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Abstract—This paper presents a study on visco elastic 
boundary layer flow and heat transfer over a stretching sheet 
in the presence of viscous dissipation and non-uniform heat 
source. A quasilinearization technique is used to solve velocity 
and temperature profiles. Two cases are considered, namely,    
(i) Prescribed surface temperature (PST) and (ii) Prescribed 
wall heat flux (PHF). The effect of various parameters on 
velocity and temperature profiles is depicted in graphs and 
discussed. 
 

Index Terms—viscoelastic fluid flow, heat transfer, 
stretching sheet, non-uniform heat source, Walters’ liquid B 
model. 

 

I. INTRODUCTION 

 
OUNDARY layer behavior over a moving continuous 
solid surface is an important type of flow occurring in 

several engineering processes. Since the pioneering work of 
Sakiadis [1]-[2]. Various aspects of the problem have been 
investigated by many authors. Erickson [3] extended this 
problem to the case for which suction or blowing existed at 
the moving surface. Crane [4] extended the problem of 
Sakiadis to the stretching sheet whose velocity is 
proportional to the distance from the slit. 

Since the physical properties of the ambient fluid 
effectively influence the boundary layer characteristics, the 
study of non-Newtonian fluid flow over a moving sheet has 
gained considerable importance. Therefore several authors 
[5]-[11] studied viscoelastic boundary layer flow along a 
stretching sheet for Non-Newtonian fluids. 

In the present study, an incompressible viscoelastic 
(Walters’ liquid B model) fluid over a stretching sheet with 
viscous dissipation and non-uniform heat source is 
considered. A numerical method, quasilinearization 
technique is used to find velocity and temperature profiles.  
Results are in good agreement with available literature.  
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II.  MATHEMATICAL FORMULATION 

 
Consider the flow of an incompressible viscoelastic 

(Walters’ liquid B model) fluid over a wall coinciding with 
the plane y = 0, the flow being confined to y > 0.Two equal 
and opposite forces are applied along the x-axis, so that the 
wall is stretched keeping the origin fixed. The steady two 
dimensional boundary layer equations for this fluid were 
derived by Beard and Walters [12]. In usual notation these 
equations are given as: 
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  where u and v are the velocity components respectively 
along the x and y directions, υ is the kinematic viscosity, k0   
is the co-efficient of elasticity, k is the thermal conductivity, 
ρ is the density, T is the temperature, cp is the specific heat 
at constant pressure and q’’’ is the space and temperature 
dependent internal heat generation/absorption (non-uniform 
heat source/sink) [13] which can be expressed in simplest 
form as 
 

         



  TTBfTTAxxkuq ww /'''             (4) 

 
Here A* and B* are parameters of space and temperature 
dependent internal heat generation/absorption. It is to be 
noted that A* > 0 and B* > 0 correspond to internal heat 
generation while A* < 0 and B* < 0 correspond to internal 
heat absorption. 

The boundary conditions for the velocity field are:  
 

0,  vbxuu w       at y = 0, b > 0 

 yasyuu 0/,0                       (5) 

 
where  yasyu 0/  is the augmented condition 

given by K. R. Rajagopal [14]. Here the flow is caused 
solely by the stretching of the sheet, since the free stream 
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velocity is zero.  
In the present study, the thermal transport phenomenon 

has been investigated for two general boundary conditions, 
namely, (i) Prescribed surface temperature (PST case) and 
(ii) Prescribe surface heat flux(PHF case). 

       The thermal boundary conditions for the equation of 
energy (3) are: 
 
 At y = 0 

   2/ lxAxTT w            (PST case)                    (6a) 

   2/ lxD
y

T
kxq w 



   (PHF case)                  (6b) 

  yasTT  

 

           where wT the temperature of the wall is, T  is the 

temperature outside the dynamic region. A  is a constant 

depends on thermal properties of the liquid, bl /    is 

chosen as characteristic length, wq is the wall heat flux, D   

is a constant and k is the thermal conductivity. 
 
 Defining new variables: 
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where 

  2/ lxAT                       for PST case             (8a) 

and 

   blxkDT /// 2     for PHF case             (8b) 

 
Equations (2) and (3) are transformed as 
 

 2
1

2 2  fffffkffff            (9) 

 

    0PrPrPr **    fABff             (10) 

 
where  kC p /Pr   is the Prandtl number, and  

 /01 bkk    is the viscoelastic parameter. 

 
The boundary conditions (5), (6) reduce to: 
 

      10,10,00  ff       for PST case         (11a) 

      10,10,00   ff      for PHF case           (11b) 

         asff 0,0,0             (12) 

 

III. NUMERICAL SOLUTION OF THE PROBLEM  

 
The flow equation (9) coupled with energy equation (10) 

constitute a set of highly nonlinear differential equations for 
which obtaining closed form solution is difficult. Hence 
quasilinearization technique, given by Bellman & Kalaba 
[15] is used to solve this system. This method converts the 
nonlinear two-point boundary value problem into an 
iterative scheme of solution, which involves the step-by-step 
integration of linearised differential equations, with two 
point boundary conditions. This method is quadratically 
convergent, starting from the initial guess value and solution 
obtained is valid for a large range of parameters. Even when 
the required number of initial conditions is not given, this 
method converges at a fast speed. In order to implement the 
quasilinearization technique, the system of equations (9) and 
(10) are converted to a system of first order differential 
equations as follows: 

Substitute 
  
   654321 ,,,,,,,,,, xxxxxxffff    

 
Then equations (9) and (10) reduce to: 
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 Let r
ix  (i =1,2,…6) be an approximate current solution 

and 1r
ix ( i = 1,2,…6) be an improved solution of (13). By 

taking tailor’s series expansion around the current solution 
and neglecting the second and higher order derivatives, the 
coupled first order system (13) is linearized as: 
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     The above system of equations is linear in 1r
ix  and 

general solution can be obtained by using the principle of 
superposition. 
The boundary conditions given by (11) and (12) reduce to 
 

      10,10,00 1
5

1
2

1
1   rrr xxx   for PST case              (15a) 

      10,10,00 1
6

1
2

1
1   rrr xxx     for PHF case              (15b) 

 

         asxxx rrr 0,0,0 1
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 The initial values are chosen as follows: 
 
For the homogeneous solution: 
 

   0001001 h
ix  

   0010002 h
ix                                                  (16) 

   1000003 h
ix  

 
For particular solution: 
 

   010010p
ix              (17a) 

                     (OR) 

   100010 p
ix              (17b) 

 
 The general solution of system of equations is given by 
 
           p

i
h
i

h
i

h
i

r
i xxCxCxCx  321

321
1         (18) 

 
 whereC1, C2, C3 are the unknown constants and are 
determined by considering the boundary conditions as  
η → ∞. This solution  6,...2,1,1  ix r

i
 is then compared 

with solution at the previous step 6,...2,1, ix r
i

 and next 

iteration is performed if the convergence has not been 
achieved or greater accuracy is desired.  
 
 

IV. RESULT AND DISCUSSION 

 
Heat transfer in the steady laminar flow of an 

incompressible viscoelastic fluid over a stretching sheet 
with prescribed surface temperature and prescribed heat 
flux, including viscous dissipation and the non-uniform heat 
source has been examined. Numerical computations of the 
results are depicted in Fig [1-4]. 

Fig. 1 depicts temperature profiles θ (η) versus η in PST 
and PHF cases respectively. It shows that temperature θ (η) 
increases with the increase in the value of viscoelastic 
parameter k1 in both the cases. This is due to the fact that an 
increase of viscoelastic normal stress gives rise to 
thickening of thermal boundary layer. 

Fig 2(a) and 2(b) reveal that temperature θ (η) decreases 
with increase in Prandtl number (Pr), which implies viscous 
boundary layer is thicker than the thermal boundary layer. 

Fig 3(a) and 3(b) depict that temperature θ (η) increases 
with Eckert number. This is due to the fact that heat energy 
is stored in the liquid due to the frictional heating. The 
effect of increasing Eckert number is to enhance the 
temperature at any point. 
     Figs 4 depicts that temperature θ (η) increases when A* 
is positive (heat source), since thermal boundary layer 
generates energy. Temperature θ (η) decreases when A* is 
negative (absorption). The effect of the parameter B* on 
Temperature θ (η) is same as A*. 

From our numerical results for both PST/PHF cases, the 
following conclusions may be drawn. 
Temperature of the fluid  

i. increases with increase in viscoelastic parameter k1, 
ii. increases with increase in viscous dissipation (Ec),  

iii. increases with increase in non-uniform heat source/sink     
parameters A* and B*. 

iv. decreases with increase in Prandtl number (Pr). 
 

Finally, the values of the wall temperature gradient 
(-θ’ (0)) and the wall temperature g (0) as a function of all 
the parameters of the thermal boundary layer analyzed and 
tabulated in Table1. This shows that the effect of 
viscoelastic parameter (k1) is to increase the wall 
temperature gradient in PST case and wall temperature in 
PST case. Effect of Prandtl number (Pr), Eckert number (E) 
is to decrease the magnitude of both wall temperature 
gradient (-θ’ (0)) and the wall temperature g (0), whereas 
opposite behavior is seen with the both the parameters A* 
and B*. 
 



 

 
 
 

 
 
              Fig. 1.  Effect of visco-elasticity (k1) on temperature distribution 

 
 
 

                                              
Fig. 2.   Effect of Prandtl number (Pr) on temperature distribution. 



 

 
 
 

 
 

Fig.  3. Effect of Eckert number (E) on temperature distribution. 

 

 
 
 

 
 

Fig.  4.   Effect of non-uniform heat source/sink parameter (A*) 
on temperature distribution 

 

 
 
 



 

TABLE I 
HEAT TRANSFER CHARACTERISTICS AT THE WALL 

 
E K1 Pr A* B* PST case 

–
θ’(0) 

 

PHF case 
g(0) 

0.0 0.2 3.0 0.05 0.05 2.86091 0.30401 

0.5     2.75725 0.32600 

1.0     2.57130 0.35560 

       

0.5 0.2 3.0 0.05 0.05 2.75752 0.29600 

 0.3    2.56567 0.34610 

 0.4    2.038502 0.36926 

       

0.5 0.2 3.0 0.05 0.05 2.75752 0.29600 

  4.0   3.15299 0.24762 

  5.0   3.48365 0.21479 

       

0.5 0.2 3.0 -0.05 0.05 2.79910 0.28153 

   0.0  2.77831 0.35877 

   0.05  2.75752 0.42600 

       

0.5 0.2 3.0 0.05 -0.05 2.77143 0.29417 

    0.0 2.76449 0.29508 

    0.05 2.75752 0.29600 

 
 

REFERENCES 
 

[1] B. C. Sakiadis, “Boundary Layer Behavior on Continuous Solid 
Surfaces: I. Boundary Layer Equations for Two Dimensional and 
Axisymmetric Flow,” AICHE Journal. vol. 7, No. 1, pp. 26-28, 
March. 1961.  

[2] B. C. Sakiadis, “Boundary Layer Behavior on Continuous Solid 
Surfaces: II. Boundary Layer on a Continuous Flat Surface,” AICHE 
Journal. vol. 7, pp. 221-225, 1961. 

[3] L. E. Erickson, L. T. Fan and V. G. Fax, “Heat and mass transfer on a 
moving continuous flat plate with suction or blowing,” 
Ind.Engrg.Chem.Fund , vol. 5, pp. 19-25, 1966. 

 [4] L. J. Crane, “Flow past a stretching plate,” Z. Angew. Mat. Phy., vol. 
21, pp. 645–647, 1970. 

[5] D. Rollins, K. Vajravelu, “Heat transfer in a second-order fluid over a 
continuous stretching surface,” Acta Mech., vol. 89, pp. 167–178, 
1991. 

[6] K. Vajravelu and D. Rollins, “Heat transfer in a viscoelastic fluid over a 
stretching sheet, J.Math.Anal.Appl” vol. 158, pp. 241-255, 1991. 

[7] M. Subhas Abel, Mahantesh M. Nandeppanavar, “Heat transfer in MHD 
viscoelastic      boundary      layer flow over a stretching sheet with 
non-uniform heat source/sink,” Commun      Nonlinear Sci      Numer 
Simulat., vol. 14, pp. 2120-2131, 2009. 

[8] R. Cortell, “A note on flow and heat transfer of a viscoelastic fluid over 
a stretching sheet,”     Internat. J. Non-Linear Mech., vol. 41, pp.  78–
85, 2005. 

[9] K. R.  Rajagopal, T. Y. Na, and A. S. Gupta, “Flow of a viscoelastic 
fluid over a stretching sheet,” Rheologica Acta., vol. 23, pp. 213–215 
(1984). 

[10] B. S. Dandapat and A. S. Gupta, “Flow and heat transfer in a 
viscoelastic fluid over a stretching sheet,”International Journal of 
Non-Linear Mechanics., vol. 24,  pp. 215–219 ,1989. 

[11] R. Cortell, “Similarity solutions for flow and heat transfer of a 
viscoelastic fluid over a stretching sheet,” International Journal of 
Non-Linear Mechanics. vol. 29, pp. 155–161, 1994. 

[12] D. W. Beard and K. Walters, Elastico-viscous boundary layer flows, in 
Proc.CambridgePhilos. Soc, 1964, paper 60 Ž, p 667_674. 

[13] Emad M.Abo-Eldahab, Mohamed A. El Aziz, ”Blowing/suction effect 
on hydro magnetic heat transfer by mixed convection from an inclined 
continuously stretching surface with internal heat 
generation/absorption,” Int. J. Therm. Sci., Vol.43, pp.709-719, 2004. 

[14] K. R. Rajagopal, T. Y. Na and A.S. Gupta, “Flow of visco-elastic fluid 
over a stretching sheet.” Rheol Acta ., vol.23, pp. 213-215, 1984. 

[15] R. E. Bellman and R. E.Kalaba, Quasilinearisation and nonlinear  
boundary value problems, American Elsevier, Newyark, 1965. 

 
 
 

    
 
V.DHANALAXMI was born in Ahdhra Pradesh, India in 1966.She 
received M,Sc degree from R.E.C, Warangal, A.P., India, M.Phil,  M.Ed 
degrees from Osmania University, Hyderabad, A.P., India. M.Tech in 
Computer Sciecnce from J.N.T.U, Hyderabad, India. 
     Since May,2007, she has been an Assistant Professor at the Department 
of Mathematics, Osmania University,Hyderabad,A.P.,India.  
    She has been working on viscoelastic fluid flows towards Ph.D 
programme in Applied Mathematics. 




