
Faster Recovery from Operating System Failure
and File Cache Missing

Yudai Kato, Shoichi Saito, Koichi Mouri, and Hiroshi Matsuo

Abstract—Rebooting a computer is one method to fix oper-
ating system (OS) failures. However this method causes two
problems. First, the computer will not be available until the
rebooting is finished. Second, the user data on the volatile main
memory will be erased. To address these problems, we propose
a system that can fix failures within one second without losing
file caches by replacing the OS encountering a fatal error by
another OS that is running on the same machine. Our proposed
system is constructed on one machine in which two OSes are
simultaneously operating. One OS is dedicated to the backup of
the other OS. Using the backup OS, we can instantly conduct
a failover. During the failover, the backup OS migrates the
remaining file caches in the main memory to protect the changes
in them before the OS failure.

Our proposed system was implemented on a Linux kernel
and can run on commodity x86 machines without any modifi-
cations to the applications. Therefore, it can be adapted for a
variety of applications and platforms.

Index Terms—Reliability, Fault-tolerance, File-cache, NFS,
LPAR

I. INTRODUCTION

T the demand for reliable computer systems continues
to increase. One of the factors that threatens their

reliability is operating system (OS) failures caused by bugs in
the OS kernel. However, completely removing bugs from the
kernel is difficult, because the amount of OS codes is growing
every year, which increases the possibility of introducing
bugs [1]. We have to construct systems that accept the
existence of bugs.

OS failure causes various problems, including loss of
temporary data on the main memory. As a result, files are
broken or the data of applications are lost. The general
method for restoring an OS facing failure is rebooting the
computer. However, the computer is not available for users
for tens of seconds during the rebooting process. In this
paper, we resolve these problems by making the restoration
process faster and protecting file caches from OS failure.

There is an existing solution for the resilience of file
systems for high availability (HA) systems. Distributed
Replicated Block Device (DRBD) is a distributed storage
system for clusters of HA systems. DRBD synchronizes
disks over the network to protect their contents from failure.
Using cluster management frameworks with DRBD, server
failover can be carried out and the cluster can transparently
continue service to clients. However, HA systems need such
expensive apparatus as a load balancer for failover and load
balancing, and these apparatuses also need to be duplicated

Manuscript received December 27, 2011; revised January 16, 2012.
Kato Yudai yudai@matlab.nitech.ac.jp, Shoichi Saito

shoichi@nitech.ac.jp and Hiroshi Matsuo matsuo@nitech.ac.jp are
with Nagoya Institute of Technology Gokiso-cho, Showa-ku, Nagoya
466-8555 Japan.

Koichi Mouri mouri@cs.ritsumei.ac.jp is with Ritsumeikan University.

for redundancy. Therefore, the cost of their introduction and
their managing is expensive.

The following are the goals of this paper.
• Making OSes robust against bugs
• Constructing a high availability system in a single

machine
• Using a machine with minimum hardware
• Quickly making failover
• Minimizing overhead
For these goals, we simultaneously execute two OSes on a

single machine with active/backup configurations. When the
active OS encounters a failure, the backup OS can take over
the active OS by migrating the devices and file cashes from
the active OS to itself. Our proposed system, which does not
need special hardware, is constructed on a single machine,
and thus the introduction cost is less than HA clusters.
In addition, our proposed system is lightweight, because it
rarely performs special processing. Instead of restoring the
hardware problems, our proposal addresses the OS failures
caused by bugs in the kernels and reduces the amount of time
for failovers. Our proposed system reduces the downtime
caused by OS failure and increases computer availability.

Various approaches have been researched to protect an OS
from bugs. For example, one work focuses on the codes
of device drivers, which often have bugs, and proposed a
mechanism that protects an OS from device drivers [2].
Although this research only targets the device driver, our
proposal has a wide scope that targets the whole kernel.

Otherworld [3] views an OS as software and proposes a
technique that replaces the crashed OS when it fails, and
applications can continue their execution after the replace-
ment. OS replacement is performed by booting a new OS
using warm-boot [4] and migrating the necessary kernel data
from the crashed OS to the new OS. However, the technique
greatly depends on the kernel data structures, which may be
destroyed when the OS crashes. No guarantee exists that the
technique will operate properly after the replacement. For
this reason, our proposed system depends less on such data
structures for robustness.

Methods also exist for the redundancy of file systems.
Fsck [5] is a basic tool for restoring broken file systems. It
scans a whole disk and can resolve the inconsistencies of the
file system. However, Fsck has a problem: its restoration time
is in proportion to the disk size. For this problem, several
techniques have been proposed, including Journaling [6],
SoftUpdates [7] and Log-structured File System [8]. Using
these techniques, we can quickly recover the file systems
after failures. Ext3 and Ext4, which are the default file
systems of Linux, have three modes: journal, ordered, and
write-back. The most redundant mode is journal, which can
protect both meta and user data from failures. However, it
significantly decreases the performance of the file system



because it writes the same blocks twice to disks. Therefore,
the default mode is ordered, which only protects the meta
data. As a result, journaling cannot protect the user data
from failure. To resolve this problem, we protect user data
by protecting the file caches from OS failure by migrating
them from the crashed OS to the backup OS. In addition,
the migration needs no special processing under normal
operating conditions to avoid increasing the overhead for the
file system.

This paper is organized as follows. In the next section we
outline our proposal. In Section III, we describe its design.
In Section IV, we discuss how it can be applied to existing
applications using an example of NFS servers. In Section V,
we describe the implementation of our proposed system. In
Section VI, we show the evaluation results of the amount of
time for performing a failover. After that, we discuss related
work in Section VII and conclude in Section VIII.

II. PROPOSAL

The amount of time for the failover of crashed OSes is
the total suspension time until the administrator detects the
failure and restarts the OSes. The computer is not available
at least while it is rebooting even if the administrator can
reboot the computer immediately after the failure. To reduce
the computer downtime, we automatically detect OS failures
and start a quick failover instead of restarting the computer.
In this section, we describe the outline of our proposal and
the behavior of our proposed system.

A. Outline

High availability (HA) clusters automatically detect de-
funct components using health check mechanisms [9] and
inspect the states of applications and networks. Our proposed
system provides a method to check the health of an OS
kernel. If the kernel is defunct, we simply conduct a failover.
To reduce the rebooting time, we simultaneously run two
OSes on the machine: active and backup. The backup OS can
quickly take over functions of the active OS when it fails to
operate properly. This shortens the failover time more than
rebooting. Therefore we can reduce the downtime caused by
OS failure. For failovers, the backup OS migrates devices
from the active OS to itself. During normal times, the backup
OS operates with minimal devices. Therefore, the backup
OS has to migrate the devices to take over as the active OS.
This migration is a particular feature of the proposed system
that is not necessary for rebooting. After the migration of
the devices, we migrate the file caches from the active to
the backup OS. Using the migration, we can protect the file
caches that remain in the volatile main memory from OS
failure.

B. Behavior

During failover, we migrate devices and file caches and
launch applications. Fig 1 shows a concept image of our
proposed system. The left shows the system during its normal
time, and the right shows the system after the active OS
encountered a failure. The machine has two devices: network
interface card (NIC) and hard disk drive (HDD). During
normal times, the devices belong to the active OS. After
failure, they are migrated from the active to the backup OS.

Fig. 1. Proposed system before encountering a failure and after failover

After migrations, the backup OS can communicate with the
remote processes with the same IP and MAC addresses used
by the active OS. Similarly, the backup OS can handle the
same files as the active OS. Next, we migrate the file caches
remaining in the volatile main memory from the active to
the backup OS so that the backup OS can properly reflect
the file operations performed at the active OS to the HDD.
Finally, we restore applications simply by launching the same
applications the active OS was executing before the failure.

III. DESIGN

We designed four components that have the functions
discussed in Section II.

• Multiple-OS execution platform
• Alive monitoring
• Device migration
• File cache migration

First, we describe the design of each component and then
discuss the coverage of the proposed system.

A. Multiple-OS execution platform

On the same machine, we execute two OSes: active and
backup. For such simultaneously running of the active and
backup OSes, we use Logical PARtition (LPAR) [10], which
is a virtualization technique that emulates multiple machines
on a physical machine. LPAR divides hardware into several
partitions that work as a virtual machine. Our multiple-OS
execution platform is software implementation of LPAR [11]
to reduce the dependency on hardware platforms.

Each OS is booted on a partition specified by kernel
parameters that are given by a bootloader. For example, a
machine with four CPU cores, 8 GB bytes of RAM, and two
hard disks may be divided into two separate virtual machines
with two CPU cores, 4 GB bytes of RAM, and a hard disk.

We employ software implementation for LPAR for our
proposed system because (1) the virtualization overhead is
very small, and (2) the partition layout can be dynamically
changed. The second characteristic is necessary for migrating
devices between OSes.

B. Alive monitoring

Next we describe how the backup OS confirms whether
the active OS is dead or alive. There are two situations
when an OS encounters a fault. First, the crashed OS itself



realizes the fault. Second, the OS cannot realize the fault.
The confirmation of the death of the active OS for the first
situation is easy because the active OS can send a dying
message to the backup OS. The second situation, which is
caused by serious bugs, immediately stops the OSes after
they encounter the bugs or the bugs don’t release the acquired
locks [12]. In this situation, since the crashed OS cannot send
a dying message, we use heartbeat messages that represent
that the active OS is alive. If the backup OS does not receive
any heartbeat messages at regular intervals, it concludes that
the active OS is dead. After confirmation of the death in
either way, the backup OS starts failover.

C. Device migration

The device migration mechanism is intended for migrating
environments from the active to the backup OS when the
former dies. Here we use a term environment to refer to
the configuration files, the libraries, the IP addresses and
the function of the devices. Environments are necessary for
applications on the backup OS to perform the same way as
the applications on the active OS. Because the active and
backup OSes run on other LPAR partitions, the devices of
both OSes are different when both are alive. Therefore, we
conduct device migration to move the environments from the
active OS to the backup OS. For example, migrating NIC
between the OSes can pass IP and MAC network addresses.
After the migration, remote processes that communicate with
the active OS can communicate transparently with the backup
OS after failures.

Virtual IP address (VIP), which is another method to
migrate IP addresses among multiple machines, shares IP
addresses among multiple hosts and can be migrated using a
gratuitous ARP. However we do not use this method, because
it requires two NICs for the proposal system to share an IP
address between the active and the backup OS. However the
backup OS does not work during normal times. Thus, the
NIC of the backup OS will be wasted if we use VIP. On
the other hand, device migration allows us to have only one
NIC for sharing IP and MAC addresses. In this way, device
migration can reduce the devices of the machine on which
our proposed system operates.

We can discuss the storage in the same way as for the
NICs. As mentioned in Section I, since DRBD syncs the
storages of separate machines, we can use DRBD for sharing
storage contents between the active and backup OSes instead
of migrating the storage devices. However if we employ
this method, one device will be wasted and syncing storages
needs communication between the OSes. Thus, we migrate
the storage devices instead of using a method to reduce
devices. However, a method that syncs the contents of disks
has an advantage if the storage device is broken physically.
But our proposal is not intended for physical problems of
machines but for OS bugs. In addition, we can make storage
redundant by other methods, e.g., RAID.

The migration of devices is carried out after the backup
OS confirms the death of the active OS. Migration is accom-
plished by modifying the layout of the LPAR partition of the
backup OS to include the devices of the active OS.

D. File cache migration

File cache reduces I/O processing by caching the storage
contents in the memory and accessing the cached contents
instead of fetching them from storage. There are two ways
for writing the cached contents. One is synchronously writing
both the cache and the storage: write-through. The other is
writing only to the cached contents, and reflecting to the
storage is delayed for a certain amount of time to reduce
I/O for writing the same storage blocks: write-back. Write-
back is usually more efficient than write-through for CPUs
latency and throughput. However, file updates might be lost
when the OS is disrupted because some caches haven’t been
written to the storage yet.

The loss of file caches is a major problem occurred by OS
failures. Our file cache migration mechanism can resolve this
problem to enhance the credibility of the file system. Using
a file cache migration mechanism, we can migrate the file
cache that remains on the volatile main memory from the
active to the backup OS. As a result, the file cache can be
written properly to the storage device.

The following steps are performed during migration. First,
the backup OS obtains the data structures related to the file
caches from the memory region of the active OS. Second, it
reconstructs file caches from the data structures. Finally, it
writes the file caches to the storage.

E. Coverage

Here we discuss the coverage of our proposed system
by clarifying failures that our system cannot fix. First,
our proposed system is intended for OS bugs. Therefore
hardware malfunction cannot be covered. If a storage device
(e.g., hard disks or solid state drives) is broken, we cannot
properly migrate file caches. As a result, the storage contents
may be lost forever. However, this isn’t a fatal problem,
because we can overcome it by combining our system
with other methods, e.g., RAID. A more fatal problem is
caused by the interruption of the power supply, because
both OSes on the proposed system must be stopped at the
same time. To cope with a power outage, we can use an
uninterruptible power source (UPS) to supply power so that
the OS can shutdown properly. Thus, our proposed method
can overcome the hardware problem with other techniques.
Second, since our proposed method does not migrate process
states, we cannot restore applications that depend on them.
For migrating process states between OSes, Otherworld [3]
was proposed. However, we believe the application states are
not important because many applications prepare for urgent
stops by storing important data in storage devices and can
restore the state using the data. Therefore, we only migrate
devices and file caches.

Last of all, our proposed system cannot handle bugs that
damage data structures related to file caches. If such damages
occur, we cannot migrate file caches properly. However, few
bugs damage the data, because kernel functions carefully
check the incorrect values of variables to stop the spread
of errors among kernel data structures. File system bugs are
exceptions, because the bugs directly damage the file caches.
For this reason, we cover the OS bugs, except file system
bugs.



IV. APPLICATION

In this section, we explain how our proposed system
enhances the availability of a operating system on a machine
using an example of an application to a Network File System
(NFS) server.

A. Influence of OS failure for NFS
NFS is a kind of server-client application for sharing files.

The NFS server exports its local directory to the network.
The NFS client mounts the directory to its own file system.
Since NFS is a stateless application, the NFS server can
handle client requests even if the server is rebooted after
a sudden interruption. However, only the case file operations
are properly reflected to storage. If the NFS server stops
because of OS failure while the NFS client was writing a file,
the NFS client retries the operation that was being processed.
Thus the NFS server will start processing the operation
request after the NFS server returns. However, the previous
operations for file-write are lost because the file cache was
lost. So the operation will be incomplete. Therefore file-write
operations will fail if the operations were being processed.
We verified this by crashing OS while writing big files on
NFS.

B. NFS server on proposed system
An OS failure suspends NFS until rebooting was finished

and damages the NFS files. Our proposed system resolves
these problems. In it, the NFS server will return soon after the
backup OS takes over the active OS, and all file operations
are reflected properly to the storage device by file cache
migration. Here, we discuss our system’s details.

For the initial state, we create an NFS server process
on both the active and the backup OS. A NFS client is
running on a remote machine and communicating with the
NFS server on the active OS through the network. The NFS
server on the active OS exports a directory /export, which
is a partition on the storage device. When the active OS
crashed because of bugs, alive monitoring detects it, and the
backup OS starts the failover to restore the NFS server. First,
the backup OS migrates the storage device and the NIC
from the active OS to it. The storage device contains the
partition for the NFS server. Then the backup OS mounts
the partition on the same directory /export. After that, the
backup OS migrates the dirty file cache that remains on
the volatile main memory to it. Next, attaching the same
IP address to the NIC used by the active OS, the backup OS
can communicate with remote NFS clients. In this stage,
the backup OS transparently finishes the failover for the
client. After that, the server begins processing the suspended
operations, which are successfully processed for the client
because the previous operations are never lost. Hence, our
proposed system can protect files even if the OS crashed
when the file was being written by the NFS clients.

In this way, we migrate environments from the active
to the backup OS, which transparently takes over for the
crashed OS to the NFS clients. We only describe the NFS
example, which is convenient for our system because of
the stateless and continuous reconnections. However other
applications (e.g., httpd) are also adaptable. We do not
modify the applications so that existing applications can be
easily executed on our system.

V. IMPLEMENTATION

In this section, we discuss the implementation of our
proposed system, which we implemented on Linux (2.6.38,
processor type x86 64). Both the active and backup OSes use
this kernel. We describe the implementation of a multiple-
OS execution platform, the failover mechanism, and alive
monitoring.

A. Implementation of multiple-OS execution platform

We implemented multiple-OSes execution platform by re-
ferring to SHIMOS [11], which is a software implementation
of LPAR. For creating a LPAR partition that represents a
virtual machine, every OS on the machine must exclusively
access the hardware of its partition. For this, SHIMOS
uses the kernel parameters given by the bootloader and
specifies the hardware at the initializing stage. An OS will
not initialize all the hardware but only specified hardware to
avoid accessing out of its partition. First, the OS is booted
from the normal bootloader, and subsequent OSes are booted
by a special bootloader based on kexec [4].

The CPU cores for a partition are specified by the first
core id and the number of cores; e.g., the first core id is two,
and number of cores is four, and then the partition has cores
from #2 to #5. The main memory region for a partition is
specified by the minimum and maximum addresses in bytes.
The partition devices are specified by the list of devices
represented by their bus and device numbers.

B. Failover

The failover of our proposed system is composed of device
and file cache migrations. First, we conduct device migration.
In the normal state, both OSes exclusively access their de-
vices by detaching other’s devices without initializing them.
Devices are migrated by reinitializing them by the backup OS
to which the devices are migrated. After reinitialization, we
conduct device specific initialization. For example, we mount
a partition of a storage device to the appropriate directory and
attach the same IP address used by the active OS to the NIC.

After that, we conduct file cache migration with Ext3
for the target file system. For the migration, the backup
OS reconstructs inodes from the dirty inodes that remain
in the memory region of the active OS. The backup OS
needs a way to the access memory of the active OS for
retrieving dirty file caches. Despite exclusive access to the
partition, it is not difficult to access the memory region
of other OSes because exclusive access is not based on
a mediation mechanism but mutual understanding of their
partitions. In other words, an OS can read/write all of the
main memory if needed. The backup OS can access out
of the partition without errors or exceptions. However, we
must be cautious about the virtual memory mechanism of
Linux. Data structures related to the file caches have pointers
to other data structures, and the address of the point is
finally translated to a physical address by a virtual memory
mechanism. This translation depends on the page table of
the OS. If the address mapping differs between the active
and backup OSes, the pointers cannot be translated properly.
Fortunately, this is not a problem for our implementation
because Linux uses a straight mapping region for most of the
pointers. The straight mapping region does not differ between



TABLE I
MACHINE SPECIFICATIONS

CPU Intel (R) Core (TM) i5 760 @ 2. 80 GHz
Memory 8GB
Devices SSD (Crucial m4) x2, NIC (Realtek 8111)

the active and backup OSes. The backup OS can retrieve each
data structure by simply accessing the pointers. Migrations
are performed for each disk partition. Ext3 manages disk
partitions as a structure named super block. A super block
has a pointer to the thread structure for syncing the disk, and
the thread has a pointer to the list of dirty inodes, which are
migration targets. After retrieving the inodes, we reconstruct
them for integration to the file system of the backup OS.
Finally, the inodes are inserted to the list of dirty inodes.
After migration, we can write or read the inodes in the
usual way, and file caches will be written to the disk by
the dedicated thread.

C. Implementation of alive monitoring

For alive monitoring, we use Inter Processor Interrupt (IPI)
with which a core can communicate with other cores through
the processor’s interrupt controller. As we discussed in III-B,
there are two messages, heartbeat and dying, for detecting
the failure of the active OS. Both messages are sent by IPI.
Their sources are the processor core of the backup OS, and
their destinations are the first core of the active OS. The
dying message is sent in the function panic(), which is called
when the kernel encounters fatal errors. After receiving this
message, the backup OS notices the death of the active OS
and immediately starts failover. During the normal time, the
active OS sends heartbeat messages at regular intervals using
interval timers. If any message cannot be received for several
seconds, the backup OS assumes that the active OS is dead.
With these two methods, alive monitoring detects the failure
of the active OS.

VI. EVALUATION

In this section we measure the time required to perform
failover. The machine specifications for the evaluation are
shown in Table I. We assigned an SSD for each OS and
used two SSDs. However, in the future, we plan to remove
one SSD by making the backup OS disk-less. For the
measurement, we deliberately crashed the active OS and
measured the length of the failover. In this evaluation, for
simplicity, the backup OS immediately detected the failure
of the active OS by receiving a dying message from the
active OS. While the backup OS was taking over the active
OS, the backup OS performed the following: (1) device
migration, (2) mounting storage, (3) file cache migration,
and (4) assignment of IP addresses to the NIC. We measured
the amount of time for (3) with several different amounts of
caches. The times for (1)(2)(4) did not differ by conditions,
and thus we measured the total time for (1)-(4) instead of
measuring them individually.

The measurement results of the amount of time for cache
migration are shown in Fig. 2. About 90 MBytes of the file
cache can be migrated within 70 milliseconds. We omitted
the results less than 16 MBytes because the amount of time
was too short. We tried to obtain a larger file cache by writing

Fig. 2. Time required to migrate file cache

Fig. 3. Flowchart for evaluations

128 MBytes file just before the failure of the active OS.
However, the amount of the retrieved file cache was less than
90 MBytes. Part of the file was already written by the thread
dedicated to syncing the file cache, because the OS kernel
tends to aggressively write-back file caches when there are so
much in the memory. Therefore, the file cache we retrieved
was less than 90 MBytes in our environment. After that, we
measured the time for (1)-(4). The results were from 560
to 650 milliseconds. The margin of 90 milliseconds reflects
the amount of time for file-cache migration. Our proposed
system can finish a failover process within one second.

Next, we measured the amount of downtime for the
network and the NFS on the proposed system using a remote
machine connected to a switching hub to which our proposed
system was also connected. We measured the time (a)(b)(c)
shown in Fig. 3. First, we measured the network downtime.
We continuously sent echo requests using Internet control
message protocol (ICMP) before the active OS crashed. Next
we measured the downtime using the amount of time between
(a) the beginning of the first echo request that failed to come
back and (b) the time of the echo request that first came back
after the failover. The result was about 3.1 seconds, which
is slightly longer than the one second of the failover. Thus
we should identify a cause. We also measured the downtime
for the NFS service by mounting a NFS directory exported
by the active OS to the remote host’s directory /mnt. We
measured the time a remote host’s request was suspended
(requests for NFS server are suspended until the server comes
back). The start time of the suspended operation was the



same as (b), and its end is denoted by (c). The results ranged
from about three to 13 seconds. They were much longer
than the network downtime. We conducted the same measure
using a UDP protocol, and the time was about 3 milliseconds.
Therefore, if NFS uses a UDP protocol, it can communicate
immediately after the network comes back.

VII. RELATED WORK

Otherworld [3] uses Microreboots [13] technique and
migrates processes from the crashed kernel to the new booted
kernel to maintain application executions. A new kernel is
booted by kexec [4], which is a method for warm-booting.
The data structures of the processes are retrieved from the
main memory to reconstruct and migrate them to the new
kernel. In this way, Otherworld protects the application
executions from OS failure. However, Otherworld greatly
depends on the kernel data structures that might be damaged
by failures. As we mentioned in Section I, we don’t think the
application state is important. For safety, we only migrate
file caches because the dependency of the file caches on
the kernel data structures are much smaller than the process
states.

RIO File Cache [14] proposes a method to write-back
file caches to the disk after OS failure. For this, a function
sync() is called after the failure. For ensuring the call of
sync(), a dedicated interrupt handler is called after the failure.
Sync() is modified so that it doesn’t depend on the crashed
kernel data structures, except the file caches. The RIO File
can write-back the dirty file caches more safely than write-
through. Our proposed system wrote-back dirty file caches
using the backup OS instead of sync(). Therefore, it is less
dependent on the kernel data of the active OS and can write-
back the file caches as safely as Rio File Cache.

Microkernel is as an approach to reduce kernel bugs
[15]. Pure microkernels have minimum functions in their
kernels, and other functions are implemented as user pro-
cesses. Therefore, microkernels can eliminate the possibility
of inserting bugs into their kernels, and the other bugs can be
treated as process errors, which are well isolated from other
processes. Our proposed system improves the availability
of the OS with monolithic kernels. However, our migration
mechanism may be useful for microkernels.

The codes of device drivers often have bugs in their
monolithic kernels [16]. The problems with driver codes
are not only their size but also their complexity, which
reflects device handling. Nooks [2] proposed a method that
allows applications to continue after driver failure. However,
other larger parts contain bugs (e.g., specific architecture
codes) [17]. Therefore, methods for device drivers are not
sufficient. Our proposed system can handle a large variety
of bugs in the kernel.

VIII. CONCLUSION

In this paper, we proposed a system with a failover
mechanism for operating systems. Our proposed system’s
failover takes less than one second. The user data in the
file cache are never lost because they are migrated by a
file cache migration mechanism. Consequently, our proposed
system can resolve problems caused by rebooting after OS
failure. It runs on commodity x86 machines and needs no

modifications for applications. During normal times, since
there is no special processing except for heartbeat messages,
our proposed system is lightweight.

Future work will randomly insert bugs into kernels to
measure the durability of our proposed system.

REFERENCES

[1] A. S. Tanenbaum, J. N. Herder, and H. Bos, “Can we make operating
systems reliable and secure,” Computer, vol. 39, pp. 44–51, 2006.

[2] M. M. Swift, M. Annamalai, B. N. Bershad, and H. M. Levy,
“Recovering device drivers,” ACM Transactions on Computer Systems,
vol. 24, pp. 333–360, 2006.

[3] A. Depoutovitch and M. Stumm, “”otherworld”: Giving applications a
chance to survive os kernel crashes,” in EuroSys, 2008, pp. 181–194.

[4] A. Pfiffer, “Reducing system reboot time with kexec.”
http://www.osdl.org/.

[5] M. K. Mckusick and T. J. Kowalski, “Fsck - the unix file system check
program,” 1994.

[6] A. Sweeney, A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishi-
moto, and G. Peck, “Scalability in the xfs file system,” in In Proceed-
ings of the 1996 USENIX Annual Technical Conference, 1996, pp.
1–14.

[7] M. K. Mckusick, M. K. Mckusick, G. R. Ganger, and G. R. Ganger,
“Soft updates: A technique for eliminating most synchronous writes
in the fast filesystem,” in In Proceedings of the Freenix Track: 1999
USENIX Annual Technical Conference, 1999, pp. 1–17.

[8] M. Rosenblum and J. K. Ousterhout, “The design and implementation
of a log-structured file system,” ACM Transactions on Computer
Systems, vol. 10, pp. 1–15, 1991.

[9] “Keepalived for linux.” [Online]. Available:
http://www.keepalived.org/

[10] T. L. Borden, J. P. Hennessy, and J. W. Rymarczyk, “Multiple
operating systems on one processor complex,” IBM Systems Journal,
vol. 28, no. 1, pp. 104 –123, 1989.

[11] T. Shimosawa, H. Matsuba, and Y. Ishikawa, “Logical partitioning
without architectural supports,” in International Computer Software
and Applications Conference, 2008, pp. 355–364.

[12] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, “An empir-
ical study of operating systems errors,” in Symposium on Operating
Systems Principles, 2001, pp. 73–88.

[13] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox,
“Microreboot - a technique for cheap recovery,” in Operating Systems
Design and Implementation, 2004, pp. 31–44.

[14] P. M. Chen, W. T. Ng, S. Chandra, C. M. Aycock, G. Rajamani, and
D. E. Lowell, “The rio file cache: Surviving operating system crashes,”
in Architectural Support for Programming Languages and Operating
Systems, 1996, pp. 74–83.

[15] C. Giuffrida, L. Cavallaro, and A. S. Tanenbaum, “We crashed, now
what?” in Proceedings of the Sixth international conference on Hot
topics in system dependability, ser. HotDep’10. Berkeley, CA, USA:
USENIX Association, 2010, pp. 1–8.

[16] M. M. Swift, B. N. Bershad, and H. M. Levy, “Improving the reliability
of commodity operating systems,” in Symposium on Operating Systems
Principles, 2003, pp. 207–222.

[17] N. Palix, G. Thomas, S. Saha, C. Calvès, J. Lawall, and G. Muller,
“Faults in linux: ten years later,” in Architectural Support for Pro-
gramming Languages and Operating Systems, 2011, pp. 305–318.




