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Abstract—Refinancing refers to the replacement of an exist-
ing debt obligation with another debt obligation to take the
advantage of a lower interest rate. This paper reflects our
ongoing work to find a desirable refinancing time for mortgage
borrowers to minimize the total payments in a dynamic interest
rate environment. To simulate the alternative financial service
that the market may offer, it is assumed that the future interest
rate follows a stochastic model with mean-reverting property,
which is essentially the only required market condition to
implement our method. To make it more applicable to the
real financial practice, two balance settlement schemes are
considered and compared. Numerical simulations with varying
samplings lead to several interesting characteristics pertaining
to the optimal mortgage refinancing period. Our method is
robust and user friendly, thus is useful for financial institutions
and individual property investors.

Index Terms—mortgage refinancing, loan valuation, financial
optimization, Monte-Carlo simulation, stochastic interest rate
model

I. INTRODUCTION

Debtors refinance to improve the leverage efficiency of
their loan portfolios by taking advantage of lower borrowing
rates. Many previous studies are addressing the problem from
the perspective of optimal refinancing differentials, where the
optimal differential is reached when the net present value of
the interest payment saved equals the sum of refinancing
costs (see [1] and relevant references contained therein). In
comparison to those studies, one important distinction of
our work is to simulate alternative mortgage rate instead
of assuming a known forward interest term structure. Based
on the idea of mean reverting, the Vasicek Model is one of
the earliest non-arbitrage interest rate models. It has been
used not only for characterizing the prices of basic discount
bond (see [6]), but also for valuing complicated financial
products, including residential mortgages (see [4], [5], [7],
for instance). Another reason for using Vasicek model to
demonstrate our algorithm is the existence of convenient
parameter estimation procedures for the model, including
maximum likelihood method or Bayesian based method.
References of such estimations can be found in [3], for
instance.

Two types of loan payment are commonly adopted in
mortgage industry: one is to match the principal repayment
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method and the other is to match the repayment of principal
plus interest. In this work, both methods are used, actually
contrasted, to generate the streams of loan instalments during
the whole contracted duration of mortgage contract. To
start the analysis, it is worthwhile to specify two important
restrictions on the practice of refinance. First, the debtor
is allowed to refinance only once after the mortgage is
signed but before the expiry of the contract. To minimize
the total financial payment, the debtor should grasp the best
opportunity where the interest rate is lower enough. Second,
if the debtor decides to refinance, the total amount of money
he shall pay at the refinancing time is the outstanding loan
balance, which means the subsequent residuary interest col-
lapses upon refinancing. This assumption is reasonable since
otherwise the debtor will have no motivation to refinance and
the liquidity of financial market will be adversely affected.
In reality, the original lender may charge certain amount of
refinance fee in compensation of its interest loss from the
early closing of the contract. The impact of refinance fee is
not included in the current work.

The rest of this paper is organized as follows. We choose
a model to simulate alternative mortgage rate, then derive
the cash flow schemes for the two types of loan settlement
in Section 2. In Section 3, we formulate and present our
algorithm for finding the period which is desirable for
debtors to refinance. In Section 4, we provide numerical
experiments for model calibration with varying samplings.
We summarize in Section 6 with concluding remarks and
possible applications in related fields.

II. MODEL DERIVATION AND INTEREST RATE
SIMULATION

The Vasicek short term interest rate process is a mathe-
matical model describing the evolution of interest rate (see
[2]). The model specifies that the instantaneous interest rate
follows the stochastic differential equation:

drt = k(θ − rt)dt + σdWt (1)

where k is the reversion rate, θ is long−term mean interest
rate and σ is the standard deviation, all of which are positive
constants. We let rt denote the instantaneous spot rate at time
t, and Wt is the standard Brownian Motion.

The original stochastic differential equation can be solved
by noticing that

d(ektrt) = ektdrt + kektrtdt (2)

Substituting Vasicek Model into equation(2), we have

d(ektrt) = ekt(θk − rtk)dt + ektσdWt + kektrtdt

= θkektdt + ektσdWt (3)



Integrating both sides with respect to t:

ektrt = r0 + kθ

∫ t

0

eksds + σ

∫ t

0

eksdWs

= r0 + θ(ekt − 1) + σ

∫ t

0

eksdWs (4)

which yields the explicit solution for equation (1)

rt = e−ktr0 + θ(1− e−kt) + σ

∫ t

0

e−k(t−s)dWs (5)

Under the Euler approximation, equation (1) can be rewrit-
ten as:

∆r = k(θ − rt)∆t + σ∆Wt (6)

Both equation (1) and equation (5) can be used equiva-
lently to describe the alternative mortgage rate that a loan
borrower may choose from the open market. But equation
(6) is often more useful for simulation purposes. We would
like to remark that although Vasicek model is considered in
the current paper, our method is equally applicable to many
other classes of stochastic models.

A. Matching The Principal Repayment Method

Suppose the debtor borrows P0 with monthly interest
rate r0 during the time period [0 T ] and repays mt at the
beginning of each month, where t denotes the tth month.
According to matching the principal repayment method, mt

equals to a certain portion of principal plus a decreasing
value of interest.

mt =
P0

n
+ (1− t− 1

n
)P0r0 (7)

where n is the total number of repayment times.
The term P0

n could be explained as a fixed portion of
principal, and (1 − t−1

n )P0r0 is an amount of decreasing
interest due to the reduction of principal every month.

At time k, the debtor prefers to refinance the debt with
another lender when a lower interest rate rk is offered. On
the kth month, he owes the previous bank Pk and has paid
Ak.

Pk = (1− k − 1
n

)P0

Ak =
k−1∑

i=1

mi = P0(k − 1)(r0 +
1
n
− k − 2

2n
r0) (8)

The amount of money P (t) is the new principal the debtor
borrows from another bank with the interest rate r(t). This
transaction will last from time k to time T . The total payment
over time [0 T ] could be described as follows:

P (T ) = Ak +
n∑

i=k

mi

= P0(k − 1)(r0 +
1
n
− k − 2

2n
r0)

+ Pk[1 +
(n∗ + 1)rk

2
] (9)

where n∗ = n− k + 1

B. Matching the Repayment of Principal and Interest Method

The second method to repay loan is to match the repay-
ment of principal and interest. Assume the debtor borrows
P0 with interest rate r0 over time [0 T ] and the amount of
monthly payment is kept the same. In the beginning of the
contract, the interest accounts for most of payment due to
a large amount of loan while principal is small. Let P (t)
denote the amount of money owed at time t and m is the
monthly payment.

{
dP (t) = −mdt + r0P (t)dt
P (0) = P0

(10)

The monthly payment m, should be:

m =
P0r0(1 + r0)n

(1 + r0)n − 1
(11)

where n is the number of total repayment times.
At time k, the debtor owes the P (k) to the previous bank.

Again, due to the lower interest rate rk , the debtor would
borrow P (k) from another bank to repay the remaining debts
P (k). The total payment over time [0 T ] could be described
as follows:

P (T ) = m1(k) + m2(n− k) (12)

where 



m1(k) =
P0r0(1 + r0)k

(1 + r0)k − 1

m2(n− k) =
Pkrk(1 + rk)n−k

(1 + rk)n−k − 1

(13)

To carry out numerical simulations for both repayment
schemes, we assume that the principal P0 is 100,000, the
initial lending rate r0 is 5%, and the total payment period,
counted in number of months, is T = 240.

III. NUMERICAL EXPERIMENTATION

In this section, we use simulated data to carry out the
experiment. The aim of our model is to obtain the best period
to refinance. The ’best period’ in our experiment means
the month during which to refinance yields a lowest total
payment. We simulate both methods to obtain the frequency
distributions.

A. Matching The Principal Payment Method

The following Figure 1 provides the information of the
frequency distribution of the best period throughout the
contracted duration. The frequency space is 6 months. It can
be seen that the frequency arrives the peak at the second half
of the first year. The frequency of following months declines
over time. From the results reported in Table 1, we find that
until the 5th year, the total times to refinance is up to 9252
(the frequency rate is 92.52 %), which implies it is better to
refinance early.

We include the interest rate factor into our implementation
and discussion. Assume the best opportunity to refinance
arises when the total payment is comparatively low. We
define a new variable ’count’ to record the times that the
best month to refinance (mt) coincides with the month when
the smallest interest rate (mr) occurs. Hence, ’count’ plays



0 5 10 15 20 25 30 35 40
0

200

400

600

800

1000

1200

1400

1600

1800

the best period to refinance

th
e
 f

re
q
u
e
n
c
y

Fig. 1. The frequency distribution over 240 months’ duration by 10000
times of simulations with matching the principal payment method.

TABLE I
FREQUENCY AND CUMULATIVE FREQUENCY OF THE BEST TIME TO

REFINANCE

Months Frequency Cumulative Frequency

1-6 1037 1037
7-12 1649 2956

13-18 1424 4380
19-24 1174 5554
25-30 971 6525
31-36 791 7316
37-42 701 8017
43-48 527 8544
49-54 395 8939
55-60 313 9252
61-66 258 9510
67-72 193 9703
73-78 105 9808
79-84 78 9886
85-90 50 9936
91-96 30 9966

97-102 21 9987
103-108 7 9994
109-114 3 9997
115-120 2 9999
121-126 0 9999
127-132 1 10000
133-240 0 10000

a role on quantifying and measuring the coincidence. In each
simulation, if the difference between them is less than 3
months, we regard them to be coincidence and the value
of ’count’ increases by 1.

The above procedure is circulated 10 times and we choose
(mr) in different time intervals. We use a variable ’count’ to
measure the coincidence and the results are shown in Table 2.
The second column 1− 36 represents the time interval from
the 1st month to the 36th month of the contract. Similarly,
1− 60, 1− 90 and 1− 240 mean the corresponding month
intervals. For instance, the times that the optimal refinance
period locates in the interval from the first month to the 90th
month is 6295 in the first simulation.

The bottom row in Table 2 displays the average value
of ’count’. It is observed that the average percentage value

TABLE II
FREQUENCY AND CUMULATIVE FREQUENCY OF THE BEST TIME TO

REFINANCE

Times 1-36 1-60 1-90 1-240

1 5612 6765 6295 2721
2 5584 6823 6446 2820
3 5721 6838 6321 2761
4 5666 6973 6393 2749
5 5660 6890 6442 2760
6 5731 6853 6348 2708
7 5607 6710 6260 2671
8 5626 6770 6326 2743
9 5679 6829 6351 2807

10 5714 6767 6335 2713
Average 5660 6821.8 6447 2745.3

of ’count’ during 1st− 240th is only 27.45%, which is the
lowest compared to others. This result is not surprising since
it has been shown in above that the possibility of refinance
is up to 92.52% in the first five years. Furthermore, the
interest rate movement is simulated by the Vasicek model,
indicating that the lowest interest rate could appear anytime.
Both reasons lead to such a low coincidence. As the time
interval is shortened to, say, the first three years or the
first five years, the percentage of coincidence substantially
increases.

From Table 1, we have seen that the best refinancing month
is considerably more possibly located in the earlier time. But
how early is still a problem deserving prudent consideration.
The duration of the first 90 months apparently shows the
highest possibility 99.36%. However, the interval is so long
that it may not be an operative suggestion to debtors. In fact,
the frequency rate steadily increases after the 60th month.
On the other hand, when we inspect the first 36 months’
duration, it is noted that although the range becomes small,
the possibility that the best period to refinance locates in
this range is still as high as 73.16%. As for the duration
of the first 60 months, the frequency rate is 92.52%, and the
corresponding average percentage of coincidence is the high-
est among all these three cases. This comparison provides a
useful hint on the distributional pattern of the best refinance
period, which, taken in conjunction with the observations of
the real market interest rate, will facilitate the borrower’s
financial decisions.

B. Matching The Payment of Principal and Interest

Figure 2 is the frequency distribution generated by sim-
ulating 10000 times of matching payment of principal and
interest method. It has the similar but not identical properties
compared to Figure 1. In this payment scheme, the principal
balance decreases rather slowly at early stage while in the
first payment scheme (matching the payment of principle)
that the principle decreases by an equal amount each month.
Thus, the less indifference of change of principle leads to
the more divergent distribution.

Again, the interest rate factor should be involved in our
discussion. As presented above, we use ’count’ to record the
times that the best month to refinance (mt) coincides with
the month when the smallest interest rate (mr) occurs.
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Fig. 2. The frequency distribution over 240 months’ duration by 10000
times of simulations with matching the payment of principal and interest
method.

TABLE III
FREQUENCY AND CUMULATIVE FREQUENCY OF THE BEST TIME TO

REFINANCE

Months Frequency Cumulative Frequency

1-6 727 727
7-12 1038 1765

13-18 1259 3024
19-24 1162 4186
25-30 961 5047
31-36 766 5913
37-42 670 6583
43-48 588 7171
49-54 553 7704
55-60 468 8172
61-66 381 8553
67-72 334 8887
73-78 274 9161
79-84 233 9494
85-90 161 9625
91-96 136 9791

97-102 106 9797
103-108 58 9855
109-114 45 9900
115-120 38 9938
121-126 34 9972
127-132 15 9987
133-138 11 9999
139-142 1 10000
143-240 0 10000

Figure 2 and Table 3 reveal the frequency distribution
during 20 years. The results we have obtained are simi-
lar to the previous method. The frequency first increases,
reaching the peak during the 13th month to the 18th month.
Afterwards it decreases gradually, down to 0 after 11 years.
Until the 7th year, the cumulative frequency is 9494 in total,
which provides a strong evidence for early refinance. As for
coincidence, again, the duration of 90 months has the highest
value in these three periods.

TABLE IV
FREQUENCY AND CUMULATIVE FREQUENCY OF THE BEST TIME TO

REFINANCE

Times 1-36 1-60 1-90 1-240

1 5579 6862 6465 2777
2 5622 6833 6460 2824
3 5572 6821 6549 2877
4 5531 6769 6456 2757
5 5587 6764 6528 2800
6 5647 6856 6485 2802
7 5574 6798 6450 2761
8 5624 6847 6478 2903
9 5633 6821 6435 2739
10 5540 6914 6510 2809

Average 5590.9 6828.5 6481.6 2804.9

C. Comments on the Results

In our paper, we wish to determine which period is a better
choice for debtors to refinance. The study has found some
important properties for refinancing. First, the possibility
of refinancing in the early stage may surpass 90%, which
implies that debtors should refinance early. Second, the
frequency curve arrives its peak at the last half of the first
year. After that, the frequency of refinancing will drop and
the coincidence increases at first and decreases after its peak
value. Finally, a duration neither relatively too long nor too
short is regarded as a perfect solution, i.e., a duration of 90
months (7.5 years) is relatively too long to the whole duration
of 20 years. In consideration of these four properties, the
debtors should refinance in the period of the 1st to the
60th month when the interest rate is locally low, for contract
conditions and market rate movement specified in this paper.
That means in certain month when the interest rate will be
expected to fall down to certain lower enough level, it is
probably the best time to refinance.

IV. APPLICATIONS

A. Model Calibration

The above results show that the debtors should refinance
as earlier as possible when the lending rate is relatively low.
In this section, we examine the correction of the conclusion
and calibrate our model.

We assume that the debtor adopts the matching the prin-
cipal payment method to pay back his debt. Let t = k − 1,
then equation (9) yields

P (T )
P0

= [r0 − rt+1

2
+

r0

2n
− (n + 1)rt+1

2n
]t

+
rt+1 − r0

2n
t2 +

n + 1
2

rt+1 + 1

=
rt+1 − r0

2n
t2 + (1 +

1
2n

)(r0 − rt+1)t

+
n + 1

2
rt+1 + 1 (14)

We proceed the analysis by identifying the following two
scenarios.



1) r0 = θ : When the initial borrowing rate equals to the
long term mean rate, the stochastic process for the market
interest rate becomes

rt = e−ktr0 + θ(1− e−kt) + σ

∫ t

0

e−k(t−s)dWs

= r0 + σ

∫ t

0

e−k(t−s)dWs (15)

It is intuitive and worthwhile to note that the debtor
is likely to refinance only when the instantaneous spot
rate is less than the initial borrowing rate, i.e., only when
the stochastic integral term σ

∫ t

0
e−k(t−s)dWs results in a

negative value. But even with this in mind, the statistically
measured minimizer t to the stochastic function P (T )

P0
is not

immediate since the equation (14), as a quadratic form in
t with stochastic coefficients, is composed of terms with
different signs in differentials in t. For instance, one might
want t go to zero on the set of t where r0 > rt if only the
first order term of t is concerned, but this move may not
grant enough time for rt to achieve sufficiently lower level,
which is desirable if the second order or zero order term
of t is concerned. An equilibrium of the opposing factors
in (14), as shown by our simulated results in Figure 4 and
6, says that the best refinance time is most likely located
in the early stage of the contract for the usual conditions
set in this paper. This is true despite that the expectation of
P (T )
P0

is independent of time t. The result is consistent with
the numerical results contained in the previous section and
offers a statistical explanation to the optimal strategy that a
borrower should take to minimize his total financial cost.

2) r0 > θ: When the initial borrowing rate is higher than
the long term mean rate, note that the stochastic process for
the market interest rate can be written as

rt = (r0 − θ)e−kt + θ + σ

∫ t

0

e−k(t−s)dWs (16)

Figure 3 reveals that when the value of σ is small (i.e.
0.001 or less), the simulated interest rates are fluctuating
around the ’drift’ with very small deviations. In this scenario,
the general trend of interest rate drops exponentially to the
mean level. With the parameters we choose for the model,
and with the current simulation specifications, such as the
time step for the Euler approximation and the maximum
number of simulated trajectories, contained in this paper, we
find that the stochastic integral term σ

∫ t

0
e−k(t−s)dWs is

negligible in statistical sense for understanding the refinanc-
ing strategy.

B. Implementation With Different Values for Parameters

We simulate the process for 10000 times for different
values of parameters and adopt the matching the principal
payment method in all simulations. We also involve two
conditions into simulation. One is normal that the initial
interest rate equals to the long-term mean interest rate. The
other is an extreme condition that the initial interest rate is
greater than the long-term mean interest rate.

1) Parameter k: It has been pointed out that the parameter
k is the reversion rate and σ is the long-term mean interest
rate. As mentioned before, the Vasicek Model is notable for
its reversion property, which means after a positive change
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Fig. 3. ’drift’ represents the term (r0− θ)e−kt + θ , ’variance’ represents
the term σ

∫ t

0
e−k(t−s)dWs and ’interest rates’ are the simulated spot

instantaneous rates, where r0=0.12, k=0.1 and σ=0.001.
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Fig. 4. The frequency distribution at different values of k, when θ =0.05,
σ =0.003 and r0=0.05.
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Fig. 5. The frequency distribution at different values of k, when θ =0.05,
σ =0.003 and r0=0.12.

in the actual returns, mean-reversion causes a negative sub-
sequent change and vice versa (see [3]). Figure 4 and 5
show the fact that, as the value of k rises, the likelihood
of refinancing in the last half of the first year sees a growth
when the initial lending rate equals to the mean lending rate.
In the extreme condition that the initial interest rate is greater
than the initial lending rate, the increase of the reversion
speed leads to early refinancing.

2) Parameter σ: To observe the effect of market rate
volatility on the refinance frequency distribution, we change
the value of σ while keeping other parameters fixed. Figure
6 provides the numerical outputs when r0 equals to the long-
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Fig. 6. The frequency distribution at different values of σ, when θ=0.05,
k=0.1 and r0=0.05.
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Fig. 7. The frequency distribution at different values of σ, when θ=0.05,
k=0.1 and r0=0.12.

term mean. In this example, changes in the value of σ do
not lead to significant changes in the frequency distribution.
When r0 is relatively higher than the long-term mean interest
rate θ, the consequence is more apparent. Figure 7 shows
the numerical plots for this scenario. An apparent convergent
pattern can be drawn from Figure 7, where the best refinance
period converges to around the 25th month as σ decreases.

V. CONCLUDING REMARKS
This paper focuses on the numerical simulation approach

for finding the best refinancing strategy for mortgage borrow-
ers in a stochastic interest environment. Interesting properties
of the optimal refinancing time, including its relative close-
ness to the origination of the contract and the statistically
lowest point of the interest curve, are discovered. In this
work, Vasicek Model is applied to simulate the monthly
interest rate and both matching the principal payment method
and matching the payment of principal and interest method
are considered to generate the total payment. Results from
these empirical experiments tend to suggest relatively early
refinancing for both scenarios under the conditions of the
mortgage contracts set in the paper, particulary when the
initial borrowing rate is large compared to the long term
mean rate. These findings shed lights on the very important
financial queries for many property investors.

In addition, since mortgage contract is also a type of
option, the usefulness of our approach is not limited to
the problem at hand. Traditional analytical techniques for
characterizing option contracts, if possible, usually require
mathematically strong and sometimes parameter sensitive
properties attached to the formulation of the problem, such

as the convexity existed in the early exercise boundary of
the classic American put option (see [2], [8], for instance).
In comparison to such analytical methods, our approach is
robust and easy to implement. The algorithms contained in
this work can be readily applied to a broad class of problems
arising from financial optimization and option pricing.
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