
Monitoring Instruction-based Intrusion Detection
and Self-healing System

Hironori Shirai, Shoichi Saito, Koichi Mouri, and Hiroshi Matsuo

Abstract—Anomaly-based Intrusion Prevention Systems
(IPSs) currently protect systems from zero-day attacks. How-
ever, since they either only inform administrators about the
intrusions and/or just stop services or systems, they cannot
stably continue services until the vulnerabilities are fixed by
security patches. So self-healing systems (SHSs) are needed
because they continue to safely execute services even if the
applications have vulnerabilities. However since most SHSs
rely on execution flows, e.g., system-call and library-function
sequences, these systems cannot recover from non-control-
data attacks. Such attacks target data that are not related
with execution flow: user inputs, configuration data, etc. In
this paper, we propose a novel SHS named RIN, Reactive
INstruction-level recovery system, that uses instruction level
rules for detection and recovery. RIN detects the falsifications
of most data used in target applications and repairs them. We
implemented RIN and evaluated it. The results show that it has
sufficient functionality to find and fix the vulnerabilities for a
function pointer and non-control-data.

Index Terms—Intrusion Prevention System, Self-Healing Sys-
tem, Continuing execution, Invariants, DynamoRIO

I. INTRODUCTION

Z ero-day attacks continue to increase. Most attacks are
based on the security holes of server applications.

Security holes are fixed by patches distributed by various
manufacturers, but zero-day attacks frequently happen before
the vulnerabilities are fixed. Furthermore, the patches are
often distributed too late. As a result, protecting the appli-
cations under vulnerabilities is a pressing problem. We must
develop anomaly-based intrusion detection systems (IPSs)
that can detect new or unknown attacks and self-healing
systems (SHSs) that can recover applications and continue to
execute them after they detect an anomaly. SHSs need high
functionality for both detection and recovery components
because they can recover applications only after detecting
an anomaly.

Table I represents the detection and recovery types of
existing IPSs and SHSs. Most IPSs [1]–[5] detect anoma-
lies by buffer overflow or execution flows like system-call
sequences. Consequently, since SHSs [6]–[13] cannot detect
attacks that do not modify flows, recovery functions are not
called. We must improve the detection methods.

We focus on ClearView [13] because it has the strongest
recovery function. It uses an execution rule of operands
(usually registers and memory) by instruction-based analysis
for recovery. Therefore the system can recover almost all
the values used in the target applications including non-
control-data: user inputs, configuration data, etc. Contrary

Manuscript received December 28, 2011; revised January 16, 2012.
Hironori Shirai, Shoichi Saito, and Hiroshi Matsuo are with the

Nagoya Institute of Technology, Japan (e-mail: shirai@matlab.nitech.ac.jp,
shoichi@nitech.ac.jp, and matsuo@nitech.ac.jp)

Koichi Mouri is with Ritsumeikan University, Japan (e-mail:
mouri@cs.ritsumei.ac.jp)

TABLE I
COMPARISONS OF RELATED WORKS

hhhhhhhhhRecovery type

Detection type Crash, Buffer overflow Illegal flow

No-recovery
(IDS, IPS)

StackGuard [1],
CCured [2]

Belem [3], e-NeXSh
[4], Memory-Firewall
[5]

Packet filtering ARBOR [6],
Xu et al. [7], Rx [8]

Checkpoint-
rollback

Rx [8]
Function-based
flow control

Tobias H. [9],
ASSURE [10]

Shadow memory SRS [11] HookSafe [12]
Instruction-level
recovery ClearView [13]

to recovery, it cannot detect non-control-data falsification be-
cause the system checks the illegal control flow for detection.
The system also needs additional executions to collect the
recovery information.

Other SHSs [6]–[12] can recover from the point where
they detected a crash or a flow and a small amount of
information (packet logs, error return values, etc.) because
they recover by simple ways. On the other hand, ClearView
needs more information because it recovers in a more precise
way. However, it uses flow-based detection like the other
SHSs. As a result, ClearView needs additional executions to
collect information for instruction-based recovery.

We use an instruction-based rule not only for recovery
but also for detection to improve the detection accuracy and
to reduce the number of reboots until recovery has been
completed. In this paper, we propose a novel SHS named
RIN, Reactive INstruction-level recovery system, that uses an
instruction-based rule for both detection and recovery. RIN
can detect and recover from non-control-data falsifications
that are difficult for existing systems [6]–[13].

This paper is organized as follows. Section II describes the
advantages of RIN, and Section III overviews our approach.
Section IV describes the implementation, and Section V
evaluates RIN. Section VI describes related research. We
discuss our approach in Section VII and provide a conclusion
in Section VIII.

II. CONTRIBUTIONS

RIN can detect and recover all operands in the instructions
used in target applications since RIN uses values of operands
(registers and memory) as a regular execution rule (RER).
Thus RIN can cover not only simple stack overflow and
execution flows but also function pointers and non-control-
data that are difficult for existing systems to handle. Addi-
tionally, since RIN can collect recovery information during a
detection process because it uses the same RER for detection
and recovery, it can skip execution for collecting recovery

information after detection and need just one restart at the
the earliest recovery.

RIN provides an environment in which applications can be
executed safely for web servers until official recovery patches
are distributed.

III. DESIGN

We propose a new SHS named RIN that uses instruction-
based rules for detection and recovery. RIN consists of three
components: profiling, detection, and recovery. The profiling
component generates an RER by executing target applica-
tions under safe environments. The detection component
compares application states with the RER. The component
determines an anomaly and immediately stops the application
if it finds many RER violations. The component stores
all the violated instructions as a violation list and reboots
the application. After rebooting, the recovery component
estimates the anomaly’s cause in the violation list and
generates and inserts a recovery code just before the recovery
target instruction. Then the application is re-executed. If the
detection component finds many violations, the anomaly’s
cause may be worng. Thus the recovery component re-
estimates the anomaly’s cause and recovers it.

RIN repeats this recovery process until the violation
number becomes lower than a threshold. The recovery code
automatically fixes the value after completing the recovery,
even if the application is attacked in the same way. The
remainder of this section describes RIN details.

A. Profiling component

RIN uses the invariants of the source operands of the
instructions for an RER, which is created by the profiling
component. The component executes a target application
in safe environments and observes and stores the values
of the source operands (the registers and memory) of the
instruction. Then it analyzes the stored values and gener-
ates invariants as an RER. Invariants are formulas that are
effective in each instruction. Examples of invariants include
operand x takes one of constants c1, c2, ..., cn and operand x
is larger than operand y. RIN can judge whether operands are
normal because of the invariants and uses them for anomaly
detection and recovery.

B. Detection component

The detection component checks whether a target appli-
cation corresponds with an RER. The component compares
the values of the operands of each instruction executed in the
application with an RER immediately before executing the
instruction. RIN can detect the falsifications of values used
by instructions. This means that it can cover almost all the
values used in the applications. When the component detects
an anomaly, it stores all violated invariants and values as a
violation list. Then the component reboots the application to
restore it to a normal state.

However, some false positive violations occur depending
on the amount of learning because RIN uses dynamic pro-
filing to create an RER. To avoid detecting an anomaly at a
normal state, RIN only detects one when the frequency of
the violation occurrence exceeds a threshold.

C. Recovery component

After the detection component detects an anomaly and
reboots the application, the recovery component recovers the
vulnerabilities.

Our recovery component has three steps: recovery target
selection, recovery code generation, and recovery code in-
sertion. After the vulnerability is repaired, an alerted value
is automatically fixed and the application can continue to
execute. The remainder of this section describes the three
recovery steps.

1) Recovery target selection: In this step, the recovery
component estimates an anomaly’s cause and determines a
recovery target using the following three bases:

1) Successfully recovered invariants: This is the first
priority basis. The component preferentially selects
the invariants that were successfully recovered in past
executions. On the other hand, invariants that failed to
be recovered are not selected. RIN can learn and detect
an actual cause by repetitive executions and this basis.

2) Correlated invariants: This is the second priority basis,
which is only checked when the first priority basis
cannot select a unique invariant. The component pref-
erentially selects invariants that are more frequently
violated when an anomaly was detected because these
invariants are highly correlated with anomalies.

3) Previously violated invariants: This is the third prior-
ity basis. The component selects previously violated
invariants because they may cause later violations.

These bases can determine a unique invariant to be recov-
ered. For example, at the first anomaly detection, no invari-
ants have been recovered yet and every violated invariant
has the same degree of correlation. Thus the successfully
recovered and the correlated invariant bases cannot reduce
the candidates. Then the earliest violated invariant is selected
by the previously violated invariant bases.

If the first recovery failed, RIN tries recovery again. This
time, the component does not select the invariant that failed
to be recovered the first time. The component selects a
recovery target using the second and third bases.

2) Recovery code generation: In this step, the component
generates a recovery code for the invariant selected by
the previous step. For example, operand x and constants
c0, c1, ..., cn have relationship x 3 {c0, c1, ..., cn}. The
component fixes x to first element c0 if x isn’t in c0, ..., cn:

if(x! 3 {c0, c1, ..., cn}) x = c0.

For an RER in which operand x and constant c have
relationship (x <= c), the component fixes x to c if x takes
a larger value than c:

if(x > c) x = c.

For an RER in which operand x and constant c have
relationship (x < c), the component fixes x to c − 1 if x
equals or exceeds c:

if(x >= c) x = c.

For RERs (x > c) and (x >= c), the component fixes them
in a similar way.

Fig. 1. System overview

For an RER in which operands x, y and constant c have
relationship (x = y + c), the component fixes x in the
following way:

if(x! = y + c) x = y + c.

There are many other RER types. But we don’t explain
them all here.

3) Recovery code insertion: After the component gener-
ates a recovery code, it inserts it just before the recovery
target instruction. Violated invariants may not decrease much
if the component incorrectly recovers the vulnerability. In
this case, the component estimates and recovers again using
the previous execution and current execution results. RIN
continues to try recovery until the violated invariants become
lower than a threshold. The value of the target operand is
automatically fixed by the recovery code after completing
the recovery, even if the application is attacked in the same
way.

IV. IMPLEMENTATION

We describe RIN implementation for Linux. We used Dy-
namoRIO [14] and Daikon [15] for RIN implementation. The
RIN overview is shown in Fig. 1. DynamoRIO (DR), which
is a runtime code manipulation system that supports code
transformations on any part of a program, provides efficient,
transparent, and comprehensive manipulation of unmodified
applications. We used DR for obtaining the values of the
operands of the instructions executed in target applications
during the profiling mode and inserting monitoring and
recovering codes during the monitoring mode. Daikon is an
implementation of the dynamic detection of likely invariants;
the Daikon invariant detector, which reports likely program
invariants, is composed of two components: a front end that
monitors applications and extracts the values of variables and
a main invariant analyzer. We implemented a new front end
that obtains operand-level trace data on DR.

The remainder of this section describes the implementation
of each component of RIN: profiling, detection, and recovery.

A. Profiling

We monitor and store the values of the operands of the
instructions executed in the target applications using the
following DR function: dr insert clean call(). This function
enables RIN to insert a hook into an arbitrary position to read
and write the registers and the memory in the applications
in the hook processing. The profiling component outputs the
values of the operands of each instruction executed in the

TABLE II
RULE

Assembly code First run .. 98,010th run RER
add %edi,%edi op1 = 2 op1 = 16 op1==op2>= 2

op2 = 2 op2 = 16 op1==power of 2
mov -16(%ebp) op1 = 2 op1 = 5 op1 >= 1
, %eax
cmp 16(%ebp) op1 = 2 op1 = 5 op1 >= 1
, %eax op2 = 5 op2 = 5 op2 == 5

op1 <= op2
jne 8091b1e op1=8091b1e op1=8091b1e op1==8091b1e
mov %ebx,%eax op1 = 2 op1 = 6 op1 2, 6
add $0xc,%esp op2=bfdcee40 op2=bfe8df10 none

application just before executing the instruction using the
DR function. Then Daikon analyzes the values and creates
an RER. Table II presents part of an RER from Apache
1.3. The first row is part of the assembly code for the
analysis. This part was executed up to 98,010 times during
the profiling time, and the values were observed by DR
from the 2nd to the 4th rows. “op1” represents the first
operand of an instruction, and “op2” represents the second.
Daikon analyzed these values and the last row presents an
RER created by Daikon. We explain the second line as an
example. The RER indicates that the operand of the add
instruction, register edi, has a power of 2. Table II displays
only 2 and 16. However Daikon creates this RER because
other values, for example 4 and 8 were also observed. On
the other hand, Daikon could not create an RER for register
eps on the last line, since eps had random values due to a
linux security system named randomize_va_space that
randomizes the memory space.

B. Detection and Recovery

The detection and recovery components use DR to ob-
tain the application states the same as the profiling. The
detection component compares an RER with the operand
values observed by DR during the application execution. The
component detects an anomaly when a certain amount of
invariant violations occurs from a certain amount of invariant
checks.

The detection and recovery components create detection
and recovery codes and insert them into the application. The
detection component generates and inserts detection codes
when the target application starts. Similarly the recovery
component generates and inserts recovery codes when the
target application restarts after anomaly detection. Detection
codes compare an RER with the operand values from the
execution. If the values do not correspond with an RER, our
hook function on DR is called by dr insert clean call() and
calculates whether the violations exceed a threshold value.
We call the DR hook function only when an invariant is
violated to reduce overhead. Large overhead is required to
call DR functions in the target application because it involves
context switches. Recovery codes use an instruction fixing
an operand instead of the DR function call that detects an
anomaly. Fig. 2 represents examples of detection and recov-
ery codes. Fig. 2 has an RER on the upper side, a detection
code on the left side, and a recovery code on the right side.
In this example, the RER for an instruction (mov %eax,
%ebx) at 0x0804342 is that register eax equals rule value.
The detection component inserts a compare instruction, a
conditional jump instruction, and a function call immediately

Fig. 2. Check and recovery codes

Fig. 3. Tiny HTTPd source vulnerability

before the target instruction as a detection code. If register
eax violates an RER, the DR function is called. The function
determines whether an anomaly exists, and if necessary
stores a list of violated invariants and stops the target
application. The recovery component inserts compare and
conditional move instructions after the detection component
detects an anomaly and reboots the target application.

When the detection and recovery components create these
codes, these components may insert push and pop instruc-
tions to acquire and release registers and lahf and sahf
instructions to store and restore arithmetic flags. As an
example, RIN acquires registers for rule x = y + a because
it has to calculate y + a. If the target instruction reads the
flags, RIN stores the arithmetic flags, e.g., a cmp instruction.

V. EVALUATION

We evaluated the detection and recovery functionalities
and the overhead. We used a machine with an Intel Core2Duo
E4500 processor (2.2 GHz) and 2 GBytes of RAM running
Ubuntu 10.04 with kernel 2.6.32. In this evaluation, the
detection component detects an anomaly when it finds more
than three violations in 1000 invariant checks.

A. Detection and Recovery Evaluation

We manually created two types of vulnerabilities and
executed them on our system to show that it can detect and
fix them. As stated above, the detection threshold is three in
these evaluations, and our system stops the target applications
after it finds a third violation in a normal situation. However,
we continued to execute the applications to the end and
showed all logs for simplicity.

Fig. 4. Tiny HTTPd source overview

Fig. 5. Tiny HTTPd attack evaluation result

1) Simple case: We created an overflow vulnerability on
Tiny HTTPd [16] and evaluated it. An abstract of the Tiny
HTTPd source is shown in Fig. 3. The max length of string
path is url + sixteen because string path is created from
string url. Buffer overflow may occur if we set path too short.
The buffer overflow over-writes variable cgi when we use
this vulnerability. The variable, which is used to recognize
a page type, is set to 0 for a normal HTTP page and 1 for
a CGI program (Fig. 4). We can call execute cgi() forcibly
by altering cgi to a non-zero value.

We executed this vulnerable Tiny HTTPd program on
RIN, which detected an anomaly due to the four violations
occurred. Fig. 5 shows the result. Here is the log format:
{instruction addr}{operand number}: {actual value} {RER}
. For example, the first operand of the instruction on
0x08049070 should have 0 or 1, but its actual value was
0x54.

All four violations are related to variable cgi. RIN stopped
and restarted the application to reset a polluted state after the
system detected these violations. The recovery component
determined a recovery target invariant using the recovery
target selection bases: successfully recovered invariants, cor-
related invariants, and previously violated invariants (de-
scribed in Section III-C1). In this case, all four violated
invariants had the same priorities for the successfully re-
covered invariant basis and correlated the invariants basis
because the system detected an anomaly for first time for
this vulnerability. That is why the component chose the
first violation invariant on 0x08049070 as a recovery target
by the previously violated invariants basis. The component
generated a recovery code that fixed an operand indicated by
the invariant and sets it to 0 if the operand is neither 0 nor
1. RIN inserted the code immediately before the instruction
to automatically recover the operand. We confirmed that
Tiny HTTPd executed normally, and the client displayed a
requested page.

2) Complicated case: We created a second case that
needed more than one recovery try. We generated a test
program that included a format string vulnerability and
attacked a function pointer. Fig. 6 shows this program’s
abstract. The program displays string str given by the first
parameter and calls function pointer fp1 or fp2 depending
on integer num given by the second parameter. Function
pointers fp1 and fp2 have fixed addresses. A vulnerability
exists on line 8 in Fig. 6 because an arbitrary string was
passed to the first parameter of printf as a format string.
This vulnerability may falsify arbitrary address memory. We

Fig. 6. Second evaluation source

Fig. 7. Second evaluation exploit code

Fig. 8. First result for second evaluation

Fig. 9. Second result for second evaluation

disabled randomize va space, which randomizes the address
spaces to simplify the attack code in this evaluation. We
inputted strings for the first parameter and 0 and -1 for the
second parameter to the test program running on the profiling
mode of our system.

We created an exploit code that alters fp1 from func1
address to func2 address (Fig. 7). The first parameter string in
the code changes fp1 on 0xbffff898 from 0x08048514 where
func1() is located to 0x08048528 where func2() is located.

We used -2 as the second parameter to generate false
positives because -2 is not a vulnerable value, but the value
was not used during the profiling time.

The first execution result is shown in Fig. 8. “func 2
is called” on line 7 is an output from the application
and represents that func2() was called instead of func1().
Violations on the first and second lines are false positives,
since RIN assumes that num only takes 0 and -1 due to
insufficient learning. Next the application tried to call fp1
because num was minus. However, fp1 had the address
of func2() 0x08048528 instead of the address of func1()
0x08048514. There are four violations for fp1 from lines 3
to 6. Additionally, a violation on line 8 occurred at the return
of func2(). Func2() should be called from line 12 in Fig. 6
and returned to line 13, but it was called from line 10 and
returned to line 11.

RIN generated and inserted a recovery code for an operand

Fig. 10. Final result for second evaluation

on the first violated invariant at 0x080485d (Fig. 9). RIN
fixed num from -2 to -1, and the first two violations disap-
peared. -2 for num is not an abnormal value. The violations
came from a learning shortage. Therefore real violations for
fp1 remain. RIN found that recovery failed, because many
violations remained. Then it tried recovery again.

The recovery component re-chose a recovery target from
the violations that occurred in Figs. 8 and 9. A violated
invariant on the first line in Fig. 8 was not chosen for
recovery because the system failed to recover. Also, the
violated invariant on the second line in Fig. 8 was not chosen
for recovery because the invariant had a lower degree of as-
sociation with the anomaly than the other violated invariants.
RIN chose a recovery target from the other five violated
invariants since they were never used as recovery targets
and had the same degree of association with anomalies. As
a result, the earliest violation invariant on the third line in
Fig. 9 was chosen for a recovery target. Only false positive
violations for num remained, and func1() was called normally
(Fig. 10). RIN completed its recovery because the total
violations became lower than a threshold.

B. Monitoring overhead

We executed Apache1.3 and Apache bench on different
computers on the same LAN to evaluate the monitoring
overhead. The average processing times for handling 1000
requests are shown in Table III. Apache execution time was
about 0.209 ms without RIN. The time was 311.354 ms when
RIN observed the operand values for creating an RER. This
routine required larger overhead than the others. However,
there are no problems, because we only had to execute this
routine a few times before starting a service. The monitoring
time was 0.552 ms with heavier overhead than we expected.
The main reason for such overhead is from the code cache;
DR places application codes into it.

Our preliminary evaluation shows increased overhead
when we created unexecuted code regions and inserted big
size codes into the regions. In RIN, a checking code that
averaged 7.3 instructions for each invariant is only executed.
A DR function call code created by dr insert clean call()
that averaged 60 instructions is not executed when there is
no invariant violation. We evaluated the test program that
only inserts checking codes without DR function calls. This
result is shown on the last line in Table III. Monitoring
and Monitoring2 executed the same instructions, because we
were not attacked and there are no violations. However these
overheads are extremely different. We plan to reduce the
amount of inserted codes and optimize the code cache.

C. RER generation overhead

Table IV represents the times for generating RERs and
the number of invariants in the RERs and the instructions
executed at least one time in the target applications. Profiling
time is the time during which RIN observes the values.

TABLE III
OVERHEAD EVALUATION

Time per request [ms] Ratio
Native Apache 0.209 1.00
Profiling 311.354 1489.73
Monitoring 0.552 2.64
Monitoring2 a 0.257 1.22

aMonitoring without DR func call

TABLE IV
RULE CREATING TIMES

Profiling
time

Analyzing
time

Generated
invariants

Target
instructions

Tiny HTTPd 3 min 15 sec 1026 991
Test program
(Fig. 6) 1 min 3 sec 352 188

Apache 25 min 113 min 16306 18659

Analyzing time is the time during which Daikon analyzes
the values observed by the previous step. The numbers of
generated invariants are shown on the Generated invariants
row. Target instructions is the number of instructions exe-
cuted at least one time during the profiling time. They are
the targets to generate invariants. In this evaluation, Apache
needed more time to generate an RER and the total invariants
are larger because the program size is bigger than the others.
Averages of one or two invariants were generated for one
instruction.

VI. RELATED WORK

In this section, we describe the related work of IPSs and
SHSs and classify them by detection and recovery types and
their usage of dynamic code manipulation (if applicable).

1) Detection types: One of the most popular detection
methods are flow-based schemes. Detection methods that
check system or/and library function calls may detect attacks
to an operating system. E-NeXSh [4] and Belem [3] check
the order of the system and library function calls. Hooksafe
[12] protects function pointers and return addresses using
shadow memory. MemoryFirewall [5] restricts control trans-
fers and defends against binary code injection attacks. These
systems can detect attacks using shellcodes, library functions,
and system calls, e.g., execute commands, modify files,
escalate privilege, etc . However they cannot detect attacks
to application states that do not modify the application flow
as opposed to instruction-based detection.

Most other systems [6]–[11] use segmentation faults
or/and simple memory check systems such as StackGuard
[1], CCured [2], etc. These systems trust memory randomiza-
tion or only target bugs. However, bugs in server applications
may be targeted for attacks, and memory randomization
cannot protect attacks that do not rely on memory addresses.

2) Self-healing types: ARBOR [6] and Xu et al. [7] re-
cover applications by filtering packets. Both systems protect
from buffer overflow. ARBOR, which checks the packet
length and identifies the length that causes crashes, filters
long packets that cause crashes and keeps applications nor-
mal. However ARBOR cannot recovery attacks that have no
relationship to packet length. Xu et al. finds instructions that
cause crashes and identifies the memory region overwrit-
ten by overflow. They identify packets that have the same

contents with an overwritten region. However, these systems
cannot detect an anomaly if a crash does not occur, and they
cannot perform a recovery if the attack type is not packet-
based overflow. These systems stop packets, but our system
directly fixes falsified data. Therefore if an innocent user
accidentally attacks bugs and a user request includes both a
malicious code and normal code, these systems omit not only
the malicious code but also the normal code. On the other
hand, RIN can fix only the malicious parts and executes them.

Michael E. et al. [17], ASSURE [10], and Tobias H. [9] use
functions to recover. Michael E. et al. predict function return
values for recovery and use previous function return values
with context information that includes parent and sibling
functions. Tobias H. et al. rollback memory and force return
functions. When their system detects an anomaly, it reboots a
target application. Then the system creates checkpoints near
the detection point. The return values are fixed by types;
the system uses -1 for integer types and NULL for pointer
types. ASSURE, which uses checkpoints and return functions
with an error value obtained by simulations, obtains error
return values by passing bad inputs to the function. It also
optimizes the checkpoint’s places by repetitive executions.
These systems assume that a parent function handles an error
properly. Thus they may not be able to recover if a parent
function does not have an error handling or an error handling
leads to an exit from the application. On the other hand, RIN
can recover even when a parent function does not have error
handling.

Rx [8] recovers the applications by checkpoint-rollback
and re-execution. When it detects an anomaly, it restores the
application states and re-executes the application under dif-
ferent environments: memory map, scheduling, signal timing,
and packet filtering. However, checkpoints-rollback and re-
execution recoveries may fail to recover by variance with
external processes communicating with the application. In
contrast, our system does not need rollbacks.

SRS [11] focuses on independent user requests. SRS
creates writing logs for shared memory between threads.
When a thread that handles requests crashes, SRS rollbacks
the memory written by the crashed thread and recovers the
application by isolating the faulty threads from the others.
This system only applies to typical server applications, but
our system can be applied to other type of applications.

3) Systems using dynamic code manipulation tools:
Locasto et al. [17], SRS [11], and ClearView [13] use
dynamic code manipulation systems, as does RIN. Locasto
et al. use PIN [18] for hooking function enter/exit events,
because these event hooks are not influenced by compiler
optimizations and signal events. SRS uses DR for shadow
memory. ClearView uses DR to obtain the values of the
instruction operands like RIN.

VII. DISCUSSION AND FUTURE WORKS

Our concerns are false detection and false recovery. Exist-
ing systems ([1]–[13]) have low false positive rates. Thus we
plan to use static invariants to reduce false positives. We will
detect and recover using both static and dynamic invariants.
Static invariants provide less information and are completely
accurate. On the other hand, dynamic invariants offer richer
information but less accuracy. RIN can detect when one
static invariant or many dynamic invariants violations have

occurred. Additionally, our invariants do not include rules
among more than one instruction because we generate invari-
ants for each instruction. Hence it is possible to change only
one operand into a value that is appropriate for invariants.
At that time, our system may not detect an anomaly even
if the operand is mismatched with other operands. The
recovery component has the same problem. It cannot find
a unique value for rule eax>rule_value (in our current
implementation, we fix register eax to rule_value+1).
We are going to generate invariants that have relationships
among operands belonging to different instructions. With
these invariants, a detection component may identify an
anomaly of an operand from other operands, even if the
operand stays within a normal range itself. Similarly, the
recovery component probably finds a unique value to fix.
We are implementing static and dynamic invariants among
more than one instruction.

VIII. CONCLUSION

We proposed a new type of self-healing system named RIN
that uses instruction-based rules for detection and recovery.
RIN detects and recovers almost all values used in the target
applications because the operands of instructions are targets
for detection and recovery. RIN can detect and recover values
unrelated to flow that existing systems cannot.

We implemented RIN on Linux and evaluated it. We
confirmed that RIN detected and recovered from falsification
for a local variable and a function pointer. The overhead for
monitoring Apache1.3 was 2.6 times. One main reason for
this overhead is code cache efficiency. When we insert bigger
codes, the DR overhead becomes bigger, even if the codes are
not executed. Therefore we are going to reduce the amount
of codes that we insert and optimize the code cache to reduce
the overhead.

Our concerns are false detection and false recovery. In-
variant violations occurred if a user does an action that RIN
did not profile. That is why RIN ignores a few violations.
However, RIN incorrectly detects an anomaly if the learning
was too short. So we plan to use static invariants to reduce
false positives. We will also implement dynamic invariants
among more than one instruction to improve the detection
and recovery accuracy.

REFERENCES

[1] C. Cowan, C. Pu, D. Maier, H. Hinton, and J. Walpole, “Stackguard:
Automatic adaptive detection and prevention of buffer-overflow at-
tacks,” in USENIX Security Symposium, 1998.

[2] J. Condit, M. Harren, S. McPeak, G. C. Necula, and W. Weimer,
“Ccured in the real world,” Sigplan Notices, vol. 38, pp. 232–244,
2003.

[3] Y. Kato, Y. Makimoto, H. Shirai, H. Shimizu, Y. Furuya, S. Saito, and
H. Matsuo, “Monitoring library function-based intrusion prevention
system with continuing execution mechanism,” in Proceedings of
the 2010 IEEE/IFIP International Conference on Embedded and
Ubiquitous Computing. IEEE Computer Society, 2010, pp. 548–554.

[4] G. Kc and A. Keromytis, “e-NeXSh: Achieving an effectively non-
executable stack and heap via system-call policing,” in Computer
Security Applications Conference, 21st Annual. IEEE, 2005.

[5] V. Kiriansky, D. Bruening, and S. Amarasinghe, “Secure execution via
program shepherding,” in Proceedings of the 11th USENIX security
symposium, 2002, pp. 191–206.

[6] Z. Liang and R. Sekar, “Automatic generation of buffer overflow
attack signatures: An approach based on program behavior models,”
in Computer Security Applications Conference, 21st Annual. IEEE,
2005.

[7] J. Xu, P. Ning, C. Kil, Y. Zhai, and C. Bookholt, “Automatic diagnosis
and response to memory corruption vulnerabilities,” in Computer and
Communications Security, 2005, pp. 223–234.

[8] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou, “Rx: treating bugs as
allergies - a safe method to survive software failures,” in Symposium
on Operating Systems Principles, 2005, pp. 235–248.

[9] S. Sidiroglou, M. E. Locasto, S. W. Boyd, and A. D. Keromytis,
“Building a reactive immune system for software services,” in USENIX
Technical Conference, 2005, pp. 149–161.

[10] S. Sidiroglou, O. Laadan, C. Perez, N. Viennot, J. Nieh, and
A. Keromytis, “Assure: automatic software self-healing using rescue
points,” in ACM SIGPLAN Notices, vol. 44, no. 3. ACM, 2009, pp.
37–48.

[11] V. Nagarajan, D. Jeffrey, and R. Gupta, “Self-recovery in server
programs,” in Proceedings of the 2009 international symposium on
Memory management. ACM, 2009, pp. 49–58.

[12] Z. Wang, X. Jiang, W. Cui, and P. Ning, “Countering kernel rootkits
with lightweight hook protection,” in Proceedings of the 16th ACM
conference on Computer and communications security. ACM, 2009,
pp. 545–554.

[13] J. H. Perkins, S. Kim, S. Larsen, S. P. Amarasinghe, J. Bachrach,
M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou, G. Sullivan, W. fai
Wong, Y. Zibin, M. D. Ernst, and M. C. Rinard, “Automatically
patching errors in deployed software,” in Symposium on Operating
Systems Principles, 2009, pp. 87–102.

[14] D. Bruening, “Efficient, transparent, and comprehensive runtime code
manipulation,” Ph.D. dissertation, Citeseer, 2004.

[15] M. Ernst, J. Perkins, P. Guo, S. McCamant, C. Pacheco, M. Tschantz,
and C. Xiao, “The daikon system for dynamic detection of likely
invariants,” Science of Computer Programming, vol. 69, no. 1-3, pp.
35–45, 2007.

[16] “Tiny httpd’s tiny homepage.” [Online]. Available: http://tinyhttpd.
sourceforge.net/

[17] M. E. Locasto, A. Stavrou, G. F. Cretu, A. D. Keromytis, and S. J.
Stolfo, Return Value Predictability Profiles for Self-healing, 2008.

[18] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. Reddi, and K. Hazelwood, “Pin: building customized program
analysis tools with dynamic instrumentation,” in ACM SIGPLAN
Notices, vol. 40, no. 6. ACM, 2005, pp. 190–200.

