
Specification Analysis of Transactional Memory
using ITL and AnaTempura

Amin El-kustaban, Ben Moszkowski and Antonio Cau

Abstract—Transactional memory (TM) is a promising lock-
free technique that offers a high-level abstract parallel pro-
gramming model for future chip multiprocessor (CMP) systems.
Moreover it adapts the popular well established paradigm
of transaction, thus providing a general and flexible way of
allowing programs to atomically read and modify disparate
memory locations as a single operation. In this paper, we
propose a general and executable specification model for an
abstract TM with validation for various correctness conditions
of concurrent transactions. This model is constructed within a
flexible transition framework that allows the testing of a TM
model with animation. Interval Temporal Logic (ITL) and its
programming language subset AnaTempura are used to build,
execute, and validate this model. To demonstrate this work, we
selected a queue example to be executed and illustrated with
animation.

Index Terms—transactional memory, validation, formal spec-
ification, interval temporal logic.

I. INTRODUCTION

The primary challenge in a system which runs multiple
processes, is how to control access to shared data in order
to ensure correct behaviour and data consistency. Memory
synchronisation for dealing with this challenge can involve
lock-based, lock-free or wait-free techniques. However, us-
ing locks can lead to problems with deadlock, convoying
and priority inversion [1]. Although lock-free and wait-free
techniques could be used to avoid the problems with locks,
at the present they are still complex to use and compose [2],
[3].

Transactional memory (TM) is a promising lock-free
technique that can avoid lock-based problems and simplify
parallel programming by transferring the burden of correct
synchronisation from a programmer to a compiler and/or
hardware. Moreover, TM offers a method that enables parts
of a program to execute with atomicity and isolation, inde-
pendently of other, concurrently executing tasks [4].

There are several recent proposals for implementing the
TM in hardware [1], [5], [6], software and a hybrid hardware-
software combination [7], [8]. However, a formal underpin-
ning encompassing specification, design, and implementation
of TM still needs much effort. In addition, the formal
verification of any newly suggested TM implementation is
required, in order to check that the new proposed ideas satisfy
the correctness conditions of TM [2], [9]. Some researchers
have proposed different formal frameworks for proving the
safety of a TM implementation, but these are still difficult
to understand and use [10], [11].

In this paper, we propose a general and executable formal
TM model based on the ITL specification of an abstract

A. El-kustaban, B. Moszkowski and A. Cau are with Software Technology
Research Laboratory, De Montfort University, England, e-mail: {amin,
benm, acau}@dmu.ac.uk.

TM model, which will appear in another concurrent work,
to fully validate the correctness of TM systems . We firstly
present an executable specification of the abstract TM model
and its safety conditions. Then, we test the correctness of
the proposed TM model by executing a common concurrent
data structure example on this model with animation (using
(Ana)Tempura, a part of the ITL Workbench). We are not
dealing here with the formal verification of properties which
requires that all possible behaviours of system satisfy the
properties. We are only concerned with validating properties
which requires that only interesting behaviours satisfy the
properties. The main aspects of this proposed model are the
correctness conditions such as read consistency and strict
serialisability, conflict detections policies and arbitration
functions. This model and its aspects are based on well-
known published papers in generalizing the correctness of
TM such as [10], [12], [13].

The paper is organised as follows. Related work is dis-
cussed in Sect. II. A brief description of Interval Temporal
Logic (ITL) is given in Sect. III. We then introduce in Sect.
IV a TM computational model. Several specifications of
standard correctness conditions of TM are illustrated in Sect.
V. A validation of the abstract TM correctness is given in
Sec.VI. We conclude with some remarks in Sec. VIII.

II. RELATED WORK

Earlier work on the TM’s formalisation and verification
can be divided into the following two parts:

• Pure semantics for describing general correctness of the
TM systems with some illustrations for special proper-
ties (e.g. sequential specifications and opacity). Scott’s
paper [12] was the first to offer sequential specifications
that could to capture many semantics of transactional
memory that were defined on the conventional notion
of the sequential histories. He presents practical poli-
cies for detecting conflicts and arbitration functions for
ensuring the progress of transactions. Guerraoui and
Kapalka[13] present an opacity as a safety property
for TM implementations. They extend the notion of
serialisability to include the concept that the aborted
transactions should not access an inconsistent state
of the memory, which can be doomed in Software
Transactional Memory (STM) (due to infinite loops, or
exceptions).

• A compositional method for defining the TM semantics
and proving that a transactional memory implementation
satisfies its specifications. Cohen et al. [10] and Tasiran
[14] introduce a methodology, supported by tools, to
formally verify the correctness of a TM implementation.
They use an automated theorem prover to obtain me-
chanical proofs. Guerraoui et al.[15] and Emmi et al[16]

propose an algorithm capable of verifying that TM im-
plementations satisfy strict serialisability with respect to
opacity as a safety condition. These researches (except
Cohen) focus only on the STM implementations and
neglect the hybrid and hardware transactional memory.

III. INTERVAL TEMPORAL LOGIC

Interval Temporal Logic (ITL) is an important temporal
logic for both propositional and first order logical reasoning
about intervals of time. ITL is useful in the formal description
of linear discrete systems for several reasons. It is a flexible
notation for discrete linear order. Also, ITL has capability
of handling both sequential and parallel composition unlike
most temporal logic. A powerful and extensible specification
framework is also offered by ITL for reasoning about proper-
ties involving safety, liveness and projected time. In addition,
an executable with animation framework for experimenting
and developing ITL specification is provided by Tempura
[17], [18].

A. Syntax and Semantics

The syntax of ITL (including integer expressions and first
order formulae) is defined in Table I, where: z denotes an
integer value, a is a static (global) variable which do not vary
over time, A is a state variable which can change within an
interval, v a static or state variable, g is a function symbol,
h is a predicate symbol, and f is a formula.

TABLE I
SYNTAX OF ITL

Expressions
exp ::= z | a | A | g(exp1, . . . , expn) | ©A | finA
Formulae
f ::= h(exp1, . . . , expn) | ¬f | f1 ∧ f2 | ∀v · f | skip | f1; f2 | f∗

Finite and infinite sequence of states can be represented
in ITL using an interval σ, which is the key notion of ITL.
An interval σ is divided into a finite or infinite sequence of
one or more states σ0σ1 Where each state σi maps each
variable to some value. The length, |σ|, of an interval σ is
equal to one less than the number of states in the interval.

The informal semantics of the various useful ITL con-
structs and some derived constructs are defined in Table II
and as follows:

• ©A: value of A in the next state.
• finA: value of A in the last state.
• skip : unit interval (length 1).
• f1; f2 : holds if the interval can be decomposed

(”chopped”) into a prefix and suffix interval, such that
f1 holds over the prefix and f2 over the suffix, or if the
interval is infinite and f1 holds for that interval.

• f∗ : holds if the interval is decomposable into a finite
number of intervals such that for each of them f holds,
or the interval is infinite and can be decomposed into
an infinite number of finite intervals for which f holds.

IV. ABSTRACT TM MODEL

In this section we present an abstract model to specify
TM similar to [12], [10], [13]. The main difference is that

TABLE II
ITL DERIVED CONSTRUCTS

true =̂ 0 = 0 True value.
false =̂ ¬true False value.
f1 ∨ f2 =̂ ¬(¬f1 ∧ f2) Or.
f1 ⊃ f2 =̂ ¬f1 ∨ f2 Implies.
∃v.f =̂ ¬∀v.¬f Exists.
inf =̂ true; false Infinite interval.
finite =̂ ¬inf Finite interval.
© f =̂ skip; f Next.
more =̂ © true ≥2 states .
3 f =̂ finite; f Eventually.
2 f =̂ ¬3¬f Henceforth.
3a f =̂ 3(f ; true) Some subinterval.
2a f =̂ ¬3a ¬f All subintervals.
3m f =̂ 3(more ∧ f) Some nonempty subinterval.
2m f =̂ 2(more ⊃ f) All nonempty subintervals.
3f f =̂ (f ∧ finite); true Some finite prefix.
2f f =̂ ¬3f ¬f All finite prefix.
fin f =̂ 2(empty ⊃ f) Final state.
halt f =̂ 2(empty ≡ f) Exactly in the final state.

we represent the history of events as a time interval and each
sequence of events as a subinterval. This simplifies dealing
with various TM correctness properties. For example, we can
prove certain properties which were just assumed in work by
others [10].

A. Processes and Transactions
An interval σ is (in)finite sequence of one or more states

s0, s1, s2, ..., sn. Each state has concurrent observable events
Ei

j and each event belongs to process j and transaction i.
A sequence of events forms a transaction T that is issued
sequentially by a process P . A process Pj cannot invoke a
new transaction T i1

j until the preceding transaction T i0
j ter-

minates. Also, a transaction T i
j , which has a unique identifier

id(i, j) (that will help us for capturing the properties of each
transaction that invokes by the same process), cannot invoke
a next operation (©Ei

j) until the previous operation Ei
j gets

a response and cannot invoke an operation after it gets a
commit or abort response.

B. Events and Objects

The atomic read and write events of this model can
access a set of base objects obj. An object is a high-level
representation of memory and initially all values of these
objects are uninitialised and hence equal to ⊥. An event is
either an invocation by a transaction or response as follows:

• Rt
p(x): a read operation, by transaction t which is issued

by process p, responds with the current value u of object
x as R̂t

p(x, u).
• W t

p(y, u
′): a write value u′ operation to object y by

transaction t which is issued by process p, responds
with ok .

• tryComt
p : a commit request, by transaction t which is

issued by process p. If the attempt to commit succeeds,
the response is comt

p(or the notation ⊕t
p) and it changes

the write set to become permanent. If it fails the
response is aborttp(or the notation ⊗t

p) and it discards
all changes to the write set.

State variables:
Pp : Process status {free, busy} ; where p: (0 ≤ p < num proc); initially free
T t
p : Transaction status {idle, active, doomed, finished}; where t: (0 ≤ t < num tran); initially idle
Et

p : An Array of list recording each event{noev , r, w, ok, tryCom,⊕,⊗}; initially noev
Memobj : Persistent memory (0 ≤ obj < num obj); initially ⊥
Transaction operations:

TranInvOp(p, t, op, ε, εr) =̂
(skip
∧ if (Pp = free) ∧ (T t

p = idle) TranResOp(p, t) =̂
then (MakeProBusy(p) (skip

∧AddEv(p, t, op) ∧ if Et
p = w

∧ ConflictDetRes(p, t, ε, εr)) then AddEv(p, t, ok)
else (stable(Pp) ∧AddEv(p, t, op) else if Et

p = r
∧ if T t

p = active then (u = V alidRead(p, t)
then ConflictDetRes(p, t, ε, εr) ∧AddEv(p, t, u))
else (stable(Et

p) ∧ stable(T t
p)))) else stable(Et

p))

TranInvEnd(p, t, op, ε, εr) =̂ TranResEnd(p, t) =̂
(skip ∧AddEv(p, t, op) (skip
∧ if (op = tryCom ∧ T t

p = active) ∧ if (T t
p = doomed)

then ConflictDetRes(p, t, ε, εr) then AbortTran(p, t)
else ©T t

p = doomed) else CommitTran(p, t))

CommitTran(p, t) =̂ AbortTran(p, t) =̂
(©T t

p = finished (©T t
p = finished

∧AddEv(p, t,⊕) ∧MakeProFree(p)
∧MakeProFree(p) ∧AddEv(p, t,⊗))
∧ UpdateMemory())

MakeProBusy(p) =̂ MakeProFree(p) =̂
(©Pp = busy) (©Pp = free ∧ ©FlushEvList(p))

Fig. 1. Core part of TM executable specification

C. Executable Specification of TM

To ensure the validity of our proposed TM abstract model
tmspec , we build an executable specification for the tmspec

by refining the high-level TM abstract specification written
in ITL into a set of Tempura (an executable subset of ITL)
modules using the refinement rules in [17], [18]. Then, we
simulate and analyse this model with the TM properties using
AnaTempura .

As shown in Fig.1, the events list of the tmspec are
categorised into two parts: firstly TranInvOp(), for read
and write invocation of transactional operations, and
TranResOp(), for its response. Secondly, TranInvEnd(), for
tryComit and tryAbort invocation of ending a transaction,
and TranResEnd() for its response. In fact, this categorisation
helps to ensure that each invocation event is followed by a
response and each active transaction is eventually finished.
Now, the sequence of invocation and response events that
form transaction Ti and are issued by process Pj can be
modelled using the ITL as follows:

T i
j =̂ ((TranInvOp(j , i); TranResOp(j , i))∗;

TranInvEnd(j , i); TranResEnd(j , i))

So, the sequence of transactions and the complete
executable specification of the abstract TM model tmspec is

tmspec =̂
∧n

j=0 Pj

Pj =̂ Pp = free ∧ T t
p = idle ∧ E t

p = noev
∧ ((TranInvOp(j , i); TranResOp(j , i))∗;

TranInvEnd(j , i); TranResEnd(j , i)) ∗

The states variables are a set of processes with state
values {free, busy}, a set of transactions with states val-
ues {idle, active, doomed, finished}, a set of events with

possible values {noev, r, w, ok, tryCom,⊕,⊗} and a shared
memory. The AddEv() works as an auxiliary function to
record each operation op and its response in their process
p event list Et

p. This helps to check read consistency and
detect conflicts between the concurrent active list at run time.
Also, it stores the object and its value if op is write, read
or response for read. The function FlushEvList() clears the
event list of the process p after finishing the execution of
transaction t belonging to p and before initialising a new
transaction.

The critical parts that perceive the safety properties of
this model are the conflict detection and resolution formula
ConflictDetRes(), that uses one of conflict detection types
which are explained in detail in the next section, and the
response actions of read operation ValidRead(). The formula
ValidRead(p, t) assigns an object x in the read response
operation R̂t

p(x, u) to value u (initially ⊥) that equals to
one of the three followings choices: firstly, it equals to u′ if
there exists an operation W t

p(x, u
′) such that 1) Rt

p(x) and
W t

p(x) operations are issued by transaction t and process
p, 2) W t

p(x) precedes Rt
p(x) where their order satisfies

(W t
p(x)∧finRt

p(x)), and 3) no W t
p(x) in between, in order

to preserve local consistency. Secondly, it equals to ⊥ if there
is no local write and there exists an operation R̂t

p(y, v) such
that 1) Rt

p(y) and Rt
p(x) operations are issued by transaction

t and process p, 2) Rt
p(y) precedes Rt

p(x) where their order
satisfies (Rt

p(y) ∧ finRt
p(x)), and 3) a conflict is detected

with other concurrent transactions. This prevents the later
read operation Rt

p(x) from accessing an inconsistent state.
Finally, it equals to u′′ if there are no local write and no
conflict with other transactions is detected. The value u′′ is
equal to the value of location object x in the global memory;
this preserves global consistency.

TABLE III
FORMAL TM SAFETY PROPERTIES

ConflictFree(ε, εr) ≡ ¬3a (ConflictDetection(ε) ⊃ ¬ConflictResolution(εr))

where ε ≡ εl ∨ εe ∨ εm
εr ≡ εre ∨ εrl
εl ≡ fin(tryComs

q) ∧ (3W s
q (y) ∧3Rt

p(y) ∧ fin(T t
p = active))

εe ≡ εl∨ ((fin(Rs
q(y)) ∧ (3W t

p(y) ∧ fin(T t
p = active))

)
∨
(
fin(W t

p(y)) ∧ (3Rs
q(y) ∧ fin(T s

q = active))
))

εm ≡ εl∨ ((fin(W t
p(y)) ∧ (3(Rs

q(y) ∧ ©3W s
q (y)) ∧ fin(T s

q = active))
)

∨
(
fin(W s

q (y)) ∧ (3(Rs
q(y) ∧ ©3W t

p(y)) ∧ fin(T t
p = active))

))
εre ≡ fin⊗t

p ∧(3T t
p = active; 3T s

q = idle)

εrl ≡ fin⊗t
p ∧(¬3 tryComt

p ∧3 tryComs
q)

Read consistency
Local ≡ ¬3a (ϕ ⊃ u 6= u′)

ϕ ≡
(
(W t

p(x, u
′) ∧ skip); 2(¬W t

p(x)); (R̂t
p(x, u) ∧ empty)

)
Doomed ≡ ¬3a (ψ ⊃ u 6= ⊥)

ψ ≡ 2(¬W t
p(x))

∧(((Rt
p(y) ∧ empty; 3W s

q (y)
)
∨
(
W s

q (y) ∧ empty; 3Rt
p(y)

))
∧ fin(⊕s

q ∧ T t
p = active)) ; fin(R̂t

p(x, u) ∧ ⊗t
p)

Global ≡ ¬3a (α ⊃ u 6= u′′)

α ≡ 2(¬W t
p(x)) ∧ (((W s

q (x, u
′′) ∧ skip; 2(¬W s

q (x))
)
∧ fin⊕s

q

)
∧©2(¬W i

j (x)) ∧ fin⊕i
j) ; fin(R̂t

p(x, u) ∧ ¬(T t
p = doomed))

V. CORRECTNESS CONDITIONS OF TM

Many TM safety properties have been proposed with
varying degrees of accuracy. The basic correctness property
for concurrent transactions is serialisability. A TH (transac-
tional history) is serializable if the result of all committed
concurrent transactions in TH that is generated by a TM
system is identical to a result in some STH (sequential
transactional history) which represent the same transactions
executed serially (more details in this section). In this section
we use ITL to formalise some correctness conditions that can
lead to the serialisability property and other criteria which
have been considered for TM as shown in Table III. In
addition, each property follows by a figure to illustrate its
ITL formula.

A. Conflict Free

A conflict appears when concurrently executing transac-
tions perform operations on the same location and at least
one of them modifies the data. Scott [12] presents practi-
cal policies for detecting conflicts to describe the STH ’s
characteristic of different classes of TM implementations.
Also, he introduces arbitration functions to ensure progress
by specifying which one of the two conflicting transactions
must fail.

Conflict Detection: As shown in Table III, we formlise
different classes of conflict detecting which is denoted by
(ε):

• Lazy Conflict (εl): process p′s transaction t and process
q′s transaction s conflict if there exist operations W
an object in s and R the same object in t such that s
commits before the end of t, see Fig. 2.

• Eager Conflict (εe): process p′s transaction t and pro-
cess q′s transaction s conflict if t and s have a lazy
conflict or if there exist operations R an object in s and

Fig. 2. Lazy conflict.

W the same object in t such that W precedes R or vice
versa, but neither transaction has ended, see Fig. 3.

Fig. 3. Eager conflict.

• Mixed Conflict (εm): process p′s transaction t and
process q′s transaction s conflict if t and s have a lazy
conflict or if there exist operations W an object in t, R
and W the same object in s such that R precedes the
two W , but neither transaction has ended, see Fig. 4.

Fig. 4. Mixed conflict.

Conflict Resolution: Transactional memory implementa-
tions have a contention management policy (arbitration) to
resolve a conflict between two transactions by aborting one
of them. Scott [12] suggests two arbitration functions:

• Eagerly aggressive arbitration(εre): whoever started
early fails.

• Lazily aggressive arbitration(εrl): whoever tries to com-
mit first wins.

A transaction t in process p is called conflict-free if there is
no transaction s in process q such that t and s is conflicting
with t to which t loses at arbitration.

B. Read Consistency

1) Local read consistency: Each committed or aborted
transaction in tmspec satisfies local read consistency iff each
read operation is responded with a value that has been written
by a previous write operation for the same variable and in
the same transaction.

2) Doomed Consistency: Kapalka and Guerraoui [13],
extended the notion of strict serialisability to include the
concept that even aborted transactions should not access
an inconsistent state of the memory and, which can be
doomed in TM due to infinite loops, or exceptions (divided
by zero). In this model we add this extension (doomed
consistency) as one of the safety conditions that can lead
finally to strict serialisability with the property that even
aborted transactions do not observe an inconsistent state.
Here is an example will initially y=4, x=2

p : Rt
p(y); R̂

t
p(y, 4); R

t
p(x); R̂(x, 4); W t

p(z, 1/(y − x))
q : W s

q (y, 6); ok; W
s
q (x, 4); ok; tryCom

s
q ; ⊕s

q

The divided-by-zero state appears clearly in this example
when the value of x is changed by transaction s, where
x-y=0 and z=1/0. Each transaction in tmspec satisfies the

Fig. 5. Doomed consistency.

doomed consistency iff a later R operation does not access
an inconsistent state that comes when the response value of
one of the previous R operation in the same transaction has
been changed, see Fig. 5.

3) Global read consistency: A transaction in tmspec satis-
fies the global consistency iff each R(x, u) in this successful
transaction(not doomed or conflict free) returns the most
recent W (x, u′′) in a committed transaction.

C. Strict Serialisability

Papadimitriou [19] augmented the strength of serialisabil-
ity by adding the requirement of the real time order of the
committed transactions, see Fig. 6.

We formalize this property as follows: Let σ′ be obtained
from σ by serializing the concurrent committed transactions

Fig. 6. Strict and Non-Strict serialisability.

in TH . Since we have preserved each transaction in an
independent list in the tmspec proposed model, which means
each transaction with its events is considered as a one block,
we do not need to reorder between events to transfer the
TH to STH . Instead, the events of each transaction can be
collected by specifying the process and transaction for each
event Ei

j .

Definition 1. The TH can be strictly serialised, if we can
obtain σ′ from σ with respect to Ser(TH) as follows:

Ser(TH) ≡ (T t
p; T

s
q)

≡ T t
p‖T s

q
∧ {The order of transactions over σ′ is the

order of the committing events for the
same transactions (fin⊕t

p; fin⊕s
q) over σ}

∧ {∀(Rt
p ∧Rs

q) over σ respects the ValidRead()}
∧ {∀(⊕t

p ∧ ⊕s
q) over σ respects the ConflictDetRes()}

VI. TESTING OF ABSTRACT TM WITH ANIMATION

To demonstrate, validate the correctness of the proposed
abstract TM tmspec and make such examinations for TM
safety properties, we use tmspec to execute one of the most
highly studied concurrent data structures which is the lock-
free FIFO queue [20], [1]. Many lock-free queue algorithms
have been proposed such as compare-and-set (CAS). We will
use an approach based on transactional memory, with some
modifications, such as an added shared counter.

Testing example: A concurrent queue is an abstract data
structure that consists of two parts. The producer part adds
the element x to the rear terminal position, if the queue is
not full. The consumer part retrieves the element from the
front terminal position, if the queue is not empty. Consider
the FIFO queue implementation shown in Fig. 7 and its ITL
specification in Fig. 8 (because of lack of the space, we
show just the producer part). It stores its elements in memory,
which, for simplicity, we will assume a fixed queue size and
two indices (head = mem[0], tail = mem[1]). The first
index points to the head of the queue and the other points
to the tail. Initially, both head and tail are equal and contain
the location of the first room of the queue which equals 3
and the queue is empty. If the producer part, after reading
head and tail, finds that the queue is full, then it aborts the
transaction. Otherwise, it will read and increment the shared
counter (initially at mem[2]) at the point of memory entry
(tail − 1) and stores it at the memory entry tail, and then
increments tail. If the consumer part, after reading head and
tail, finds that the queue is empty, by checking the equality
of head and tail, then it aborts the transaction. Otherwise, it
will read the shared counter at the memory entry head, and
then increment head.

proc Producer() ≡
{phead = read(mem[head]);
ptail = read(mem[tail]);
if (ptail − phead = Qsize)

then Abort()
else

{pshared = read(mem[ptail − 1]);
write(mem[ptail], pshared + 1);
write(mem[tail], ptail + 1);
tryCommit(); }
}

Fig. 7. Producer part of concurrent queue algorithm

PRODUCERspec =̂
Pp = free ∧ T t

p = idle ∧ Et
p = noev∧

((TranInvOp(p, t, R(head,⊥), ε, εr); TranResOp(p, t);
TranInvOp(p, t, R(tail,⊥), ε, εr); TranResOp(p, t);
QueueFullCheck())∗;
TranInvOp(p, t, R(ptail − 1,⊥), ε, εr); TranResOp(p, t);
TranInvOp(p, t,W (ptail, pshared + 1), ε, εr); TranResOp(p, t);
TranInvOp(p, t,W (tail, ptail + 1), ε, εr); TranResOp(p, t);
TranInvEnd(p, t, tryCommit, ε, εr); TranResEnd)∗

Fig. 8. ITL specification of producer part

Animation: Some animation for our model is provided
to make it more understandable and enable the reader to
gain better insight into the TM system. The animator is
written in Tcl/Tk [21] using Expect [22]. The Tempura file
is accompanied by a Tcl/Tk file which defines the graphics.
To execute the concurrent queue algorithm using the tmspec

executable specification and for seeking simplicity, just two
concurrent processes are used to represent the producer and
consumer parts. Also, two additional functions are used,
QueueFullCheck() for the producer part that checks if the
queue is full, and QueueEmptyCheck() for the consumer part
that checks if the queue is empty. As shown in Fig. 9, the user
interface for the graphical output is divided into four parts:
Firstly, the timer grade which represents the number of state.
Secondly, two processes where p0 represents the producer
specification and p1 represents the consumer specification.
Thirdly, the memory block. Finally, A space for showing
the transaction number and its sequence of operations and
responses. The graphical animation has facilities to execute
this example step by step. So, we can notice clearly the
memory synchronization in the output concurrent execution
between the two processes and the validation of TM safety
conditions.

VII. CONCLUSION

In this paper we present an executable specification for
an abstract TM model and some TM correctness properties
using ITL and AnaTempura. Moreover, a validation for this
specification is presented using a concurrent data structures
example. In reality, we are developing a formal framework
which allows us to verify, analyse and capture the behaviour
of new TM systems. In addition, we are working on develop-
ing refinement rules for verifying that a TM system satisfies
the specification of the verified abstract TM.

REFERENCES

[1] M. Herlihy and J. E. B. Moss, “Transactional memory: Architectural
support for lock-free data structures,” in Proceedings of the 20th
Annual International Symposium on Computer Architecture, May
1993, pp. 289–300.

Fig. 9. TM abstract tmspec animation output

[2] J. R. Larus and R. Rajwar, Transactional Memory. Morgan and
Claypool, 2006.

[3] J. Parri, “An introduction to transactional memory,” in ELG7187 Topics
In Computers: Multiprocessor Systems On Chip, fall 2010.

[4] J. Larus and C. Kozyrakis, “Is tm the answer for improving parallel
programming?” Communication of the ACM, vol. 51, no. 7, pp. 80–88,
July 2008.

[5] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis,
B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and K. Oluko-
tun, “Transactional memory coherence and consistency,” in Pro-
ceedings of the 31st Annual International Symposium on Computer
Architecture. IEEE Computer Society, Jun 2004, p. 102.

[6] A. M. El-Kustaban, A. H. El-Mahdy, and O. M. Ismail, “A cmp
with transactional memory: Design and implementation using fpga
technology.” in IMECS’07, 2007, pp. 1680–1685.

[7] W. N. S. I. Virendra J. Marathe and M. L. Scott., “Adaptive software
transactional memory.” in In DISC 05: Proceedings of the nineteenth
International Symposium on Distributed Computing. LNCS,Springer,
Sep 2005.

[8] A. Shriraman, M. F. Spear, H. Hossain, V. Marathe, S. Dwarkadas, and
M. L. Scott, “An integrated hardware-software approach to flexible
transactional memory,” in Proceedings of the 34rd Annual Interna-
tional Symposium on Computer Architecture, Jun 2007.

[9] T. Harris, A. Cristal, O. Unsal, E. Ayguade, F. Gagliardi, B. Smith,
and M. Valero, “Transactional memory: An overview,” Micro, IEEE,
vol. 27, no. 3, pp. 8 –29, may-june 2007.

[10] A. Cohen, J. W. O’Leary, A. Pnueli, M. R. Tuttle, and L. D. Zuck,
“Verifying correctness of transactional memories,” in Proceedings of
the 7th International Conference on Formal Methods in Computer-
Aided Design (FMCAD), November 2007, pp. 37–44.

[11] R. Guerraoui, T. A. Henzinger, M. Kapalka, and V. Singh, “Gen-
eralizing the correctness of transactional memory,” in Preliminary
Program and Challenge Problems Exploiting Concurrency Efficiently
and Correctly CAV 2009 Workshop, Grenoble, France, 2009.

[12] M. L. Scott, “Sequential specification of transactional memory se-
mantics,” in Proceedings of the First ACM SIGPLAN Workshop
on Languages, Compilers, and Hardware Support for Transactional
Computing, Jun 2006.

[13] R. Guerraoui and M. Kapalka, “On the correctness of transactional
memory,” in Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP’08), 2008.

[14] S. Tasiran, “A compositional method for verifying software trans-
actional memory implementations,” Microsoft Research, Tech. Rep.
MSR-TR-2008-56, apr 2008.

[15] R. Guerraoui, T. A. Henzinger, B. Jobstmann, and V. Singh, “Model
checking transactional memories,” in PLDI, 2008, pp. 372–382.

[16] M. Emmi, R. Majumdar, and R. Manevich, “Parameterized verification
of transactional memories,” in PLDI ’10 Proceedings of the 2010
ACM SIGPLAN conference on Programming language design and
implementation. New York, NY, USA: ACM, 2010.

[17] A. Cau, B. Moszkowski, and H. Zedan. (2011) Interval temporal logic.
[Online]. Available: http://www.tech.dmu.ac.uk/˜STRL/ITL/index.html

[18] B. Moszkowski, “Reasoning about digital circuits,” Ph.D. dissertation,
Department of Computer Science, Stanford University, 1983.

[19] H. Papadimitriou, “The serializability of concurrent database updates,”
ACM, vol. 26, no. 4, pp. 631–653, 1979.

[20] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative
Approach, 3rd ed. San Francisco: CA: Morgan Kaufmann, 2003.

[21] P. P. in Tcl and Tk, B.Welch, 2nd ed. New Jersey: Upper Saddle
River, 1997.

[22] D.Libes, Exploring Expect. OReilly and Associates, 1995.

