
  

Abstract — We studied a genetic algorithm-based approach for 

a multi-objective cargo routing application. Apart from the 

traditional goal of cost minimization with a time constraint, we 

also explored the problem of green logistics, where carbon 

dioxide emission levels are to be treated as both an additional 

constraint as well as a secondary objective of the problem. We 

also implemented an adapted Martins’ algorithm that is able to 

produce Pareto optimal solutions, despite its longer running 

time compared to the GA-based approach, and compared the 

results with our approach. The results of the simulation 

suggested that our algorithm was able to achieve Pareto 

optimality in over 90% of the problem instances, with good 

system running time compared with Martins’ algorithm. 

 
Index Terms — Green logistics, genetic algorithm, 

multi-objective optimization, intermodal cargo routing 

I. INTRODUCTION 

 

he concept of green logistics [1] has been gaining attention 

in the past few years. In addition to focusing on the single 

goal of cost minimization, green logistics also takes into 

account the environmental impact of the logistics process, 

typically in terms of carbon dioxide emission levels. Indeed, 

according to a study conducted in 2009, road transportation 

accounted for 11% of the increase in global temperatures in the 

year 2000, and a further 4% was contributed by air 

transportation [2]. 

In this paper, we study the problem from the perspective of 

the freight forwarding industry. Freight forwarders are 

third-party logistics companies that provide end-to-end cargo 

transportation arrangement services typically to overseas 

destinations. In freight forwarding, planning cargo routes is a 

time-consuming task based on manual planning using ad-hoc 

rules. This is particularity true for problems involving multiple 

modes of transportation (e.g., by air, sea, or train). Typically, 

cargo routing is an optimization task with multiple constraints. 

For instance, time constraints specify that an item of cargo must 

arrive at the destination before a certain target delivery date. 

Capacity constraints require that the weight and dimensions of 

the item of cargo not exceed the capacity of the cargo container 

at each leg of the journey. Because of the complexity of the 

problem, it is often difficult for a planner to verify whether any 

 
 

better solution exists.  

While many studies have already been conducted on topics 

relating to route optimization, the problem of green logistics is 

relatively new and it is unique in a few areas. First, green 

logistics is a multi-objective problem. Traditional logistics 

problems are modeled typically as a single objective 

optimization problem, with the goal of minimizing the cost of 

carrying some cargo items to a destination, while satisfying 

certain constraints. Green logistics differs in that it adds further 

constraints and objectives to the problem. In our formulation of 

the problem, the CO2 emissions level constitutes both an 

additional objective, which we want to minimize, as well as an 

additional constraint, where it cannot exceed a certain 

user-defined threshold limit.  

Second, cargo routing in freight forwarding is an intermodal 

route optimization problem [3][4]. Many existing studies focus 

on the routing or scheduling of a single form of transportation 

(e.g., the vehicle routing problem, the optimization of public 

transit routes [5][6]). The planning of routing in freight 

forwarding, on the other hand, typically involves multiple 

modes of transport (vehicles, trains, air and sea transport), each 

with its own set of schedules and constraints. 

In this paper, we propose a genetic algorithm-based approach 

to tackle this problem. For comparison, we also adapted and 

implemented Martins’ label-setting algorithm [8], which is a 

well-known graph-searching algorithm for listing all Pareto 

optimal solutions in multiple objective problems [9]. We show 

by experiments that the GA-based approach outperforms 

Martins’ algorithm in term of computational time, while being 

comparable in terms of the optimality of the solutions. 

The rest of this paper is organized as follows. Section II 

discusses some related works. Section III provides a formal 

definition of the problem. Section IV presents our GA-based 

algorithm. Section V provides an overview of the adapted 

Martins’ algorithm. Section VI describes the results of the 

experiment. Section VII discusses the issue of the tradeoff in 

optimality and running efficiency from a freight forwarder’s 

perspective. Section VIII gives the conclusion.  

II. RELATED WORKS  

 

Although there have been relatively few studies on the 

multi-objective and multi-mode green cargo route optimization 

problem, there are a large number of works on the more general 

problem of multi-objective path optimization [7]. Examples 

include dynamic programming approaches [10][11], genetic 

algorithm-based approaches (e.g., for vehicle routing [12] and 

transportation planning [13]), and an ant colony algorithm- 
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based approach [14]. These approaches target specific single 

transportation mode applications, and cannot be directly applied 

to our problem. 

 There are also works on intermodal international cargo 

routing optimizations. For instance, a dynamic programming 

approach is proposed in [15], a Lagrangian relaxation-based 

method is discussed in [16], and the problem is studied using 

linear programming relaxation in [17]. These works are similar 

to ours in that multi-transportation mode routing problems are 

considered. However, our current work extends the problem 

further by including the reduction of carbon emission levels as 

an additional objective and constraint. 

 In this study, we also implemented Martins’ label-setting 

algorithm [7] as a benchmark for our algorithm. Martins’ 

algorithm is a generalization of the well-known Dijkstra’s 

algorithm to multi-objective problems. Like Dijkstra’s 

algorithm, Martins’ algorithm can be used to list all Pareto 

optimal solutions. Our adaptation of Martins’ algorithm to 

address the multi-mode green logistics cargo routing problem is 

described in Section 5. 

III. PROBLEM DEFINITION 

 

The multi-mode green logistics cargo routing (MGCR) problem 

is defined as follows. Let tstart and tend denote the starting and 

ending time of the problem being studied (i.e., a cargo 

shipment’s earliest departure time and the target delivery 

deadline). Let G =(V, E) be a directed graph of the cargo 

transportation network, where V represents a set of  

transportation nodes and E represents the set of scheduled 

transportation links between the nodes (e.g., scheduled flights 

and train services). A cargo shipment of weight w is to be sent 

from a source node s V to a destination node .t V For each 

transportation link e E , we define start(e) and end(e) as the 

starting node and ending node of the respective link, dep_t(e) 

and arr_t(e)  as  its estimated time of departure and arrival, and  

carbon(e) as its estimated level of additional CO2 emissions per 

kilogram of cargo payload. Each link also has a remaining 

weight capacity of cap(e) and a per kilogram transportation fee 

of cost(e). The number of nodes is denoted by N. 

For each problem, we need to compute one or more 

transportation paths from the origin to the destination, where 

each path 1( , , | )k ip e e e E  is an ordered set of 

transportation links satisfying the following constraints: 

 

1( )  and ( )nstart e s end e t    (1) 

1 1( , ) | ( ),  ( ) ( )i i i ie e p i length p end e start e        (2) 

,  < _ ( ) < _ ( ) < start ende E t dep t e arr t e t     (3) 
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Constraints (1) and (2) are self-explanatory. Constraints (3) and 

(4) deal with the time constraint for the problem and for each 

transportation link, respectively. Constraint (5) is the remaining 

weight capacity constraint. In freight forwarding, a forwarder 

needs to reserve cargo spaces from airlines, shipping companies, 

or freight transportation companies. The weight capacity is the 

amount of the remaining unused cargo weight (measured in kg) 

pre-reserved by the forwarder in each link. Constraint (6) is the 

permitted total CO2 emissions limit specified by a forwarder for 

the cargo item. A valid solution is a transportation path that 

satisfies all of the above constraints. 

Regarding the objective of the problem, there are two 

conflicting objectives for this problem. The primary objective 

requires the route planner to find the lowest-cost valid solution 

for a given shipment: 

 

Definition 1 (Primary Objective of the MGCR Problem) Given 

an MGCR problem, the primary objective is to compute a valid 

solution 1* ( , , | )n ip e e e E  such that the total cost 

*
( *) ( )

e p
cost p w cost e


  is minimized.           ■   

 

Apart from cost minimization, the second objective of MGCR is 

to minimize the total amount of carbon dioxide emissions: 

  

Definition 2 (Secondary Objective of the MGCR Problem) 

Given an MGCR problem, the secondary objective is to 

compute a valid solution 1* ( , , | )n ip e e e E  such that the 

total level of carbon dioxide emissions 

*
( *) ( )

e p
carbon p w carbon e


  is minimized.          ■   

 

Note that the carbon emissions level serves as both an 

additional constraint and a secondary objective in an MGCR 

problem. 

Thus, MGCR is a multi-objective problem by nature. In order 

to compare two or more solutions in multi-objective problems, 

many researchers employ the concept of Pareto optimality [9]. 

Briefly, given a number of solution criteria, we say a solution X 

is Paretoly dominated by another solution Y if Y is better than X 

in at least one criterion, while being not worse in all other 

 
 
Fig. 1. A simple transportation network between a source node s and a 

destination node t.  The values marked on each link represent its 

transportation cost and its CO2 emissions level,  respectively. Note that 

there can be more than one link between a pair of nodes. 



  

criteria. And we say that a solution is Pareto optimal if it is not 

Paretoly dominated. 

 

Definition 3 (Pareto Optimality in the MGCR Problem):  Given 

two valid solutions 1( , , )kp e e  and  1( , , )kp e e    of  an 

MGCR problem, we say that  p
 
is Paretoly dominated by p  

 if ( ( ) ( )  ( ) ( ))carbon p carbon p cost p cost p      or 

( ( ) ( )  ( ) ( ))cost p cost p carbon p carbon p    . Furthermore, 

we say that a valid solution p* is Pareto optimal if it is not 

Paretoly dominated.                  ■ 

      

These criteria will be used in evaluating the GA-based and the 

adapted Martins’ algorithm, which are presented in the next two 

sections. 

 

IV. A GA-BASED ALGORITHM FOR THE MGCR PROBLEM 

 

A. Representation 

 

We have implemented a GA-based solution for the MGCR 

problem, described as follows. In our system, an N N  array 

based data structure is used for storing all transportation links 

available within the problem time frame between each pair of 

nodes 1 2( , )n V n V  . Each element of this two-dimensional 

array contains an arraylist of all scheduled links e between that 

pair of nodes so that 1( )start e n and 2( )end e n . In our 

GA-based solution, each chromosome contains an order set of 

transportation links 1( , , | )n ic e e e E  from the origin to the 

destination, where each set represents a temporary solution with 

each gene in a chromosome representing a transportation link. 

Note that during the solution-searching phase, each 

chromosome may or may not represent a valid solution. In 

particular, constraints (2), (4), and (6) do not need to be satisfied, 

although these invalid solutions will have very low fitness 

scores. 

 

B. The Genetic Algorithm 

 

As in other GA-based approaches, our implementation contains 

procedures for chromosome initiation, cross-over, and 

mutation. The cross-over method we used is a special one-point 

cross-over. Three types of mutations are defined, namely 

chromosome shrinking, chromosome extension, and gene 

transformation. These methods are described as follows. 

 

C. Chromosome initiation 

 

The initial set of chromosomes is randomly populated with a 

valid transportation path using a multi-round bi-directional 

generation algorithm, to be described as follows. In each round 

two temporary node lists, L1 and L2, are generated, initially 

containing the origin node and the destination node, 

respectively. In each step, both lists are expanded by appending 

a randomly selected transportation link e originating from the 

last node on the list. A round ends when the new link that is to be 

added on either list already exists on the other list. In this case, a 

path is generated accordingly (via the common link) and a new 

chromosome is initialized according to the path. A round can 

also end after a pre-defined number of steps is reached. The 

process is repeated until the required number of chromosomes is 

generated. 

 

D. Chromosome selection and cross-over 

 

The chromosomes are sorted in descending fitness values, so 

that the ones with higher fitness have a higher probability of 

being selected for a cross-over. The fitness of a chromosome 

1( , , )nc e e is given by: 
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where Validity() is a function that returns 1 if c represents a 

valid solution, and returns 0 otherwise. wcost, wcarbon, wtime, and  

wlength are the fitness weights for shipment cost, carbon 

emissions level, transportation time, and path length, 

respectively. MAX_CARBON and MAX_LENGTH are the 

user-defined upper thresholds for the amount of carbon 

emissions allowed and the number of nodes in the path. 

The cross-over method that we use is a specially designed 

one-point cross-over, described as follows. Given two parent 

chromosomes 1 1 1

1( , , )mc e e and 2 2 2

1( , , )nc e e selected for 

a cross-over, if there exist any genes 1 1

ie c and 2 2

je c , , 1i j  , 

i m and j n , such that 1 2( ) ( )i jend e end e , then two new 

chromosomes are formed:  

 

1) 12 1 1 2 2

1 1( , , , , , )i j nc e e e e  

2) 21 2 2 1 1

1 1( , , , , , )j i ic e e e e  

 

Ties are broken randomly if there are more than one pair of links 

with a common destination. A random node on each list is 

chosen if no common destination exists.   

For each new generation, Knew new chromosomes will be 

generated, and they will be inserted into the next generation 

together with the  (K - Knew) fittest old chromosomes, where K is 

the total number of chromosomes. 

 

E. Mutation 

 

After a cross-over, all chromosomes will be subjected to a 

process of mutation, with a mutation probability  . One of the 

following three types of mutation operations will be executed 

with equal probability: 

 



  

1. Chromosome extension: This operation randomly replaces 

a gene with two other genes in a chromosome. 

2. Chromosome shrinking This operation involves the 

replacement of two randomly selected consecutive genes 

with one in a chromosome.  

3. Gene transformation This operation randomly replaces a 

selected gene with another gene in a chromosome. 

 

Our algorithm terminates after a preset number of generations or 

when no new chromosomes can be generated. 

 

F. System parameters and flexible population size strategy 

 

The values of the various parameters of our system are 

determined experimentally and are given in Table 1. These 

values are chosen for a good balance between system running 

time and optimality in produced solutions. Note that the 

MAX_CARBON and MAX_LENGTH are problem-specific 

variables based on user inputs, not system parameters.   

In order to cater to problems of different sizes, we also 

employ a flexible population size strategy for determining the 

number of chromosomes in each instance. The details of this 

strategy are also listed in Table 1 (where |E| denotes the number 

of transportation links in the problem instance). 

 

V. ADAPTED MARTINS’ ALGORITHM 

Apart from the GA-based approach, we also adapted Martins’ 

label-setting algorithm [7] for the MGCR problem.  Martins’ 

algorithm is a generalization of the well-known Dijkstra’s 

shortest path algorithm for multi-objective problems (i.e., with 

multiple decision criteria). Martins’, as in Dijkstra’s,  maintains 

lists of two types of labels, namely permanent labels and 

temporary labels. Each label is associated with a list of 

aggregated costs, one for each criterion. Initially, the only 

permanent labels are at the node of origin with the costs set to 

zero for all criteria, while all other nodes are temporary with all 

costs set to infinity. In each iteration, the temporary labels that 

are neighbors of the last permanent nodes are updated with the 

new costs via the respective link, and the label with the lowest 

overall costs (in the lexicographic order of all criteria) is 

selected and made permanent. Once selected, the temporary 

label is converted to a permanent label and the process is 

repeated. Our adapted version of the algorithm differs from the 

original version in that in each iteration there is additional 

checking for i) departure and arrival time, and ii) the 

accumulated CO2 emissions level, so that any paths that violate 

constraints (3) and (5) are pruned away during the search. 

 

VI. SIMULATION RESULTS 

We conducted a series of simulation experiments to study the 

performance of our GA-based algorithm with the adapted 

Martins’ algorithm as the benchmark. The mechanisms were 

tested comprehensively in a total of over 2000 scenarios, with 

the number of nodes ranging from 100 to 200, the number of 

links per node ranging from 100 to 200, and with different 

parameters for the carbon emissions threshold limit, cost, and 

allowed shipment time. For each scenario, 50 problem instances 

were randomly generated and were processed separately by the 

two algorithms. Thus, a total of 84000 test cases were tested and, 

in each case, the costs, Pareto optimality, and system running 

times were recorded. The experiment was performed using a 

high-performance computer with 6G of RAM. The parameters 

used by our GA algorithm are listed in Table 1. 

The results are shown in Figs. 2 to 4. As Martins’ algorithm is 

designed to list every Pareto optimal solution, the focus of our 

comparison is in terms of: i) the number GA solutions that are 

Pareto optimal (Fig. 2), ii) the average cost of the two 

algorithms (Fig. 3), and iii) their average running times (Fig. 4). 

 From the results, we see that the quality of the solutions 

produced by the GA-based algorithm is close to that of the 

adapted Martins’ algorithm. In terms of Pareto optimality, the 

GA-based approach was able to produce Pareto optimal results 

in over 90% of the 84000 test cases (Fig. 2). And, as expected, 

the results were particularly good for larger problem sizes with 

200 or more nodes, where 98% of the solutions that were 

obtained were Pareto optimal.  

We also compared the total cost of the solutions produced by 

the two algorithms. The results are listed in Fig. 3 (presented in 

terms of the cost of the GA solution divided by the cost of the 

lowest-cost Martins’ solution). From the figures, we see that the 

average obtained cost of GA only slightly exceeded the best cost 

obtained by Martins’ – by less than 2%. Once again, the relative 

performance of the GA-based approach improved with the size 

of the problem. For instance, its average solution cost for 200 

node problems exceeded the best cost obtained by Martins’ 

approach by only 1.2%.   

Once again, recall that Martins’ algorithm is guaranteed to 

produce the optimal solution by definition, at the expense of 

system running time, figures for which are presented in Fig. 4. 

From the figure, we see that the GA-based algorithm clearly 

outperformed Martins’ in all cases in terms of system running 

time.  

Table 1. Parameters used by the GA-based algorithm 

Number of chromosomes (K) 80 if  140E    

100 if  140 180E   

250 if  180 E  

Mutation rate (  ) 0.05 

Number of generations 50 

Weight of cost in fitness (Wcost) 1 

Weight of carbon emissions in fitness 

(Wcarbon) 

0.00001 

Weight of time in fitness (Wtime) 0.0000005 

Weight of path length in fitness 

(Wlength) 

0.0000025 

 



  

VII. DISCUSSION  

The above simulation experiment evaluated the GA-based 

approach quantitatively. As in many cases, we see that there is a 

small trade-off between solution optimality and system running 

time, even though the sacrifice in solution optimality is small 

(less than 2% in terms of solution cost in the simulation).  

To understand why such a trade-off can be critical in a 

decision-support system for cargo routing, it is important to note 

that freight forwarding is a complex process that can be affected 

by a number of additional factors. This includes, for example, 

the reliability of the transportation links and the level of the 

relationship between the forwarder and the transportation 

companies. More importantly, some information regarding the 

availability of cargo spaces and the cost of each transportation 

link may not be available until the time that the route is being 

planned, as these may depend on the results of real-time 

negotiations between the forwarder and the airlines and 

shipping companies (e.g., for the ad-hoc booking of extra cargo 

space). As a result of the dynamic nature of the planning process, 

        

                      
 

Fig. 2. Comparison of GA  and Adapted Martins’ algorithm -  Pareto optimality 

 

                      
 

Fig. 3. Comparison of GA  and Adapted Martins’ algorithm -  average solution cost 

 

                      
 

Fig. 4. Comparison of GA and Adapted Martins’ algorithm -  average running time 

 

 

   

 

 

    



  

interactive optimization solutions, which allow the user to take 

part in the decision process, are preferred. In such systems, a 

short system running time with good solution quality, rather 

than a longer running time with perfect solutions, is crucial.  

 

VIII. CONCLUSION 

The multi-mode green logistics cargo routing (MGCR) problem 

is a special multi-objective cargo routing problem.  Apart from 

the traditional objective of cost minimization, MGCR also 

considers carbon dioxide emission levels as both an additional 

constraint as well as a secondary objective. In this paper, we 

explored a genetic algorithm-based approach for MGCR and 

compared it with an adapted Martins’ algorithm that is 

guaranteed to produce Pareto optimal solutions. The results 

suggest that the quality of the solutions obtained by the 

GA-based approach is very close to that obtained by Martins’ 

approach in terms of Pareto optimality and cost, but with a 

significant reduction in system running time. The results suggest 

that the genetic algorithm could be a viable method for solving 

the MGCR problem. 
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