Hamiltonian, that has an
even simpler structure:

Hy =


. . . B 0 0
B D B 0
0 B D B

0 0 B
. . .

 , (22)

where D = 2t. However, even a sparse representation of
the matrix still grows dramatically with the system size.
Therefore it is most efficient to create only Ny ×Ny matrix
blocks directly, when they are needed in the algorithm.

b) Problem 2: The Eigenvalue solver: The Eigenvalues
of Hy represent the modes and the Eigenvector matrix
yields the wave functions for the self energy matrix. While
there is probably potential to optimize the algorithm for the
eigenvalue solver, it is even more advantageous to com-
pletely remove the numerical Eigenproblem by solving it
analytically as it is a simple one-dimensional quantum well
problem and the solution is known. So we do not focus on
any numerical optimizations of this part.

c) Problem 3: Matrix inversion: As most of the compu-
tation time is spent on the matrix inversion to determine the
Green’s function in Eqn. 14 our main focus was to optimize
this part. There are several ways to avoid the direct inversion
of the full matrix G. One approach is to use blockwise
inversion. While this improves the performance over a direct
inversion and can be applied later in optimized codes to
improve the performance of the remaining inversions of
smaller sub-matrices, it is more advantageous to first utilize
the special structure of the matrix. The optimizations are
described in detail in Sec. IV-C through IV-F.

d) Problem 4: The final matrix multiplication: For
Eqn. 17 eight multiplications of Ny × Ny matrices are
necessary. The structure of the algorithm allows to execute
four of them in parallel. The other four need the results
of the first set of multiplications, but can then also be
executed in parallel. By making use of high-performance
matrix multiplication functions this task reaches a high level
of parallel execution (see below). As the computational load
of this part is small compared to the inversion no further
optimizations have been done to this part.

B. First optimization: optimized linear algebra functions

National Instruments developed a LabVIEW High Perfor-
mance Analysis Library (HPAL) [5]. HPAL exposes linear
algebra functions from Intel’s Math Kernel Library (MKL)[6]
from within LabVIEW. These functions are optimized for
execution on multi-core processors and designed to work
when the input matrices are extremely large.

We replace the functions for matrix multiplication and
matrix inversion. The benchmark results in Section VI show
that we are still limited by the inefficient use of memory by
using dense matrices.

C. Second optimization: sparse matrices

To take advantage of the sparsity of the matrices, we
employed the sparse matrix functions in the HPAL library
replacing the inversion by the PARDISO direct sparse linear
solver [7], [8]. The benchmarks show that the PARDISO
solver is faster than a dense solver, but still has memory
issues above Nx = Ny = 700 as the PARDISO solver
generates a lot of intermediate data.

D. Third optimization: Block-Tridiagonal solver

The matrix H has a block tri-diagonal structure, sug-
gesting to use the generalized Thomas algorithm [9] as the
replacement of the PARDISO solver in the previous section.

Fig. 2. Visualization of the different algorithms for the matrix inversion

Assuming that the block tri-diagonal linear system is
A1 B1 0
C1 A2 B2

C2 A3
. . .

. BNx−1

0 CNx−1
ANx




X1

X2

X3

...
XNx

 =


Y1
Y2
Y3
...

YNx

 ,

where Ak, Bk and Ck are all Ny ×Ny blocks. The solution
can be computed by the following two steps.

Step 1: for k from 1 to Nx

B̄k = (Ak − Ck−1B̄k−1)−1Bk

Ȳk = (Ak − Ck−1B̄k−1)−1(Yk − Ck−1Ȳk−1).

Step 2: for k from Nx to 1

Xk = Ȳk − B̄kXk+1.

This algorithm takes advantage of the sparsity of the ma-
trix to achieve significant speedup, but still requires relatively
large memory. There are 3Ny Ny × Ny complex matrices
generated between step 1 and step 2. For Nx = Ny = 1000,
storing these matrices would need 48 GB RAM and forcing
slow data exchange with hard disk media.

E. Fourth optimization: Improved Block-Tridiagonal solver

Since we only need the four Ny×Ny corners of the inverse
matrix, we are solving two linear systems with the right hand
sides [

INy 0 . . . 0
]′
,

and [
0 . . . 0 INy

]′
,

where INy is an Ny × Ny identity matrix. We are only
interested in the first and last blocks in the solutions. The

last block of each linear system is already computed after
the first step in the Thomas Algorithm. Thus, we propose
another method to compute the first block. Denote

K =


0 INy

INy

. . .
INy

0

 .
where K satisfies KT = K and K2 = I . Furthermore, if

A =


A1 B1 0
C1 A2 B2

C2 A3
. . .

. BNx−1

0 CNx−1
ANx

 ,

then

KAK =


ANx BNx 0
CNx

ANx−1
BNx−1

CNx−1 ANx−2

. . .
. B2

0 C2 A1

 .

Since (KAK)−1 = KA−1K, the upper left(right) corner of
A−1 is equal to the lower right(left) corner of (KAK)−1.
The first step of Thomas algorithm with KAK would thus
give the upper left(right) corner of A−1. The new algorithm
we propose saves memory because it does not go through
the second step. Although the algorithm introduces an extra
matrix inversion by going through the first step twice with
A and KAK separately, the extra calculation could be
compensated by parallelization on multi-core machines. The
benchmark results in Section VI show that this algorithm is
much faster and can handle very large grid sizes.

F. Fifth optimization: Pipelined Block-Tridiagonal solver

To further improve the performance by making use of
parallel architectures we pipelined sequential linear algebra
calculations. By adjusting each group of operations to have
roughly the same complexity, we ensured a constant high
level of utilization on all available cores during the full
inversion algorithm. At the same time the memory usage
stays below 3 GB for system of up to Nx = Ny = 1000.

V. IMPLEMENTATION ON GPUS

As the optimized pipelined block-tridiagonal solver still
represents the most demanding part of our code, we further
improved its performance by employing GPUs. As almost
exclusively matrix multiplications and inversions have to
be performed and several operations are done in parallel,
GPUs yield a high performance potential. The other parts
of the code focus on pre- and post-processing steps which
lack computational complexity and are executed exclusively
on the host processor cores. We used a prototype of the
LabVIEW GPU Analysis Toolkit for the implementation on
GPUs [10]. The small memory footprint of the optimized
block-tridiagonal solver allows us to download the entire
problem to the GPU and invoke the solver on the GPU
device, retrieving only the final results. This minimizes com-
munication between host and GPU during the most critical
processing time. The efficient memory structure also allows
the host to execute multiple independent simulation steps
(i.e. as part of a sweep of e.g. potential or Fermi Energy) in
parallel if more than one GPU is available.

VI. BENCHMARKS

We ran code implementing the direct inversion of the
Green’s function matrix (Version 0) and the different op-
timizations of Sec. IV-B through IV-F (Version 1 through 5)
on an IBM idataplex dx360 M3 workstation [11] with two
Intel Xeon X5650 six-core processors, running at 2.67 GHz,
48 GB random access memory, and two NVIDIA Tesla
M2050 GPUs with 3 GB random access memory [12]. All
code was written in LabVIEW 2011 using functionality
provided by the High Performance Analysis Library (HPAL)
and the GPU Analysis Toolkit. Internally, HPAL called
Intel’s Math Kernel Library (MKL) v10.3 for execution on
the CPU’s multiple cores. The GPU Analysis Toolkit invoked
routines from NVIDIA’s CUDA Toolkit v4.0 and CUBLAS
libraries for execution on the Tesla GPUs. The benchmarks
were performed with a 64-bit version of LabVIEW 2011
running under Windows 2008 Server Enterprise Edition, with
the NVIDIA Tesla GPU set to TCC mode. Results from
the CPU-based implementations are shown in TABLE I.
Results for the code in version 5 which executed primarily on
NVIDIA’s Tesla M2050 GPUs are shown in TABLE II. The
results include just the execution of the inversion algorithm
described in Section IV-F. The initialization and postpro-
cessing are not taken into account as they represent just a
fraction of the computation time. However, the presented
benchmarks include the time for transferring the data to
and from the GPUs. To visualize the performance of the
different implementations we summarized the results we
show the number of system slices along the x-direction that
can be simulated per hour on a single node or a single GPU

TABLE II
BENCHMARK RESULTS FOR THE GPU IMPLEMENTATION OF THE

PIPELINED AND OPTIMIZED BLOCK-TRIDIAGONAL MATRIX INVERSION
SOLVER

Systemsize Matrixsize GPU Pipelined
(Nx = Ny) (Nx ·Ny) BT-Solver

(sites) (elements) (seconds)
128 16,384 2.463
256 65,536 0.691
384 147,456 2.936
512 262,144 8.887
640 409,600 21.255
768 589,824 43.610
896 802,816 80.244

1024 1,048,576 136.685
1280 1,638,400 332.707
1536 2,359,296 688.338
1792 3,211,264 1,272.800
2048 4,194,304 2,170.260
2560 6,553,600 5,290.440
3072 9,437,184 10,964.600
3584 12,845,056 20,297.700
4096 16,777,216 34,616.500
5120 26,214,400 84,462.700

in Fig. 3. These timings are dependent on the number of
system sites in the y direction. This number gives a good
description of the performance related to the system size
and shows the applicability of our CPU and GPU-based
implementations to systems with realistic dimensions. While
the information is given for a two-dimensional system, where
the transversal slice is one-dimensional, the same holds for
three dimensional systems, where the number of sites is the
product of height and width of the system.

Fig. 3. Benchmark results in terms of simulation steps in x-direction per
hour in dependence of the system size in y-direction

VII. CONCLUSION AND OUTLOOK

Transport simulations in semiconductor nanostructures
rely on the Green’s function algorithm. Direct implementa-
tions of this algorithm designed to obtain accurate results for
a realistic device size using a sufficiently small grid spacing
yield gigantic matrices which then need to be inverted. The

TABLE I
SUMMARY OF THE BENCHMARK RESULTS FOR THE CPU-BASED ALGORITHMS. VERSION 0 IS THE ORIGINAL DIRECT INVERSION ALGORITHM.

VERSION 1 USES THE OPTIMIZED LABVIEW HIGH-PERFORMANCE COMPUTING LIBRARIES, VERSION 2 MAKES USE OF THE MATRICES’ SPARSITY,
VERSION 3 IS THE FIRST IMPLEMENTATION OF THE BLOCK-TRIDIAGONAL SOLVER, VERSION 4 IS THE OPTIMIZED BLOCK-TRIDIAGONAL SOLVER

(O.O.M. STANDS FOR OUT OF MEMORY – THIS BENCHMARK COULD NOT BE PERFORMED ON THE TEST MACHINE), AND VERSION 5 IS THE
OPTIMIZED BLOCK-TRIDIAGONAL SOLVER WITH PIPELINING FOR IMPROVED THREAD UTILIZATION.

Systemsize Matrixsize Version 0 Version 1 Version 2 Version 3 Version 4 Version 5
(Nx = Ny) (Nx ·Ny) direct inversion HPAL library sparse matrices BT-solver A BT-solver B pipelining

(sites) (elements) (seconds) (seconds) (seconds) (seconds) (seconds) (seconds)
10 100 0.007 0.017 0.002 0.001 0.001 0.001
20 400 0.192 0.407 0.006 0.004 0.004 0.003
30 900 2.096 2.684 0.013 0.016 0.013 0.008
40 1,600 11.745 13.261 0.026 0.038 0.024 0.017
50 2,500 49.714 47.328 0.054 0.081 0.048 0.038
60 3,600 148.369 138.163 0.088 0.154 0.072 0.058
70 4,900 346.183 339.151 0.134 0.215 0.114 0.094
80 6,400 769.706 730.780 0.201 0.371 0.151 0.127
90 8,100 1,647.595 1,543.517 0.241 0.468 0.214 0.187

100 10,000 2,964.965 2,949.634 0.357 0.715 0.279 0.236
200 40,000 o.o.m. o.o.m. 2.194 8.662 2.428 1.765
300 90,000 o.o.m. o.o.m. 7.560 42.750 7.804 5.767
400 160,000 o.o.m. o.o.m. 18.323 130.317 20.709 14.643
500 250,000 o.o.m. o.o.m. 39.306 311.673 57.965 33.411
600 360,000 o.o.m. o.o.m. 72.519 595.367 102.021 61.147
700 490,000 o.o.m. o.o.m. 125.120 o.o.m. 168.005 109.006
800 640,000 o.o.m. o.o.m. o.o.m. o.o.m. 263.918 191.874
900 810,000 o.o.m. o.o.m. o.o.m. o.o.m. 389.083 297.420

1000 1,000,000 o.o.m. o.o.m. o.o.m. o.o.m. 538.907 422.620

problem size coupled with the required dense matrix com-
putations make such a solution impractical. Our optimized
implementations avoid the massive matrix sizes by exploiting
the underlying sparse structure using a block-diagonal solver
to reduce memory load from (NxNy) × (NxNy) matrices
to Ny × Ny matrices. By employing pipelining we further
enhanced the parallelism of the algorithm and balanced the
computational load between parallel threads on different
cores or devices maximizing performance. The efficient use
of memory allows implementing the whole matrix inversion
algorithm on a NVIDIA Tesla M2050 GPU. The calculation
is done without transferring data between the host and the
GPU during the calculation. With the above summarized
techniques we were able to increase the system size by a
factor of 100 compared to the primitive algorithm and even
beyond (which is then beyond the scope of the intended
simulations). At the same time we were able speed up the
calculation of the transmission function on the host computer
by a factor of 12,500 demonstrating the high efficiency of
our algorithm. The implementation of the inversion algo-
rithm on the GPUs yields a further performance gain by a
factor of three. Taking into account the fact that a second
simulation step can be executed in parallel on the second
NVIDIA Tesla M2050 GPU the performance enhancement
per IBM idataplex dx360 M3 computing node by the GPU
implementation is a total factor of six. The simulation of the
transport in dependence on one varied parameter (e.g. gate
voltage) with 1000 steps for a device of 1 µm by 1 µm and a
grid spacing of 1 nm takes a total time of approximately 19
hours. Given the large system size, the fine grid and sweep
resolution as well as the option of further parallelization of
the simulation by distributing different steps of the sweep not
only over the two GPUs of one node but also over several
nodes, the performance of the presented algorithm allows
precise simulations of transport in nanostructures with high
precision and very fast computing times.
Having demonstrated the feasibility of these simulations in

general, we are now expanding the code to three-dimensional
structures and multiple bands for electron and hole transport.
The addition of multiple bands increases the size of the ma-
trices to (NxNyNs)× (NxNyNs), where Ns is the number
of bands taken into account. The more demanding step is the
implementation of three-dimensional systems, where each
”slice” of the system is no longer represented by a matrix of
Ny×Ny elements, but by a matrix of (NyNz)× (NyNz). It
can easily be seen that the matrix size immediately reaches
extreme dimensions bringing new challenges to the forefront.
Therefore we will explore additional techniques to combine
the resources of multiple GPUs within one computing node
as well as to combine multiple nodes to calculate the trans-
port properties of complex three-dimensional nanostructures.

REFERENCES

[1] S. Datta and B. Das, Appl. Phys. Lett., vol. 56, no. 7, p. 665, 1990.
[2] J. Wunderlich, B.-G. Park, A. C. Irvine, L. P. Zrbo, E. Rozkotov,

P. Nemec, V. Novk, J. Sinova, and T. Jungwirth, Science, vol. 330,
no. 6012, pp. 1801–1804, 2010.

[3] S. Datta, Electronic Transport in Mesoscopic Systems. Cambridge
University Press, 1999.

[4] T. Usuki et al., Phys. Rev. B, vol. 50, pp. 7615–7625, 1994.
[5] LabVIEW 2010 High Performance Analysis Library. National Instru-

ments. [Online]. Available: https://decibel.ni.com/content/docs/DOC-
12086

[6] Intel Math Kernel Library. Intel. [Online]. Available:
http://software.intel.com/en-us/articles/intel-mkl/

[7] O. Schenk, A. Waechter, and M. Hagemann, Journal of Computational
Optimization and Applications, vol. 36, no. 2-3, pp. 321–341, 2007.

[8] O. Schenk, M. Bollhoefer, and R. Roemer, SIAM Review, vol. 50, pp.
91–112, 2008.

[9] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical
Recipes in C. Cambridge University Press, 1999, vol. 123, p. 50.

[10] LabVIEW GPU Analysis Toolkit. National Instruments. [Online].
Available: www.ni.com

[11] idataplex dx360 M3 Datasheet. IBM. [Online]. Available: http://www-
03.ibm.com/systems/x/hardware/idataplex/dx360m3/index.html

[12] Tesla M2050 GPGPU Datasheet. NVIDIA.
http://www.nvidia.com/docs/IO/105880/DS-Tesla-M-Class-
Aug11.pdf.

