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Abstract—An improved particle swarm optimizer with inertia
weight (PSOIWα) was applied to multi-objective optimization
(MOO). In this paper we present a method of multiple particle
swarm optimizers with inertia weight (MPSOIWα), which
belongs to a kind of the methods of cooperative particle swarm
optimization. The crucial idea of the MPSOIWα, here, is to
reinforce the search ability of the PSOIWα by the union’s
power of plural swarms. To demonstrate its effectiveness and
search performance, computer experiments on a suite of 2-
objective optimization problems are carried out by a weighted
sum method. The resulting Pareto-optimal solution distribu-
tions corresponding to each given problem indicate that the
linear weighted aggregation among the adopted three kinds of
dynamically weighted aggregations is the most suitable for ac-
quiring better search results. Throughout quantitative analysis
to experimental data, we clarify the search characteristics and
performance effect of the MPSOIWα contrast with that of the
PSOIWα and MPSOIW.

Index Terms—particle swarm optimization, swarm intelli-
gence, hybrid search, multi-objective optimization, weighted
sum method.

I. I NTRODUCTION

M ULTI-objective optimization (MOO) is the processing
of optimizing simultaneously two and more conflict-

ing objectives subject to certain constraints [4], [6]. Since
many practical problems are involved in MOO, which can be
mainly found in different domains of science, technology, in-
dustry, finance, automobile design, aeronautical engineering
and so on [8], [11], [23], how to efficiently deal with MOO
becomes a live issue, and is centered on the development of
the treatment technique.

Particle swarm optimization (PSO), which was created by
Kennedy and Eberhart in 1995, is an adaptive, stochastic, and
population-based optimization technique [15]. Based on the
special features, i.e. information exchange, intrinsic mem-
ory, and directional search, the technique has higher latent
search ability in optimization compared to some methods of
evolutionary computation (EC) such as genetic algorithms
and genetic programming [19], [20], [26], [27]. Especially,
in recent years, a large number of studies, and investigations
on cooperative PSOa in relation to symbiosis, group behavior,
and synergy are in the researcher’s spotlight. Various kinds
of the methods of cooperative PSO, for example, hybrid
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aCooperative PSO is generally considered as multiple swarms (or sub-
swarms) searching for a solution (serially or in parallel) and exchanging
some information during the search according to some communication
strategies.

PSO, multi-layer PSO, multiple PSO with decision-making
strategy etc. were published [2], [10], [17], [27].

In contrast to those methods running a single particle
swarm, many attempts and strategies can be perfected with
operating multiple particle swarms for more efficiently find-
ing an optimal solution or near-optimal solutions [3], [14],
[17], [28]. Owing to the plain advantage, utilizing the tech-
niques of group searching, parallel and intelligent processing
has become one of extremely important approaches to opti-
mization, and a lot of publications and reports have been
shown that the methods of cooperative PSO have better
adaptability and higher search performance than ones of
uncooperative PSO in dealing with various optimization and
practical problems [18].

An improved particle swarm optimizer with inertia weight
(PSOIWα) was published [30]. For further upgrading its
search performance to MOO, in this paper we propose to
use a method of cooperative PSO, called multiple particle
swarm optimizers with inertia weight (MPSOIWα). The
crucial idea of the MPSOIWα, here, is to reinforce the
search ability of the PSOIWα by the union’s power of
plural swarms. Although the search feature and performance
of some PSO methods in MOO with fitness assignment
manners such as criterion-based manner or dominance-based
manner were studied and investigated [24], [25], there are
insufficient results for systematically solving MOO problems
by an aggregation-based manner, and analyzing the potential
characteristics in details from the obtained experimental
results [6], [16].

To demonstrate the effectiveness and performance ef-
fect of the MPSOIWα, computer experiments on a suite
of 2-objective optimization problems are carried out by a
weighted sum method. For interpreting the information treat-
ment and search effect of the method, we show the distribu-
tions of the obtainedPareto-optimal solutions corresponding
to each given problem by respectively using three kinds
of dynamically weighted aggregations (i.e. linear weighted
aggregation, bang-bang weighted aggregation, and sinusoidal
weighted aggregationb), point out that which one of them is
the most suitable for acquiring good search results to the
given MOO problems, and clarify the search characteristics
and performance of the MPSOIWα contrast with that of the
PSOIWα and MPSOIW.

II. BASIC CONCEPTS

For explaining how to treat with MOO by a fitness
assignment manner, some basic concepts and definitions
on a general MOO problem,Pareto-optimal solution, front
distance, cover rate, a weighted sum method, and three kinds
of dynamically weighted aggregations are briefly described.

bMany researchers call sinusoidal weighted aggregation (SWA) as dy-
namic weighted aggregation (DWA).



A. MOO Problem

In general, the formulation of a MOO problem can be
defined as follows.

Minimize
~x

(
f1(~x), f2(~x), · · · , fI(~x)

)T

s.t. gj(~x) ≥ 0, j = 1, 2, · · · , J
hm(~x) = 0, m = 1, 2, · · · ,M
xn ∈ [xnl, xnu], n ∈ (1, 2, · · · , N)

(1)

where fi(~x) is the i-th objective, gj(~x) is the j-th in-
equality constraint,hm(~x) is the m-th equality constraint,
~x = (x1, x2, · · · , xN )T ∈ <N = Ω (search space) is the
vector of decision variable,xnl and xnu are the superior
boundary value and the inferior boundary value of each
componentxn of the vector~x, respectively.

Due to the given condition ofI ≥ 2, theI-objectives may
be conflicting with each other. Under this circumstance, it is
difficult to obtain the global optimum corresponding to each
objective by traditional optimization methods at the same
time. Consequently, the goal of handling the MOO problem
is effectively to achieve a set of solutions that satisfyPareto
optimality for improvement of mental capacity.

B. Pareto-optimal Solution

A solution ~x∗ ∈ Ω is said to bePareto-optimal solution
if and only if there does not exist another solution~x ∈ Ω so
thatfi(~x) is dominated byfi(~x

∗). The formula of the above
relationship is expressed as

fi(~x) 6≤ fi(~x∗) ∀i ∈ I iif fi(~x) 6< fi(~x
∗) ∃i ∈ I (2)

In other words, this definition says that~x∗ is a Pareto-
optimal solution if there exists no feasible solution (vector)
~x which would decrease some criteria without causing a
simultaneous increase in at least one other criterion.

Furthermore, all thePareto-optimal solutions for a given
MOO problem are composed of thePareto-optimal solution
set (P ∗), or thePareto front (PF ).

C. Weighted Sum Method

There are some fitness assignment manners such as
aggregation-based one, criterion-based one, and dominance-
based one, which are used for MOO [7], [12]. As to be gen-
erally known, a conventional weighted sum (CWS) method
is a straightforward approach applied to deal with MOO
problems. In this case, the different objectives are summed
up to a single scalarFs (criterion) with some prescribed
weights as follows.

Fs(~x) =
I∑

i=1

cifi(~x) (3)

whereci(i = 1, 2, · · · , I) is the non-negative weight. During
the optimization, usually, these weights are fixed by the
constraint of

∑I
i=1 ci = 1, and prior knowledge is also

needed to specify these weights for obtaining good solutions.
To thoroughly conquer the weakness of the CWS method

run, the following dynamically weighted sum (DWS) method
is often used to MOO in practice. The criterionFd of the
method can be expressed as follows.

Fd(t, ~x) =
I∑

i=1

ci(t)fi(~x) (4)

where t is time-step to search, andci(t) ≥ 0 is the dy-
namic weight. In order to present the method, a 2-objective
optimization problem is considered as an example. Hence,
the definitions of three kinds of the adopted dynamically
weighted aggregations are expressed below.
• Linear weighted aggregation (LWA):

cl1(t) = mod
( t
T
, 1
)
, cl2(t) = 1− cl1(t)

• Bang-bang weighted aggregation (BWA):

cb1(t) =
sign

(
sin(2πt/T )

)
+1

2
, cb2(t) = 1− cb1(t)

• Sinusoidal weighted aggregation (SWA):

cs1(t) =
∣∣∣sin

(πt
T

)∣∣∣, cs2(t) = 1− cs1(t)

where T is a period of the variable weights in the above
equations.

D. Front Distance

Front distance is expressed as a metric of checking how
far the elements are in the set of non-dominated solutions
found from those in the truePareto-optimal solution set.
It directly reflects the estimation accuracy of the optimizer
used. Concretely, the definition of front distance (FD) is
expressed as

FD =
1
Q

√√√√
Q∑
q=1

d2
q , dq = fi(~x

∗
q )− fi(~xoq ), ∀i ∈ I (5)

whereQ is the number of the elements in the set of non-
dominated solutions found, anddq is the Euclidean distance
(measured in objective space) between each of these obtained
optimal solutions,~xo, and the nearest member,~x∗, of the true
Pareto-optimal solution set.

E. Cover Rate

Cover rate (CR) is an other metric for checking the
coverage of the elements being in the set of non-dominated
solutions found to thePareto front. This is because the
estimation accuracy is insufficiency to reveal the distribution
status of the obtainedPerato-optimal solutions and their
possibility for dealing with the given problem.

Here, the formulation of CR is mathematically expressed
by

CR =
1
I

I∑

i=1

CRi (6)

whereCRi is the partial cover rate corresponding to thei-th
objective, which is defined as

CRi =
∑Γ
l=1 γl
Γ

(7)

whereΓ is the number of dividing thei-th objective space
which is from the minimum to the maximum of the fitness
value, i.e.[fi(~x)min, fi(~x)max], andγl ∈ (0, 1) indicates the
existence status of the obtained optimal solutions in thel-th
subdivision for thei-th objective.



III. A LGORITHMS

For the convenience of the following description to the
used every optimizer, let the search space beN -dimensional,
the number of particles of a swarm beP , the position of the
i-th particle be~x i = (xi1, x

i
2, · · · , xiN )T ∈ Ω, and its velocity

be~v i = (v i1, v
i
2, · · · , v iN )T ∈ Ω, respectively.

A. The PSOIW

To overcome the weak convergence of the original PSO
[1], [5], Shi et al. modified the update rule of thei-th parti-
cle’s velocity by constant reduction of the inertia coefficient
over time-step [9], [21]. Concretely, the formulation of the
particle swarm optimizer with inertia weight (PSOIW) is
defined as
{
~xik+1 =~x ik + ~v ik+1

~v ik+1 =w(k) ~v ik + w1~r1⊗(~p ik−~x ik) + w2~r2⊗(~qk−~x ik)
(8)

wherew1 andw2 are coefficients for individual confidence
and swarm confidence, respectively.~r1, ~r2 ∈ <N are two ran-
dom vectors, each element of which is uniformly distributed
on the interval[0, 1], and the symbol⊗ is an element-wise
operator for vector multiplication.~p ik (=arg max

k=1,2,···
{g(~x ik)},

whereg(~x ik) is the criterion value of thei-th particle at time-
stepk) is the local best position of thei-th particle up to now,
~qk(=arg max

i=1,2,···
{g(~p ik)}) is the global best position among

the whole particles at time-stepk. w(k) is the following
variable inertia weight which is linearly reduced from a
starting valuews to a terminal valuewe with the increment
of time-stepk.

w(k) = ws+
we−ws
K

× k (9)

whereK is the number of iteration for the PSOIW run. In
the original PSOIW, two terminal values,ws andwe, are set
to 0.9 and 0.4, respectively, andw1 = w2 = 2.0 are used as
same as the original PSO.

Owing to the bigger difference between the two boundary
values of the variable inertia weight, it is obvious that the
search behavior of the PSOIW achieves a search shift which
smoothly changes from exploratory mode to exploitative one
in the whole optimization process. Hence, this way is very
simple and useful for conquering the weakness of the PSO
in convergence and enhancing the solution accuracy. On the
other hand, the shortcoming of the PSOIW is easily to fall
into a local minimum and hardly to escape from that place
in dealing with multimodal problems because the terminal
valuewe is set to small.

B. The PSOIWα

For alleviating the weakness of the PSOIW search, we
introduce the LRS [22], [29] into the PSOIW to form a
hybrid search optimizer (called PSOIWα). Implementing
the PSOIWα, here, is to enable a particle swarm search
escapes from local minimum sooner for efficiently obtaining
an optimal solution or near-optimal solutions.

The PSOIWα’s procedure is implemented as follows.

step-1: Give the terminating condition,U (the number
of random data) of the PSOIWα run, and set the
counteru = 1.

step-2: Implement PSOIW and determine the best solu-
tion ~qk at time-stepk, and set~qnow = ~qk.

step-3: Generate a random data,~zu ∈ <N ∼ N(0, σ2)
(whereσ is a small positive value given by user,
which determines the small limited space). Check
whether~qk+~zu ∈ Ω is satisfied or not. If~qk+~zu 6∈
Ω then adjust~zu for moving~qk+~zu to the nearest
valid point within Ω. Set~qnew = ~qk + ~zu.

step-4: If g(~qnew)>g(~qnow) then set~qnow=~qnew.
step-5: Setu = u+ 1. If u ≤ U then go to thestep-2.
step-6: Set ~qk = ~qnow to correct the solution found by

the particle swarm at time-stepk. Stop the search.

C. The MPSOIWα

For improving the search ability of the existent PSOIWα
to MOO, we propose to use multiple particle swarm opti-
mizers with inertial weight, MPSOIWα. Figure 1 illustrates
a flowchart of the MPSOIWα.

Fig. 1. A flowchart of the MPSOIWα.

The most difference between the PSOIWα and MPSOIWα
in composition is just to implement the plural PSOIWα (S ≥
2) in parallel for finding the most suitable solution or near-
optimal solutions. Concretely, the best solution of the multi-
swarm search, i.e.~xok =arg max

i=1,2,···,S
{g(~q ik)}, is determined

from the solutions obtained by each PSOIWα run at time-
stepk, and then put it into a solution set which is the storage
memory of the multi-swarm.

It is obvious that the MPSOIWα is the use of swarm
intelligence to search by the union’s power of plural swarms
for enforcing the search ability of the PSOIWα. It is to be
noted that if the LRS is not implemented after each PSOIW
run, the method will be called as MPSOIW.

IV. COMPUTEREXPERIMENTS

To facilitate comparison and analysis of the search perfor-
mance of the proposed MPOSIWα, the suite of 2-objective



TABLE I
A SUITE OF 2-OBJECTIVE OPTIMIZATION PROBLEMS

problem objective search range

ZDT1 f11(~x) = x1, g(~x) = 1 +
9

N − 1

N∑
n=2

xn, f12(~x) = g(~x)

(
1−
√

f11(~x)

g(~x)

)
Ω ∈ [0, 1]N

ZDT2 f21(~x) = x1, f22(~x) = g(~x)

(
1−
(
f21(~x)

g(~x)

)2
)

Ω ∈ [0, 1]N

ZDT3 f31(~x) = x1, f32(~x) = g(~x)

(
1−
√

f31(~x)

g(~x)
−
(
f31(~x)

g(~x)

)
sin
(
10πf31(~x)

) )
Ω ∈ [0, 1]N

Fig. 2. Solution distributions of the MPSOIWα and MPSOIW by using the LWA (red-point), BWA (blue-point) and SWA (green-point), respectively.
Notice: the distance between the experimental data sets for each subgraph is 0.05 (shift only in horizontal direction).

optimization problems [31] in Table I is used in the next com-
puter experiments. The characteristics of thePareto fronts
of the given problems include the convex (ZDT1), concave
(ZDT2), and discontinuous multimodal (ZDT3), respectively.

TABLE II
MAJOR PARAMETERS OF THEMPSOIWα RUN

parameter value
the number of particles,P 10
the number of iterations,K 25

the number of period,T 2500
the number of random points,U 10
the search range of the LRS,σ 0.1

the number of multiple particle swarms,S 3

Table II gives the major parameters of the MPSOIWα
for solving the given problems in Table I. The choice of

their values is referred to the results of some preliminary
experiments.

A. Performance Comparison

For the sake of observation, Figure 2 shows the resulting
solution distributions of the MPSOIWα and MPSOIW by
using the LWA, BWA, and SWA, respectively. According to
the distinction of each solution distribution corresponding
to these given problems, the analytical judgment can be
described as follows.

1) Regardless of the used methods either the MPSOIWα
or MPSOIW, and the characteristic of each given prob-
lems, the resulting features and solution distributions
are nearly same.



TABLE III
PERFORMANCE COMPARISON OF BOTH THEMPSOIWα AND MPSOIW BY USING THE LWA, BWA, AND SWA, RESPECTIVELY(Γ IS SET TO100).

MPSOIWα MPSOIW
problem aggregation solution FD CR (%) solution FD CR (%)

LWA 1254 2.234×10−8 99.5 1191 3.948×10−8 99.5
ZDT1 BWA 187 9.809×10−5 52.0 227 1.107×10−4 53.0

SWA 988 4.511×10−8 99.5 1016 7.355×10−8 99.0
LWA 272 1.198×10−8 94.0 283 1.992×10−7 94.0

ZDT2 BWA 259 3.692×10−7 92.0 228 8.852×10−7 91.5
SWA 229 7.604×10−8 93.5 219 3.381×10−7 93.0
LWA 1231 8.961×10−7 46.0 1107 9.245×10−7 45.5

ZDT3 BWA 396 1.655×10−4 40.5 421 6.551×10−5 40.0
SWA 949 9.433×10−7 42.5 1018 1.092×10−6 42.0

# The values in bold signify the best result for each given problem.

2) Regardless of the used methods and the characteris-
tics of the given problems, the conditions of solution
distributions by using the BWA are worse than that
by using the LWA or SWA special for theZDT1 and
ZDT3 problems.

3) In comparison with the solution distributions of using
the LWA for both theZDT1 (convex) andZDT2 (con-
cave) problems, the former is relatively in the higher
density.

For quantitative analysis to the experimental results of
the MPSOIWα and MPSOIW in Figure 2, Table III gives
the statistical data, i.e. the number of the obtained optimal
solutions~xo, and the correspondingFD and CR for each
given problem.

The following features can be observed from Table III.
Firstly, there is the most number of solutions obtained by
using the LWA for the given problems even for theZDT2
one in where a large number ofPareto-optimal solutions are
in unstable position [13]. Secondly, the solution accuracy
of the MPSOIWα is superior to that of the MPSOIW for
each given problem. Thirdly, the obtained results of using
the LWA in CR index are the best than that of using BWA
and SWA, respectively. Fourthly, the search performance of
using the LWA is not only much better than that of using
the BWA, but also is relatively better than that of using the
SWA as a whole.

Therefore, the effectiveness and search ability of the
MPSOIWα are roughly confirmed by the above analytical
results. Furthermore, better solution distribution and higher
solution accuracy can be observed as well by using either the
LWA or SWA. Our experimental results indicate that smooth
change of their criteria with the growth of time-stept can
make that the probability finding good solutions greatly goes
up in the same period,T=2500, as evidence.

Based on the above mentioned comparison and observa-
tion, the relationship of domination reflecting the search per-
formance (SP) of the MPSOIWα by using each dynamically
weighted aggregation can be expressed as follows.

SPLWA � SPSWA � SPBWA

The relationship of the above domination indicates that
the uniform change of the weights can make the moving
process of variable criterion to be equalization which raises
the probability finding thePerato-optimal solution to the
maximum under the condition of implementing the same
optimizer. Due to this reason, more good solutions can be
easily obtained during the short search cycle,K = 25.

B. Effect of Multi-swarm Search

For equal treatment in search, the number of particles used
in a swarm is the same to the total number of particles used
in the 3-swarms. As an example, Figure 3 shows the resulting
solution distributions of both the MPSOIWα and PSOIWα
(i.e. P =30) by using the LWA. We can see that the density
of solution distributions of the MPSOIWα are higher than
that of the PSOIWα for each given problem.

Fig. 3. The solution distributions of the MPSOIWα (red-point) and
PSOIWα (blue-point) by using the LWA.

Table IV gives the performance indexes, i.e. the number
of the optimal solutions~xo obtained by using the LWA,
and the correspondingFD and CR for the given problems.
By directly comparing the performance indexes with the
MPSOIWα and PSOIWα, the big difference between the
both experimental results clearly indicate the strong points
of the multi-swarm search in dealing with the given MOO
problems under the condition of the same number of particles



TABLE IV
SEARCH PERFORMANCE OF BOTH THEMPSOIWα AND PSOIWα

(P = 30) BY USING THE LWA (Γ IS SET TO100).

problem method solution FD CR (%)
MPSOIWα 1254 2.234×10−8 99.5

ZDT1 PSOIWα 522 6.661×10−8 91.0
MPSOIWα 272 1.198×10−8 94.0

ZDT2 PSOIWα 231 9.938×10−8 61.5
MPSOIWα 1231 8.961×10−7 46.0

ZDT3 PSOIWα 432 4.496×10−6 41.0

used. It is demonstrated that the MPSOIWα is a powerful
method of cooperative PSO to MOO.

V. CONCLUSIONS

In this paper, multiple particle swarm optimizers with
inertia weight, MPSOIWα, has been presented to MOO.
Based on the composition of the MPSOIWα, it is the most
simple expansion of the existent PSOIWα, which has the
advantages of a hybrid search with easy-to-operation as a
method of cooperative PSO.

Applications of the MPSOIWα to the given suite of 2-
objective optimization problems well demonstrated its ef-
fectiveness by the aggregation-based manner. Owing to the
resulting experimental data by respectively using three kinds
of dynamically weighted aggregations, it is observed that
the search performance of the MPSOIWα is superior to
that of the PSOIWα and MPSOIW, and the comparative
analysis of the MPSOIWα shows that the search performance
of using the LWA is better than that of using the BWA
or SWA for the given MOO problems. Therefore, it is
no exaggeration to say that our experimental results could
offer an important evidence, i.e. choosing the dynamically
weighted sum method with the LWA for efficiently dealing
with complex MOO problems.

It is left for further study to apply the MPSOIWα to MOO
problems in the real-world. Furthermore, in order to enhance
the adaptability, efficiency, and solution accuracy of the
MPSOIWα, the search strategies and attempts on prediction,
intelligent and powerful cooperative PSO algorithms [2],
[10], [30] will be discussed for MOO in near future.
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