
A Practical, SCVM-based Approach to Enhance
Portability and Adaptability of HPC Application

Build Systems
Magdalena Slawinska, Jaroslaw Slawinski, Vaidy Sunderam

Abstract—We describe a novel approach, based on the con-
cept of a “system-call virtual machine” (SCVM), to enhancing
portability of the HPC application deployment process across
heterogeneous high-end machines. The SCVM approach to
portable builds is based on the insertion of toolkit-interpretable
directives into original application build scripts. Modifications
resulting from these directives preserve the semantics of the
original build instruction flow. The execution of the build
script is controlled by our toolkit that intercepts build script
commands in a manner transparent to the end-user. In order
to intercept script commands we utilize strace system calls.
We have applied this approach to a scientific production code
(Gamess-US) on the Cray-XT5 machine.

Index Terms—application-build, high-performance comput-
ing, portability

I. INTRODUCTION

Rapid advances in capability-class computing enable sci-
entific breakthroughs but pose multiple challenges for scien-
tific software. Most high-end applications may be character-
ized as continually evolving legacy codes originally written,
and updated over time, for platforms several generations
removed from contemporary hardware. Changes include scal-
ing to thousands of PEs, interconnect networks faster by
many orders of magnitude, and most recently, heterogeneous
multi- and many core architectures that demand new pro-
gramming approaches. Adapting large application codes to
execute efficiently on these emerging platforms has therefore
become increasingly challenging [1].

In this paper we focus on the “build” aspect of this adapta-
tion process and propose a new approach to enhancing porta-
bility of application build systems across different platforms.
This will help improve the adaptability of build systems to
frequent software updates and hardware upgrades in large
HPC settings. This research is part of the Harness Work-
bench Toolkit (HWT) and Enhancing Cyber-Infrastructure
Usability (ADAPT) projects that aim to support end-users
through the entire HPC application life cycle by streamlining
the build, providing software assistance at each build stage
and simplifying deployment on varied target platforms.

Addressing the build aspect is important for several rea-
sons. Firstly, in order to enable end-users to build highly
optimized and efficient executables for a particular target
machine, large HPC settings often offer a number of different
compilers (each in a few versions) and a set of libraries

Manuscript received November 30, 2011; revised December 27, 2011.
Research supported in part by US National Science Foundation Grant

OCI-1124418.
Math and Computer Science, Emory University; Atlanta, GA 30322,

USA; magg@gatech.edu, jaross@mathcs.emory.edu, vss@emory.edu

for a given architecture (often in many flavors). Available
compilers’ options, applications’ requirements, and the target
machine characteristics lead to the explosion of possible
combinations of build factors and make building scientific
software challenging. Secondly, in high-end computing cen-
ters, cross-compilation becomes an issue as the service nodes
where the compilation takes place often differ from the
compute nodes where the binaries are executed. We note
that common build systems such as GNU Autotools do
not support cross-compilation [2]. Thirdly, building efficient,
optimized, and correct executables on cutting-edge machines
requires substantial cross-domain expert knowledge. Cur-
rently this knowledge is difficult to share and maintain,
posing problems related to a knowledge reusage, especially,
for non-expert end-users who are often distracted by the
necessity of dealing with build-related issues.

Although there are efforts to relieve both application
scientists and site administrators from the build burden (e.g.,
minimizing differences between service and compute nodes
in terms of hardware and system software), such efforts
address the build problem only partially, leaving many build
issues unresolved.

The HWT/ADAPT approach to enhance application build
systems’ portability and adaptability is based on toolkit-
interpretable directives embedded into original application
build systems. Directives allow retrieval of situation-specific
build-related knowledge from our ontology-driven profiles
that organize expert knowledge in a semantic manner. The
application build systems are executed under control of our
toolkit that intercepts build script commands at run time to
obtain target-specific settings for the particular application
build. We note that since the directives are inserted as
comments in original build scripts, it is possible to execute
the build scripts in the exact same manner as the original
scripts (adding comments does not influence the execution
flow).

In this paper we describe the (1) static modification of
the original build systems (scripts, source codes, etc) to
insert the relevant directives, and (2) dynamic modification
to apply build-specific values during build scripts execution.
For the dynamic modification we exploit system call virtual
machine (SCVM), specifically Umview [3], that allows to
influence the behavior of the executed process transparently
to the user. As a proof-of-concept we present our initial
experiences with a production molecular dynamics code,
Gamess (US) [4], on LCF ORNL’s Jaguar. Encapsulating
the expert HPC knowledge is an interesting and complex
research topic that requires a separate discussion not provided
in detail in this paper and can be found elsewhere [5].

II. RELATED WORK

A few tools and projects aim to address the build is-
sues related to environment management, packaging, and
automating the build process.

The Environment Modules project [6], [7] helps man-
age the configuration of build environments. The end-users
configure their ’build’ machine by loading or unloading
previously defined modules that set or unset relevant en-
vironment variables. Modules can operate in tandem with
script wrappers, prepared by site administrators or vendors,
that invoke the actual compiler with its respective options.
Wrappers and modules relieve end-users from the ’best-
compiler-best-options-selection’ dilemma by providing the
’abstract’ compilers (e.g., cc, ftn). Since the actual compilers
are invoked indirectly through wrappers, the responsibility
for providing relevant options for a given compiler is at
the wrappers’ developer’s side. We propose an ontology-
driven profile-based approach to encapsulate and use the
build-specific knowledge. Our profiles allow to encapsulate
knowledge related to target computational platforms, appli-
cation settings, compiler options, and provide mechanisms to
retrieve semantically relevant build-case data for a specific
target platform such as environment variables, compiler
options, optimization levels, compatible libraries or system
software, etc. The proposed, profile-driven approach reduces
the necessity of switching build contexts (as it is in the
case of Modules), and enables precise compilation tuning
at the file- or even function-level. It also allows to deal
with situations when the build process needs to produce
executables for both compute nodes (target machine) and
service nodes (build machine) as it is for instance in the
Gamess case [4].

In order to relieve end-users from the build burden re-
lated to resolving dependencies, compilation, installation,
and maintenance issues, a few projects proposed a package-
based approach by automating those tasks, if possible. The
ReST project [8] allows to create a binary or source software
package with all necessary installation and deployment data
such as dependencies, options or a configuration process.
NetBuild [9] aims to help with the selection of appropriate li-
brary dependencies on various target machines. The NetBuild
client obtains a target architecture-specific library package
from a well-known location and links it into the application
compiled for the target machine. The Repository in a Box
(RIB) [10], a complementary project to ReST and NetBuild,
allows to catalog software and present software metadata
to end-users as web pages. The CheckInstall [11] project
helps keep track of software installed from source codes
by automating the ’packaging’ process during the routine
installation. When the compilation is done, CheckInstall
automatically creates and installs a package (Slackware,
RPM, or Debian) with an appropriate package manager as a
regular binary package. Our approach is complementary to
the package-based projects as it helps create target-specific
packages.

Ideally, a build system should support compilation (includ-
ing cross-compilation), build, deployment, optimization for
target machines. To some extent this is provided by current
build systems such as GNU Autotools [12] or SCons [13].
Unfortunately, GNU Autotools introduces its own compati-
bility issues (e.g., requiring compatible versions at the user’s

and developer’s sides [2]) and does not address well cross-
compilation that is common at large HPC settings. One
approach to address the ’build’ problem would be proposing
a new build system. This, however, would require rewriting
many build systems for legacy software, extensively utilized
in large HPC settings. We note that our prior analysis of build
systems of HPC applications indicates that build systems are
highly diversified and range from proprietary shell scripts,
through makefiles, to GNU Autotools. Rewriting those build
systems would likely involve a lot of effort. In this work,
we propose an evolutionary step toward new build systems.
It is based on extracting the build-related knowledge from
the build systems and encapsulating it into profiles. We
modify original build systems by inserting toolkit-controlled
directives that allow to guide the build system via the
information retrieved from profiles to act appropriately to
the actual situation-specific build case.

We note that the proposed profile-driven approach enables
sharing the expert build-related knowledge. For instance, it
can be used in the dashboard systems such as eSimMon [14]
to provide data about a particular build case (e.g., used
compilers and specific compiling options, optimization pa-
rameters for a particular libraries, etc).

III. THE HWT APPROACH TO PORTABLE BUILDS

HWT
VM

IBM
Roadrunner

Original app.
build system

HWT-enabled
build system

Profiles

Developer

Vendor

Admin

Semantic
modification

HWT
VM

Jaguar
Cray XT5

exec

exec

Situation
specific
build case...

amd
pgi

...

...
cray

...

ccs

... jaguar

User
pref

Current
build case

...gamess
CPMD

hwt_core

Scientist

ornl

Static modification

Fig. 1. The HWT approach to portable builds across different target
architectures

The HWT/ADAPT project aims to support end-users
through the entire build life cycle. In this section we describe
the key concepts of the HWT that enable cross-platform
portability of builds.

Figure 1 schematically presents the HWT approach to
portable builds. Our approach to portability of builds across
various HPC platforms is driven by ontology-based profiles
that encapsulate build-related knowledge at different levels
(application, system, user), and are provided independently
by site administrators, developers, and users. They contain
build-related knowledge with respect to target computational
platforms, application requirements, system software (e.g.,

settings for environment variables, library dependencies,
compiler options, optimization levels).

Current build systems allow to define meaningless values
in forms of strings, numbers, expressions, objects, etc, that
can be interpreted in ambiguous ways by different end-users
(vendors, developers, site administrators, scientists). Ontolo-
gies not only support assigning meanings to concepts but go
beyond that and provide mechanisms for their unambiguous
interpretation by different subjects [15]. In order to imple-
ment profiles, HWT utilizes a few semantic standards and
tools: OWL [16] for profiles, SPARQL [17] and Jena-Pellet
reasoners [18], [19] for querying profiles. During the course
of the HWT project we developed preliminary profiles for
the Gamess application (application-level profile), the ORNL
Jaguar XT5 platform (system-level profile), and the Gamess-
Jaguar build case profile (user-level profile) containing data
related to the customized build of Gamess for the Jaguar
system. We used those profiles for our experiments described
in Section IV. The interested reader can find more details
about ontology-based profiles in our previous work [5].

As illustrated in Figure 1, in order to utilize the knowl-
edge stored in profiles, the original build system requires
a static modification at the source code level and dynamic
modification at the build execution time. Static modifications
regard inserting HWT directives into the source codes of the
build scripts and/or applications. The dynamic modification
is performed at the time of processing directives by the HWT
virtual machine, called hwtvm. The HWT obtains actual
target-specific values for a particular build case by querying
profiles. The example fragments of the toolkit-enabled build
system are presented in Listing 2.

The HWT approach to portable builds is motivated by
the ’transparent adaptation’ of the original build system to
allow for execution both in the HWT-controlled environment
as well as in the non-HWT environment. To achieve this,
the toolkit-interpretable directives are inserted as build script
comments, as shown in Listing 2. The directives are im-
plemented in the same programming dialect as the original
build system, and are preceded by #HWT to indicate that
they should be interpreted by hwtvm.

Inserting HWT directives as comments helps document
build scripts in a semantic manner as HWT queries are
semantically-oriented. It also allows to execute the HWT-
enabled build system in the non-HWT controlled envi-
ronment, since inserted HWT directives are ordinary shell
comments and therefore ignored by the executing shell.
In order to enable the interpretation of HWT directives in
a user-transparent manner, the HWT implements a system
call virtual machine (SCVM). SCVM enables redefinition of
syscalls to virtualize the execution environment of a process
and its subprocesses.

In the following sections we will describe the static and
dynamic modifications.

A. Static Modifications

In our previous work [5], we proposed the modifi-
cation of the original build system in order to make
it generic. Necessary changes regarded modifying hard
coded values such as CCOMP=cc to respective semantic
queries such as CCOMP=‘$QUERY "$PREFIXES select ?p

Listing 1. Fragments of the original build system (Gamess-US)
1 s e t TARGET=cray -xt
2

3 ...
4

5 i f ($TARGET == cray -x1) then
6 sed -e "s/*UNX/ /"

actvte.code > actvte.tmp
7 sed -e "s/*CRY/ /"

actvte.tmp > actvte.f
8 rm actvte.tmp
9 ftn -Ocommand -o actvte.x actvte.f

10 rm actvte.f
11 e n d i f
12 i f ($TARGET == cray -xd1) then
13 sed -e "s/*UNX/ /"

actvte.code > actvte.f
14 pgf90 -o actvte.x actvte.f
15 rm actvte.f
16 e n d i f
17 # For t h e cray−x t
18 i f ($TARGET == cray -xt) then
19 sed -e "s/*UNX/ /"

actvte.code > actvte.f
20 ftn -o actvte.x actvte.f
21 rm actvte.f
22 e n d i f

where {$CC hc:path ?p}"‘. This usually resulted in main-
taining two separate versions of a build system: original and
HWT-enabled. In order to reduce the maintenance effort,
in this work we propose another approach that allows to
maintain one HWT-interpretable build system. The relevant
build script fragments that lack meanings are changed to
their semantic counterpart versions in exactly the same
programming dialect as the original build script. The changed
fragments are preceded by HWT ’markers’ (i.e., #HWT). We
refer to the ’#HWT’ marked statements as HWT directives.
The HWT directives are comments in the original build
system and in fact, they document meanings of respective
values in original build scripts. The fragments of original
build files and the corresponding example modification are
presented in Listing 1 and Listing 2, respectively.

In order to retrieve data which are stored in profiles, the
HWT resolves SQL-like queries (specifically SPARQL [17]
that permits formulation of queries close to natural lan-
guage and is a natural option for our OWL-based profile
implementation), and applies the obtained results as ap-
propriate values in build scripts. In particular, to support
querying profiles the HWT predefines a few commands
such as ont prefix, ont query, and files to interface query’s
results (e.g., HWT QRESULT, HWT QRESULT COL1,
HWT QRESULT COL2, etc).

The static modification alters unportable fragments of orig-
inal build scripts, and leaves portable fragments unmodified.
The unportable fragments and their portable HWT-enabled
counterparts coexist in the same modified build script. In
order to exclude original unportable fragments from the
build script during the HWT-controlled execution, and enable
the execution of portable HWT counterparts instead, a here
document notation is used (lines 12–20 in Listing 2). A here
document is a common way to specify a string literal in
command line shells and scripting languages.

Listing 2. Enabling the original build system for the HWT interpretation. The modifications correspond to fragments in Listing 1
1 #HWT ont_prefix default http://dcl.emory/hwt/ont/gamess -us.owl
2 #HWT ont_query "select ?bc where {?bc ac:builds [a :Gamess -US]}" ||\
3 #HWT (echo "query error"; e x i t 1)
4 #HWT [-s HWT_QRESULT] && s e t bc=‘ c a t !# : 2 ‘ | | \
5 #HWT (echo "no answer"; e x i t 1)
6

7 s e t TARGET=cray -xt
8 #HWT ont_query "select ?target where {$bc ac:buildTarget ?target}"
9 #HWT s e t TARGET=‘ c a t HWT_QRESULT ‘

10 ...
11 #HWT # mute a l l f o l l o w i n g i f s
12 #HWT c a t > /dev/null <<MUTE_IFS
13 i f ($TARGET == cray -x1) then
14 ...
15 e n d i f
16 ...
17 i f ($TARGET == cray -xt) then
18 ...
19 e n d i f
20 #HWT MUTE_IFS
21

22 #HWT # d e v e l o p e r knows f o r which p l a t f o r m s s o u r c e needs a c t i v a t i o n
23 #HWT ont_query "ask {$TARGET a :SrcToActivation}"
24 #HWT i f (‘ c a t HWT_QRESULT ‘) than
25 #HWT # i s t a r g e t (a c c o r d i n g t o d e v e l o p e r) UNIX c o m p a t i b l e ?
26 #HWT ont_query "ask {$TARGET a :UnixCompatible}"
27 #HWT i f (‘ c a t HWT_QRESULT ‘) \
28 #HWT sed -e "s/*UNX/ /" actvte.code > actvte.f
29 #HWT ont_query "ask {$TARGET a ac:Cray , ac:Vectorized}"
30 #HWT i f (‘ c a t HWT_QRESULT ‘) \
31 #HWT sed -e "s/*CRY/ /" actvte.code > actvte.f
32 #HWT # g e t F o r t r a n 77 pa th f o r S e r v i c e Node (n o t f o r t h e t a r g e t !)
33 #HWT ont_query "select ?snFtn where {$bc ac:buildEnvironment ?env .\
34 #HWT ?env ac:installedSoftware [a ac:F77Compiler; \
35 #HWT ac:compatibleWith ?env; ac:path ?snFtn] }"
36 #HWT [-s HWT_QRESULT] && s e t snFtn=‘ c a t !# : 2 ‘ \
37 #HWT || (echo "no local Fortran 77 found"; e x i t 1)
38 #HWT $snFtn -o actvte.x actvte.f
39 #HWT rm actvte.f
40 #HWT e n d i f

Enhancing portability of original build systems with the
HWT approach requires a one-time effort to reimplement
fragments that break cross-platform portability. Once this is
done, adding a new architecture requires configuring appro-
priate settings at the profile level, instead of the commonly
practiced copy-paste-modify.

Although modified build scripts can be executed in a
traditional manner (prior to modifications) since modifica-
tions are implemented as comments and therefore ignored
during ordinary execution, they are intended to be executed
under HWT control. One approach to interpret HWT-enabled
build scripts is to develop an HWT build script interpreter.
However, this might be complicated due to a variety of build
systems utilized by HPC applications (different command
line shell flavors, scripting and programming languages, etc).
We propose to address HWT-directives interpretation by
intercepting syscalls.

B. Dynamic Modifications

The HWT-controlled execution of modified build scripts
assumes suppressing HWT markers (i.e., ’#HWT’ in List-
ing 2) in order to enable execution of both portable orig-
inal build script statements and HWT semantic statements

(commented by HWT markers). Said differently, the HWT
executes the modified build script but the modifications need
to be revealed before or ’just-in-time’ of the actual execution.

To accomplish this in an automatic manner, we considered
two approaches: (1) a link-based approach that takes advan-
tage of links in Unix-like systems, and (2) implementing
an HWT virtual machine based on the exploitation of the
syscall interception. In the link-based approach, first the
HWT creates a separate directory with symbolic links to
source files, next preprocesses the modified build system, i.e.,
deletes HWT markers, and finally executes the preprocessed
build system. The HWT commands (ont prefix, ont query,
etc) in this context can be implemented as scripts. The link-
based approach is a simple yet effective solution. However,
the HWT aims to support comprehensive virtual build en-
vironments to facilitate isolated user-space installations. In
this context, more advanced mechanisms are required that
enable command and file virtualization. Aside from that, the
link-based approach does not provide mechanisms to enable
cross-compilation that is plausible in the virtualization-based
approach. Therefore, we focused on the HWT virtual ma-
chine approach that utilizes syscall interception mechanisms.

Developing the HWT virtual machine allows to imple-
ment ’just-in-time’ modification of a file content. The naive

implementation requires intercepting one filesystem syscall,
namely read, and changing the read content in place (without
changing its size). Intercepting syscalls such as read, open,
and execve allows for precise control of the build execution
and dynamic redefinition of its behavior.

HWT-controlled
build process

HWT VM

syscalls

fd == 3
traced?

N

Y

sy
s_

re
ad

(fd
 =

 3
, .

..)

#!/bin/csh
#HWT echo "hwt used"
#HWT ont_query "select ?ftn...

#!/bin/csh
 echo "hwt used"
 ont_query "select ?ftn...

HWT VM

N

Y

HWT-controlled
build process

execve("ont_query", ["ont_query",
"select ?ftn where {...

syscalls

hwt
cmd?

suppress
HWT

markers
1. execute
2. prepare
exit code

execve("ont_query", ["ont_query", "0"],
["BASH=/bin/bash", "PATH=/usr/local...

Fig. 2. The selective interception and selective overriding syscalls in HWT
VM (the syscall execve does not return unless it ends with an error)

From the process’ standpoint, overriding syscalls takes a
global effect in the perception of the entire operating system.
In order to increase performance and permit overriding
syscalls selectively for specific (e.g., build-related) files, the
HWT requires tracing pathnames of files used by the process
as shown in Figure 2. Implementing this requires intercepting
four other filesystem syscalls (apart from read), namely,
open, close, dup, and dup2.

HWT-controlled
build process HWT VM syscalls

open("compall", "r")

trace "compall" pathname? Yes
trace fd = 3

open("compall", "r") -> 3

dup2(3, 255)

open("compall", "r") -> 3

dup2(3, 255)
dup2(3, 255) -> 255

traced fd == 3? Yes
trace fd = 255

dup2(3, 255) -> 255

read(255, buf, 100)
read(255, buf, 100)->100

traced fd == 255? Yes
change read content in buf

read(255, buf, 100) -> 100

Fig. 3. Tracing relations between file descriptors and their pathnames in
HWT VM

These calls are needed to trace the relation between the file
pathname and its descriptors (Figure 3). Tracing that relation
is not supported by the operating system and different
syscalls take either the file descriptor or the pathname as
an input parameter (specifically, the syscall read takes a file
descriptor as an input parameter while the syscall open takes
a pathname).

We examined a few available techniques allowing to
intercept syscalls at large HPC systems such as ORNL’s
Jaguar, namely Fuse [20], DLL injection, Umview [3], and
ptrace [21].

a) Fuse: Fuse [20] is a Filesystem in Userspace and
allows to mount userspace virtual filesystems. The userspace
Fuse daemon can redefine filesystem operations. However, it
requires installation of a kernel module that is an issue on
service nodes at large HPC sites where Fuse is not supported
for the sake of stability and maintenance.

b) DLL injection: The DLL injection technique (in
Unix-like systems implemented by the environment variable
LD PRELOAD) is used to force loading a dynamic-link
library to modify program behavior. However, in order to
benefit from LD PRELOAD, a program has to be dynami-
cally linked. In order to utilize the DLL injection technique in
the HWT, all system tools involved in the actual build needed
to be dynamically linked. Clearly, relying on this assumption
is problematic. Moreover, the variable LD PRELOAD can
be controlled by subprocesses resulting in disabling HWT-
intended virtualization.

c) Umview: Umview [3] is an implementation of the
system call virtual machine (SCVM) that allows to virtu-
alize the execution environment of a process and enables
redefinition of syscalls. It does not require root privileges to
be installed; Umview can be installed in userspace. Aside
from filesystem syscalls, Umview allows to redefine the
process execution-related syscalls including execve. This
allows to also address cross-compilation issues in build
systems such as GNU Autotools that perform micro-tests
to gather platform-specific knowledge for the build. Instead
of performing those tests locally, the micro-tests execution
can be intercepted and forced to execute on compute nodes.
Although Umview, for the above reasons, initially seemed
promising, it turned out that its usage encounters substantial
obstacles on ORNL’s Jaguar service nodes (the 64-bit AMD
architecture with Suse Linux OS).

d) Ptrace: The interception functionality required by
the HWT (five filesystem calls and execve) is offered by the
syscall ptrace [21]. In fact, ptrace is at the core of Umview.
The syscall allows to control processes and is primarily
used in debuggers such as GNU GDB [22] and system call
tracers, e.g., strace [23]. Ptrace and its derivatives can be used
in userspace and do not require root privileges. However,
programming the syscall ptrace can pose a challenge since
the syscall manipulates at the register level. Therefore, we
approach this challenge at the higher abstraction level by
adapting sources of strace to implement the HWT virtual
machine.

IV. EXPERIMENTS

In order to verify the feasibility of the SCVM approach to
portable builds we tested this approach against the Gamess-
US build system on ORNL’s Jaguar XT5. The reason for
such a selection was the availability of respective application,
system, and build case profiles—as we developed them
earlier during the course of the HWT project. Gamess-
US [4] is general computational chemistry software. Its build
system consists of three essential csh scripts comp, compall,
and lked, and the additional file compddi to compile the
DDI library. The Gamess build scripts contain guidelines
(scattered among all these files) for building the application
for 26 target architectures.

To perform the experiment we modified the Gamess build
system by manually inserting HWT directives as described

in Section III-A and executed it under control of the HWT
syscall virtual machine called hwtvm. The prototype imple-
mentation of hwtvm is based on strace’s source codes and
allows to intercept six syscalls (open, read, close, dup, dup2,
and execve) in order to appropriately execute the modified
Gamess build system, i.e., it takes care of retrieving target-
specific build related information from respective profiles.
The HWT SCVM-based approach allows to build Gamess in
two modes: traditionally and under hwtvm control. It starts to
show its potential when the application needs to be compiled
for a new target machine. Instead of tedious examination of
the entire build system and adapting it to the new target
architecture, the HWT user configures the build by creating
the relevant build case profile and provides an URI of this
profile to hwtvm as an input parameter.

V. SUMMARY AND FUTURE WORK

This paper describes the HWT SCVM-based approach
to enhance portability of the scientific applications’ build
systems across various HPC platforms. The approach is
based on the one-time modification of the original build
system that requires the insertion of toolkit-interpretable
directives and their interpretation by the HWT SCVM. HWT
directives take advantage of the expert knowledge stored in
HWT ontology-driven profiles. The modification preserves
the original instruction flow and is transparent to the original
build system in terms that it takes effect only when the
modified build system is executed by hwtvm. The hwtvm
is based on the ptrace syscall that allows to virtualize the
environment of the process execution. The hwtvm intercepts
syscalls to change the behavior of the executed build script
at the script execution time. This allows to retrieve target-
specific values from profiles in a manner transparent to the
user. More importantly, the presented approach does not
require root privileges as we demonstrated this by building
the Gamess application for ORNL’s Jaguar.

Our future work will focus on further exploration of the
presented SCVM approach towards improving portability of
builds. The ability to intercept the syscall execve opens an
interesting research on addressing cross-compilation issues.
For instance, GNU Autotools execution of micro-tests could
be intercepted and performed on the target machine. The
other open research issue is to investigate possibilities of
automating the build system modification process that cur-
rently is performed manually, e.g., classification of patterns
breaking portability or designing query patterns for retrieval
data from profiles.

REFERENCES

[1] L. Hochstein and V. R. Basili, “The ASC-Alliance Projects: A Case
Study of Large-Scale Parallel Scientific Code Development,” IEEE
Comp., vol. 41, no. 3, pp. 50–58, 2008.

[2] M. B. Doar, Practical Development Environments, Chapter 5.
O’Reilly, Oct 2005.

[3] L. Gardenghi, M. Goldweber, and R. Davoli, “View-OS: A New
Unifying Approach Against the Global View Assumption,” in ICCS
’08: Proceedings of the 8th international conference on Computational
Science, Part I, (Berlin, Heidelberg), pp. 287–296, Springer-Verlag,
2008.

[4] Mark Gordon’s Quantum Theory Group. Ames Laboratory/Iowa State
University, “The General Atomic and Molecular Electronic Struc-
ture System (GAMESS).” http://www.msg.ameslab.gov/GAMESS/
GAMESS.html, 2009.

[5] M. Slawinska, J. Slawinski, and V. Sunderam, “Enhancing Build-
Portability for Scientific Applications Across Heterogeneous Plat-
forms,” in Parallel and Distributed Processing, 2009. IPDPS 2009.
IEEE International Symposium on, pp. 1–8, May 2009.

[6] NERSC, “Modules Approach to Software Management,” 2008. http:
//www.nersc.gov/nusers/resources/software/os/modules.php.

[7] J. L. Furlani and P. W. Osel, “Environment Modules Project,” 2005.
http://modules.sourceforge.net/.

[8] E. Meek, J. Larkin, and J. Dongarra, “Remote Software Toolkit
Installer,” Tech. Rep. ICL-UT-05-04, ICL UT, June 2005.

[9] K. Moore and J. Dongarra, “NetBuild: Transparent Cross-Platform
Access to Computational Software Libraries,” Concurrency and Com-
putation: Practice and Experience, Special Issue: Grid Computing
Environments, vol. 14, pp. 1445–1456, Nov/Dec 2002.

[10] S. Moore, A. Baker, J. Dongarra, C. Halloy, and C. Ng, “Active
Netlib: An Active Mathematical Software Collection for Inquiry-based
Computational Science and Engineering Education,” Journal of Digital
Information special issue on Interactivity in Digital Libraries, vol. 2,
no. 4, 2002.

[11] Felipe Eduardo Sanchez Diaz Duran, “The checkinstall project,” 2009.
http://www.asic-linux.com.mx/∼izto/checkinstall/.

[12] G. V. Vaughan, B. Elliston, T. Tromey, and I. L. Taylor, GNU Autoconf,
Automake and Libtool. New Riders publishing, 2000. http://sources.
redhat.com/autobook/.

[13] S. Knight, “SCons User Guide 1.1.0,” 2008. http://www.scons.org/
doc/1.1.0/HTML/scons-user/book1.html.

[14] S. Klasky, R. Barreto, A. Kahn, M. Parashar, N. Podhorszki, S. Parker,
D. Silver, and M. Vouk, “Collaborative visualization spaces for petas-
cale simulations,” Collaborative Technologies and Systems, 2008. CTS
2008. International Symposium on, May 2008.

[15] D. Allemang and J. Hendler, Semantic Web for the Working Ontologist:
Effective Modeling in RDFS and OWL. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2008.

[16] W3C, “OWL 2 Web Ontology Language: Structural Specification and
Functional-Style Syntax, W3C Working Draft,” Dec 2008. http://www.
w3.org/TR/owl2-syntax/.

[17] W3C, “SPARQL Query Language for RDF,” Jan 2008. http://www.
w3.org/TR/rdf-sparql-query/.

[18] “Jena – A Semantic Web Framework for Java,” Dec 2008. http://jena.
sourceforge.net/.

[19] Clark & Parsia, LLC, “Pellet: The Open Source OWL DL Reasoner,”
Apr 2009. http://clarkparsia.com/pellet.

[20] “Filesystem in Userspace,” 2010. http://fuse.sourceforge.net/.
[21] M. J. Rochkind, Advanced UNIX programming. Upper Saddle River,

NJ, USA: Prentice-Hall, Inc., 1985.
[22] “GDB: The GNU Project Debugger,” 2010. http://www.gnu.org/

software/gdb/.
[23] “The strace project page,” 2010. http://sourceforge.net/projects/strace/.

