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Abstract—Consider a probability distribution d on the truth
assignments to a perfect binary AND-OR tree. Liu and Tanaka
(2007) extends the work of Saks and Wigderson (1986), and they
characterize the eigen-distribution, the distribution achieving
the equilibrium, as the uniform distribution on the 1-set (the
set of all reluctant assignments for which the root has the value
1). We show that the uniqueness of the eigen-distribution fails
provided that we restrict ourselves to directional algorithms.
An alpha-beta pruning algorithm is said to be directional
(Pearl, 1980) if for some linear ordering of the leaves (Boolean
variables) it never selects for examination a leaf situated to
the left of a previously examined leaf. We also show that the
following weak version of the Liu-Tanaka result holds for the
situation where only directional algorithms are considered; a
distribution is eigen if and only if it is a distribution on the
1-set such that the cost does not depend on an associated
deterministic algorithm.

Index Terms—AND-OR tree; directional algorithm; compu-
tational complexity; randomized algorithms.

I. INTRODUCTION

THE concept of an AND-OR tree is interesting because
of its two aspects, a Boolean function and a game tree.

It is a tree whose internal nodes are labeled either AND
(∧) or OR (∨). In this paper, we use the terminology in
more restricted sense. An AND-OR tree (an OR-AND tree,
respectively) denotes a tree such that its root is an AND-gate
(an OR-gate), layers of AND-gates and those of OR-gates
alternate and each leaf is assigned Boolean value. 1 denotes
true and 0 denotes false.

A perfect binary tree of this type with height 2k is denoted
by T k

2 . Given a such tree, an algorithm answers the Boolean
value of the root by probing Boolean values of some leaves.
The cost of the computation is measured by the number of
leaves probed. There are classical results showing that we
may restrict ourselves to algorithms of a particular type. For
example, see [9]. We consider alpha-beta pruning algorithms
only. An alpha-beta pruning algorithm is characterized by
the following two properties; whenever the algorithm knows
a child node of an OR-gate has the value 1, the algorithm
recognize that the OR-gate has the value 1 without probing
the other child node (such a saving of cost is said to be a
beta-cut), and whenever the algorithm knows a child node of
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an AND-gate has the value 0, the algorithm recognize that
the AND-gate has the value 0 without probing the other child
node (an alpha-cut). See [3] for more on alpha-beta pruning
algorithms.

In this context, a randomized algorithm denotes a proba-
bility distribution on a set of deterministic algorithms. This is
a kind of Las-Vegas algorithm. For a randomized algorithm,
the cost is defined as to be the expected value of the cost.
Then, the value

min
AR

max
ω

cost(AR, ω),

where AR runs over randomized algorithms and ω runs
over truth assignments, is the randomized complexity. A
probability distribution on the truth assignments is easier
to handle than a probability distribution on the algorithms.
Yao’s principle [11], [1] is a variant of Von-Neumann’s Min-
Max theorem. It says that the randomized complexity equals
to the distributional complexity, that is,

max
d

min
AD

cost(AD, d),

where AD runs over deterministic algorithms and d runs over
probability distributions on the truth assignments.

Saks and Wigderson [7] establish basic results on the
randomized complexity. In particular, they show that the
randomized complexity is Θ( ((1 +

√
33)/4)h), where h

denotes the height of the tree, and they conjecture that a
similar estimation holds for any Boolean function.

Liu and Tanaka [4] extends the work of Saks and Wigder-
son, and characterize a probability distribution achieving
the equilibrium of T k

2 . In particular, they show that such
a distribution is unique, and call it the eigen-distribution.
A distribution d0 on the truth assignments is the eigen-
distribution if it achieves the distributional complexity, that
is:

min
AD

cost(AD, d0) = max
d

min
AD

cost(AD, d)

To be more precise, by extending the concept of a reluctant
input in the paper of Saks and Wigderson, Liu and Tanaka
define the concept of i-set (for i ∈ {0, 1}) as the set of all
assignments such that the root has the value i and whenever
an AND-node has the value 0 (and, whenever an OR node
has the value 1), its one child node has the value 1 and
the other child node has the value 0. They define an Ei-
distribution as to be a distribution on the i-set such that all the
deterministic algorithm has the same cost. They prove that,
for a probability distribution d on the truth assignments to
the leaves of T k

2 , the followings (LT1)–(LT3) are equivalent.
(LT1) d is the eigen-distribution;



(LT2) d is an E1-distribution;
(LT3) d is the uniform distribution on the 1-set.
The current paper is motivated by an example that “con-

tradicts to” the uniqueness of the eigen-distribution.
In general, an alpha-beta pruning algorithm can change

its priority of scanning leaves throughout a computation. For
example, an algorithm can move in such a way that, if a
leaf x is skipped due to a beta-cut then scan y and then z,
otherwise scan x, next z and then y. An alpha-beta pruning
algorithm is said to be directional (Pearl, [6]) if for some
linear ordering of the leaves it never selects for examination
a leaf situated to the left of a previously examined leaf.

We show that the uniqueness of the eigen-distribution
fails when we restrict ourselves to directional algorithms
(section IV). In particular, there are uncountably many eigen-
distributions in the setting.

We also show that the following weak version of the result
of Liu and Tanaka holds in the above setting; a distribution
is eigen if and only if E1 (section III). Our main method
for showing this equivalence is the no-free-lunch theorem
(NFLT, for short). Roughly speaking, NFLT says that, aver-
aged over all cost functions, all search algorithms give the
same performance. For an introduction to NFLT, see [10],
[2]. For a family of algorithms closed under transposition
of sub-trees, a variant of NFLT holds, and NFLT implies the
equivalence. The current paper is an extension of the research
report [8].

II. NOTATION

We denote the empty string by λ. By {0, 1}n, we denote
the set of all strings of length n. The cardinality of a set
X is denoted by |X|. For sets X and Y , X − Y denotes
{x ∈ X : x 6∈ Y }. We let prob[E] denote the probability
of an event E. A k-round AND-OR tree denotes a perfect
binary AND-OR tree of height 2k (k ≥ 1), and is denoted
by T k

2 .
Convention Throughout the paper, unless specified, h

denotes a positive integer and T denotes a perfect binary tree
of height h such that T is either an AND-OR tree or an OR-
AND tree. AD denotes the family of all alpha-beta pruning
algorithms calculating the root-value of T . For the definition
of an alpha-beta pruning algorithm, see Introduction. A
denotes a non-empty subset of AD. The height h is fixed
in the definition of AD. Thus, we should write, for example,
AD(h) in the precise manner, but we omit h. The same
remark will apply to Adir in Definition 2. Ω is a non-empty
family of assignment-codes, where we define assignment-
codes in the following. We label each node of T by a string
as follows.

Definition 1. 1) A node-code is a binary string of length
at most h. Each node of T is assigned a node-code
in such a way that the code of the root is the empty
string, and nodes with codes of the form u0, u1 are
child nodes of the node with code u.

2) A node-code is a leaf-code if its length is h. Otherwise,
it is an internal node-code.

3) An assignment-code is a function of the leaf-codes to
{0, 1}.

By Adir, we denote the family of all directional algorithms
in AD. Formal definitions are as follows.
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Definition 2. Suppose that AD is a member of the AD. Let
` = 2h.

1) Suppose that 〈u(1), u(2), · · · , u(m)〉 is a sequence of
strings, ω is an assignment-code and that the followings
hold.

a) m(≤ `) is the total number of leaves queried dur-
ing the computation of AD under the assignment
ω.

b) For each j(1 ≤ j ≤ m), the j-th query in the
computation of AD under the assignment ω is
the leaf of code u(j).

By “query-history of 〈AD, ω〉” and “answer-history
of 〈AD, ω〉”, we denote 〈u(1), u(2), · · · , u(m)〉 and
〈ω(u(1)), · · · , ω(u(m))〉, respectively.

2) Adir is a family of algorithms defined as follows. A
deterministic algorithm AD ∈ AD belongs to Adir

if there exists a permutation 〈v(1), v(2), · · · , v(`)〉 of
the leaves such that for every assignment code ω,
the query-history of 〈AD, ω〉 is consistent with the
permutation. More precisely, the query history is ei-
ther equal to the permutation, or a sequence (say,
〈v(1), v(3), v(4)〉) given by omitting some leaf-codes
from the permutation.

For AD ∈ AD and an assignment-code ω, we let
C(AD, ω) denote the number of leaves scanned in the
computation of AD under ω. By the phrase “the cost of
AD with respect to ω”, we denote (not time-complexity
but) C(AD, ω) . If d is a probability distribution on the
assignments then C(AD, d) denotes the expected value of
the cost with respect to d. For the definitions of the 0-set
and the 1-set, see Introduction.

Definition 3. Suppose that A is a non-empty subset of AD,
and that Ω is a non-empty set of assignment-codes.

1) A distribution d on Ω is called an eigen-distribution
with respect to 〈A, Ω〉 if the following holds.

min
AD∈A

C(AD, d) = max
d′

min
AD∈A

C(AD, d′),

where d′ runs over all probability distributions on Ω.
In the case where Ω is the set of all assignment-codes,
we say “d is an eigen-distribution with respect to A”.

2) Let i ∈ {0, 1}. A distribution d on the i-set is called
an Ei-distribution with respect to A if there exists a
real number c such that for every AD ∈ A, it holds
that C(AD, d) = c.

3) [4] A distribution d on the truth assignments is eigen
(respectively, E0, E1) if it is so with respect to AD.

III. THE EQUIVALENCE OF EIGEN AND E1

We show that the equivalence of an eigen-distribution and
an E1-distribution holds even when we restrict ourselves to



directional algorithms. We develop a framework including
both the directional case and the usual case.

Definition 4. Suppose that u is an internal node-code.
1) Suppose that v and v′ are node-codes of the same

length. We say “v′ is the u-transposition of v” (in
symbol, v′ = tpu(v)) if one of the followings holds.

a) There exist i ∈ {0, 1} and a string w such that
v = uiw (concatenation) and v′ = u(1 − i)w.

b) u is not a prefix of v and it holds that v = v′.
2) Suppose that ω, ω′ are assignment-codes. We say “ω′

is the u-transposition of ω” (in symbol, ω′ = tpu(ω))
if the following holds for each leaf-code v.

ω′(v) = ω(tpu(v))

3) Suppose that AD and A′
D are deterministic algorithms.

We say “A′
D is the u-transposition of AD” (in symbol,

A′
D = tpu(AD)) if the following holds: “For each

assignment-code ω, the query-history of 〈A′
D, ω〉 is

given by applying component-wise tpu operation to the
query-history of 〈AD, tpu(ω)〉.” To be more precise,
denote the query-history of 〈AD, tpu(ω)〉 and that
of 〈A′

D, ω〉 by 〈x(1), · · · , x(m)〉 and 〈y(1), · · · , y(m)〉,
respectively. Then, the following holds.

∀j ≤ m y(j) = tpu(x(j))

And, the answer history of 〈AD, tpu(ω)〉 is the same
as that of 〈A′

D, ω〉.

Example 1. We consider the case where h = 2. Then the
followings hold. tpλ(abcd) = cdab, tp0(abcd) = bacd and
tp1(abcd) = abdc, where we denote a truth assignment ω
by a string ω(00)ω(01)ω(10)ω(11).

Definition 5. 1) A is closed (under transposition) if for
each AD ∈ A and for each internal node-code u, we
have tpu(AD) ∈ A.

2) Ω is closed (under transposition) if for each ω ∈ Ω and
for each internal node-code u, we have tpu(ω) ∈ Ω.

3) Ω is connected (with respect to transposition) if for
every distinct members ω, ω′ ∈ Ω, there exists a
finite sequence 〈ωi〉i=1,··· ,N in Ω and a finite sequence
〈u(i)〉i=1,··· ,N−1 of strings such that ω1 = ω, ωN = ω′

and for each i < N , ωi+1 is the u(i)-transposition of
ωi.

Convention Throughout the rest of the section, A denotes
a non-empty closed subset of AD.

Definition 6. Suppose that p1, · · · , pn are non-negative real
numbers such that their sum makes 1. And, suppose that
Ω1, · · · ,Ωn are mutually disjoint non-empty families of
assignment-codes. In addition, suppose that d1, · · · , dn are
distributions such that each dj is a distribution on Ωj .

1) p1d1 + · · · + pndn denotes the distribution d on
Ω1 ∪ · · · ∪ Ωndefined as follows. For each j (1 ≤
j ≤ n) and each truth assignment ω ∈ Ωj , we have
prob[ d is ω ] = pj × prob[ dj is ω ].

2) Given a distribution d, we say “d is a distribution on
p1Ω1 + · · · + pnΩn” if there exist distributions d′

j on
Ωj (1 ≤ j ≤ n) such that d = p1d

′
1 + · · · + pnd′n.

The following is a variant of the no-free-lunch theorem.

Lemma 1. Suppose that p1, · · · , pn and Ω1, · · · , Ωn satisfy
the requirements in Definition 6, and that each Ωj is con-
nected. Then, there exits a real number c such that for every
distribution d on p1Ω1 + · · · + pnΩn, the following holds.∑

AD∈A

C(AD, d) = c (1)

Proof: We show the case of n = 1. For every
assignment-code ω and for every internal node-code u, the
mapping of AD ∈ A to tpu(AD) is a permutation of A. And,
we have C(tpu(AD), ω) = C(AD, tpu(ω)). Hence, the sum
of C(AD, ω) over all AD ∈ A is the following.

∑
AD∈A

C(tpu(AD), ω) =
∑

AD∈A

C(AD, tpu(ω)) (2)

Therefore, there exists a real number c such that for every
ω ∈ Ω,

∑
AD∈A C(AD, ω) = c. Hence, the left-hand side of

(1) is equal to the following.∑
AD∈A

∑
ω∈Ω

prob[d = ω]C(AD, ω)

=
∑
ω∈Ω

(
prob[d = ω]

∑
AD∈A

C(AD, ω)
)

= c (3)

Thus, the case of n = 1 is proved. The general case is
immediately shown by this case.

Lemma 2. Suppose that p1, · · · , pn and Ω1, · · · , Ωn satisfy
the requirements in Definition 6. And, suppose that each Ωj

is closed.
1) Let dunif.(p1Ω1 + · · ·+ pnΩn) denote the distribution

p1d1 + · · · + pndn, where each dj is the uniform
distribution on Ωj . Then, there exits a real number c
such that for every deterministic algorithm AD ∈ AD,
it holds that C(AD, dunif.(p1Ω1 + · · · + pnΩn)) = c.

2) Suppose that each Ωj is not only closed but also
connected and that d is a distribution on p1Ω1 +
· · · + pnΩn. Then, the following (a), (b) and (c) are
equivalent, where Bj are any deterministic algorithms
(not necessarily a member of A), and dunif.(Ωj) is the
uniform distribution on Ωj .

a) The following holds, where d′ runs over distribu-
tions on p1Ω1 + · · · + pnΩn.

min
AD∈A

C(AD, d) = max
d′

min
AD∈A

C(AD, d′) (4)

b) There exits a real number c such that for every
AD ∈ A, it holds that C(AD, d) = c.

c)

min
AD∈A

C(AD, d) =
n∑

j=1

pjC(Bj , dunif.(Ωj)) (5)

Proof: 1. The case of n ≥ 2 is immediate from the case
of n = 1. In the following, we prove the case of n = 1
by induction on h. The case of h = 1 is immediate. At the
the induction step, let T0 (T1, respectively) be the left (right)
sub-tree just under the root. Since Ω1 is closed, the assertion
is equivalent to its weaker form: “The costs are the same
for all algorithms which probe T0 before T1.” We call such
algorithms “left-first algorithms” in this proof.



Now, Ω1 is partitioned into sets such that each component
Ω′ is of the following form. There exist strings α0 and α1

(depending on Ω′) such that αi is an assignment-code for Ti

for each i, and the component Ω′ is the direct product of the
closure of α0 and that of α1. Here, the closure of αi denotes
the following set.

{tpu(αi) : u is an internal node-code} (6)

By the induction hypothesis, the cost of a left-first al-
gorithm depends only on Ω′, and does not depend on an
algorithm. Hence, the same holds with respect to Ω1.

2. By the assertion 1 of the current lemma and Lemma 1,
each of the assertions (a) and (b) is equivalent to (7).

min
AD∈A

C(AD, d) =
1
|A|

∑
AD∈A

C(AD, d) (7)

Therefore, by the assertion 1, (a) is equivalent to the
following.

min
AD∈A

C(AD, d) = min
AD∈A

C(AD, dunif.(p1Ω1 + · · ·+pnΩn))

(8)
And, the right-hand side of (8) equals to the right-hand

side of (5). Hence, (a) is equivalent to (c).

Lemma 3. Assume that T is an AND-OR tree. Suppose that
d is an eigen-distribution with respect to A (see Definition 3).
Then d is a distribution on the 1-set.

Proof: For each positive integer h and each i ∈ {0, 1},
we let c∧,h

i (c∨,h
i , respectively) denote C(AD, dunif.(i-set))

for the perfect binary AND-OR tree (OR-AND tree, respec-
tively) of height h.

Claim 1. Suppose that Ω is closed. If a given tree is an
AND-OR tree and Ω is not the 1-set (a given tree is an OR-
AND tree and Ω is not the 0-set, respectively), then for any
deterministic algorithm AD, C(AD, dunif.(Ω)) is less than
c∧,h
1 (c∨,h

0 , respectively).
Proof of Claim 1: Note that the followings hold, where

the inequalities are proved by induction on h.

c∧,h
0 = c∨,h

1 < c∧,h
1 = c∨,h

0 ≤ 4
3
c∧,h
0 (9)

By induction on h, the following holds. “Suppose that Ω′

is a non-empty family of truth assignments such that Ω′ is
closed. Let i ∈ {0, 1} be such that for all elements of Ω′,
the root has the value i. In addition, suppose that Ω′ is not
the i-set. If a given tree is an AND-OR tree (an OR-AND
tree, respectively), then for any deterministic algorithm AD,
C(AD, dunif.(Ω′)) is less than c∧,h

i (c∨,h
i , respectively).”

By this fact and (9), the claim holds. Q.E.D.(Claim 1)
Now, suppose that T is T k

2 for some positive integer k.
Suppose that d is an eigen-distribution with respect to A.
Let 〈Ωj : j = 1, · · · , n〉 be a partition of the set of all
truth assignments to connected closed sets. Without loss
of generality, Ω1 is the 1-set. For each j, let pj be the
probability of d being a member of Ωj . By Lemma 2, (5)
holds. Hence, by Claim 1, there are positive real numbers
c2, · · · , cn such that the following holds.

∀j ≥ 2 cj < c∧,h
1 (10)

min
AD∈A

C(AD, d) = p1c
∧,h
1 +

n∑
j=2

pjcj (11)

Since d is eigen with respect to A, d achieves the maxi-
mum value of (11). Hence, it holds that p1 = 1 and pj = 0
for all j ≥ 2. Thus, d is a distribution on the 1-set.

Theorem 4. Assume that a given tree T is T k
2 for some

positive integer k. Suppose that a family A of algorithms
is closed under transposition and that d is a probability
distribution on the assignment-codes. Then, the followings
are equivalent (see Definition 3).

(LT1A) d is an eigen-distribution with respect to A.
(LT2A) d is an E1-distribution with respect to A.

Proof: By Lemma 3, (LT1A) is equivalent to “d is an
eigen-distribution with respect to 〈A, (1-set)〉”. By Lemma 2,
this is equivalent to (LT2A).

IV. A CASE WHERE THE UNIQUENESS FAILS

A direct corollary to Lemma 2 is the following.

Corollary 5. Assume that a given tree T is T k
2 for some

positive integer k. Then, (LT3) implies (LT2A):
(LT3) d is the uniform distribution on the 1-set.
(LT2A) d is an E1-distribution with respect to A.

We show that the uniqueness of the eigen-distribution fails
in the directional case. This is shown by proving that (LT2A)
does not imply (LT3) with respect to A = Ak

dir (see below).
Convention Ak

dir denotes Adir (see Definition 2) in the
case where h = 2k and T = T k

2 .

TABLE I
C(AD, ω) FOR k = 1 (ω ∈ THE 1-SET).

A1 A2 A3 A4

1234 4312 3421 2143
ω1 1010 2 3 3 4
ω2 1001 3 2 4 3
ω3 0110 3 4 2 3
ω4 0101 4 3 3 2

A5 A6 A7 A8

3412 1243 2134 4321
ω1 1010 2 3 3 4
ω2 1001 3 2 4 3
ω3 0110 3 4 2 3
ω4 0101 4 3 3 2

For the time being, we investigate the case where k = 1.
Table I shows the values of C(AD, ω) in the case where
ω is an element of the 1-set. In the table, each ωi is the
name of an assignment. We denote an assignment-code ω
by a string ω(00)ω(01)ω(10)ω(11). And, each Aj is the
name of an element of A1

dir. Recall Definition 2. Each Aj

is determined by a permutation xyzw of {0, 1}2 that shows
priority of scanning leaves. In the table, a string such as
1234 denotes a permutation of the above property, where
we denote leaf-codes 00, 01, 10 and 11 by numerals 1, 2,
3 and 4, respectively. Since we consider alpha-beta pruning
algorithms, only the eight permutations are considered.

Theorem 6. [8]

1) There are uncountably many E1-distributions with
respect to A1

dir. Hence, (LT2A) does not imply (LT3)
with respect to A = A1

dir.
2) There are uncountably many eigen-distributions with

respect to A1
dir.



Proof: 1. Suppose that 0 ≤ ε ≤ 1/2. By dε, we denote
the distribution d on the 1-set such that the probabilities of
d being ω1, ω2, ω3 and ω4 are ε, 1/2 − ε, 1/2 − ε and ε,
respectively. Let j ∈ {1, 2, · · · , 8}. Note that ε(2 + 4) +
(1/2−ε)(3+3) = ε(3+3)+(1/2−ε)(2+4) = 3. Therefore,
by Table I, it holds that C(Aj , dε) = 3. Hence, for every ε
such that 0 ≤ ε ≤ 1/2, dε is a distribution on the 1-set, and
the value C(Aj , dε) does not depend on j. And, dε is not
the uniform distribution on the 1-set unless ε = 1/4.

The assertion 2 of the theorem is immediate from the
assertion 1 and Theorem 4.

TABLE II
C(AD, ω) FOR k = 1 (ω ∈ THE 0-SET).

A1 A2 A3 A4

1234 4312 3421 2143
ω5 1000 3 2 2 4
ω6 0100 4 2 2 3
ω7 0010 2 4 3 2
ω8 0001 2 3 4 2

A5 A6 A7 A8

3412 1243 2134 4321
ω5 1000 2 3 4 2
ω6 0100 2 4 3 2
ω7 0010 3 2 2 4
ω8 0001 4 2 2 3

On the other hand, E0-distribution with respect to A1
dir is

unique. Sketch of the proof is as follows. Table II shows the
values of C(AD, ω) in the case where ω is an element of
the 0-set. Now, under the assumption that a distribution d on
the 0-set has the same cost for all Aj (1 ≤ j ≤ 8), set up
equations on probabilities of d being equal to ωi (5 ≤ i ≤
8). Then it is easy to see that the equations have a unique
solution of prob[d = ωi] = 1/4 (5 ≤ i ≤ 8), in other words,
d is the uniform distribution on the 0-set.

By means of Theorem 6 and induction on k, we can show
the following.

Theorem 7. [8] For each positive integer k, the statements
of Theorem 6 hold for Ak

dir in place of A1
dir.

V. A CASE WHERE THE UNIQUENESS HOLDS

In this section, we give an alternative proof for the
characterization of the eigen-distribution (in the usual case)
as the uniform distribution on the 1-set [4]. To be more
precise, we show that (LT2A) implies (LT3) with respect
to the non-directional algorithms (see Corollary 5).

An example of an element of A1
D −A1

dir is the following
algorithm. It begins with scanning the leaf of code 00.
If a beta-cut does not happen there, the query-history is
〈00, 01, 10, 11〉. Otherwise, the query-history is 〈00, 11, 10〉,
where the leaf-code 01 is skipped due to the beta-cut.
By taking transpositions of this algorithm, we know that
A1

D −A1
dir consists of 8 algorithms.

Theorem 8. [5] Suppose that h ≥ 2, where h is the height
of T . Then, (LT2A) implies (LT3) with respect to A = AD−
Adir.

Proof: For each i ∈ {0, 1} and a positive integer g, let
(i-set)g denote the i-set in the case of h = g. By induction
on h ≥ 2, we shall show the following requirement Rh.

Rh: “Suppose that i ∈ {0, 1} and that a distribution d on
(i-set)h is an Ei-distribution with respect to A = AD−Adir.
Then, d is the uniform distribution on (i-set)h.”

The base case R2 is shown by solving equations; it is in the
same way as our proof of the uniqueness of E0-distribution
with respect to A1

dir.
Suppose that Rn holds. In the rest of the proof, let h =

n + 1, i ∈ {0, 1} and assume that d is a distribution on
(i-set)n+1 and that d is an Ei-distribution with respect to
AD − Adir. We investigate the case where the root is an
AND-gate and i = 1. The other cases are shown in the same
way.

Let T0 (T1, respectively) be the left (right) sub-tree just
under the root. For each assignment α on T0 (such that α ∈
(1-set)n and the denominator of (12) is positive), consider the
distribution dα on T1 as follows. For each assignment β on
T1, we let prob[ dα is β ] as to be the following conditional
probability, where αβ denotes the concatenation of α and β.

prob[ d is αβ | ∃x d is αx ] (12)

By the induction hypothesis Rn, for all α such that α ∈
(1-set)n and the denominator of (12) is positive, dα is the
uniform distribution on (0-set)n. The same holds for the case
where the roles of T0 and T1 are exchanged.

Now, by the induction hypothesis Rn, it is not hard to see
that the requirement Rn+1 is satisfied.

VI. CONCLUSIVE REMARKS

By extending the work of Tarsi [9], it is shown by Saks
and Wigderson that the randomized complexity of an AND-
OR tree is the same as that for directional algorithms; for
more pricise, see [7, Theorem 5.2]. In the case of T k

2 , by
using our results in § III, the above result is extended as
follows.

Proposition 9. Suppose that A is a non-empty subset of
AD and A is closed under transposition. Then, the following
holds, where d runs over all distributions.

max
d

min
AD∈AD

C(AD, d) = max
d

min
A∈A

C(AD, d) (13)

Proof: Let dunif. be the uniform distribution on the 1-
set. By Lemma 2, the both sides of (13) are equal to the
following.

min
AD∈Ak

D

C(AD, dunif.) = min
AD∈A

C(AD, dunif.)

Hence, the AD (the class of all deterministic algorithms
for the tree) and Adir (that of all directional algorithms) have
the same distributional complexity.

In contrast, they do not agree on the question of “Which
distribution achieves the equilibrium?” A variant of the no-
free-lunch theorem implies the equivalence of “eigen” and
“E1”, but it does not imply the uniqueness of the eigen-
distribution. The set of all non-directional algorithms plays
an important role to show the uniqueness.
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