
A Type System and Type Soundness for the
Calculus of Aspect-Oriented Programming

Languages
Dinesh Gopalani, M. C. Govil, and K. C. Jain

Abstract—The formal study of class of functional and
procedure-oriented programming languages is well-defined
and uses λ-calculus as the main tool. With the advent
of object calculi, the formal study of object-oriented pro-
gramming languages is also well developed and understood.
Since the paradigm of aspect-oriented programming is new,
formal theory for the same is under development. The pro-
posed untyped aspect calculus provides direct support for
aspects and other construct of aspect-oriented programming
languages however without considering typing information.
We propose here the simple-typed aspect calculus - a type
system for the aspect calculus. The proposed simple-typed
aspect calculus includes typing rules for all the terms of
untyped calculus and the same are discussed in the paper.
The theorem of type soundness along with its proof for the
aspect calculus is also derived and discussed here. The proof
is based on method of induction and states that reduction
rules defined in the operational semantics of untyped aspect
calculus is consistent with the type system of simple-typed
aspect calculus. The proposed theory is very useful in
studying and understanding various properties related to
existing aspect-oriented languages.

Index Terms—aspect-oriented programming, formal
study, object calculi, reduction rules, simple-typed aspect
calculus, type soundness, type system, typing rules.

I. INTRODUCTION

The object calculi [1] proposed by Abadi and Cardelli,
treat objects rather than functions as their main primitive
constructs and define operations on these objects directly.
This approach used by the object calculi overcomes the
problem of complex encoding of objects as functions
which usually occurs when λ-calculus [2], [3] is used
to model features of object-oriented programming lan-
guages. With the object calculi, the formal study of
object-oriented programming languages is well developed
and understood however the calculi do not provide di-
rect support for aspects and other related constructs of
aspect-oriented programming languages [4], [5]. Since the
paradigm of aspect-oriented programming is new, formal

Manuscript received November 16, 2011; revised February 3, 2012.
Dinesh Gopalani is with the Department of Computer Engineer-

ing, Malaviya National Institute of Technology, Jaipur, India. e-
mail:dgopalani@rediffmail.com, dg@mnit.ac.in

M. C. Govil is currently Principal of Government Mahila Engineering
College, Ajmer, India and on deputation from the Department of Com-
puter Engineering, Malaviya National Institute of Technology Jaipur,
India. e-mail:govilmc@yahoo.com

K. C. Jain is with the Department of Mathematics, Malaviya National
Institute of Technology, Jaipur, India. e-mail:jainkc 2003@yahoo.com

theory for the same is under development. The scope
of object calculi is primarily confined to the family of
conventional object-oriented languages but can also be
used for aspect-oriented languages, however this may
result into some lengthy and complex encodings of as-
pects in terms of conventional objects. To circumvent this
problem, we propose aspect calculi which provide direct
support for aspects and other related constructs of aspect-
oriented programming paradigm.

The existing approaches to deal with the formal theory
of aspect-oriented languages mainly include Parameter-
ized Aspect Calculus [6], A Calculus of Untyped Aspect-
oriented Programs [7], and A Theory of Aspects [8].
However our approach is quite different in the sense
that we propose a formal theory for aspect-oriented pro-
gramming languages by providing aspect calculi which
are extensions to object calculi and based on imperative
execution model. The Untyped Aspect Calculus [9] deals
with aspects as basic primitives and define operations
on these primitives, however without considering any
typing information. We propose here a type system for
the calculus which includes object and aspect types and
typing rules. The proposed typed calculus is named as
“Simple-typed Aspect Calculus”. Type safety or type
soundness is an important property of any type system
and according to which a term must preserve its type
in the process of reduction or evaluation. The theorem
of type soundness along with its proof for the aspect
calculi is also devised. The proof is based on method
of induction and states that reduction rules defined in
the operational semantics of untyped aspect calculus is
consistent with the type system of simple-typed aspect
calculus. The proposed theory is very useful in studying
and understanding the existing aspect-oriented languages
as well as designing and implementing the new ones.

II. SIMPLE-TYPED ASPECT CALCULUS

The type system for aspect calculi is devised and
discussed in this section. Here typing constructs for
aspects and other terms are given in a very simplified
form. The calculus does not include higher constructs like
polymorphism and self types.

A. Syntax

The syntax of the simple-typed aspect calculus includes
two types - object type and aspect type. The object type

TABLE I
SYNTAX OF SIMPLE-TYPED ASPECT CALCULUS

S, T ::= types
A, B ::= object types

[li : B i∈1..n
i] object type (li distinct)

C, D ::= aspect types
[li : D i∈1..p

i ,

di : D i∈p+1..q
i] aspect type (li, di distinct)

a, b ::= terms
x variable
[li = ς(xi : Bi)b

i∈1..n
i] object (li distinct)

[li = ς(xi : Di)b
i∈1..p

i ,

di : p = ς(xi : Di)b
d i∈p+1..q
i] aspect (li, di distinct)

a.l method invocation
a.l ⇐ ς(x : A)b method update
clone(a) clone
let x = a in b let

b d ::= advice body term
let x = proceed(a) in b proceed
return(a) return

p, q ::= pointcut
¬p negation
p ∧ q conjunction
p ∨ q disjunction
call(li) method call
get(li) field get
set(li) field set
target(a) receiver object

[li : B i∈1..n
i] indicates that there are n methods in the

object and method bodies have types B1, B2, . . . Bn

respectively for each method labeled li, where i ∈ 1..n.
An aspect type is extended form of an object type since
an aspect can have advice in addition to conventional
methods. All the conventional and advice methods of an
aspect must have distinctive labels.

All terms defined for the untyped version of aspect
calculus, i.e., variable, object and aspect terms, method
invocation, method update, clone, let, proceed, return
terms, and pointcut primitives are also included here
along with type information wherever needed. An object
term is defined as [li = ς(xi : Bi)b

i∈1..n
i] with type

as [li : B i∈1..n
i], and an aspect term is represented as

[li = ς(xi : Di)b
i∈1..p
i , di : p = ς(xi : Di)b

d i∈p+1..q
i]

with type [li : D i∈1..p
i , di : D i∈p+1..q

i]. The method and
advice are represented by the notation ς(x : T)b, where
the bound variable x : T represents self of type T and
body b that produces the result. A method invocation
written as a.l, executes the body of method labeled l
of the term a with self parameter bound to term a. A
method update term is given as a.l ⇐ ς(x : A)b, where
A is the type of the self parameter associated with the
new method, replaces method labeled l of term a with
new method ς(x : A)b. The cloning operation clone(a)
produces a new object/aspect with the same method labels
as a, with each component sharing the methods of the
corresponding component of a. The let term is very
important and provides support for imperative execution.

TABLE II
TYPING RULES FOR ENVIRONMENT AND VARIABLES

(Env Φ) (Env x) (V al x)
Γ ` T x 6∈ dom(Γ) Γ′, x : T,Γ′′ ` �

——— —————————— ——————————-
Φ ` � Γ, x : T ` � Γ′, x : T, Γ′′ ` x : T

A let term let x = a in b, first evaluates the term a, binds
the result to variable x, and then evaluates the second term
b with binding of that variable x in scope.

An advice can take either a proceed or a return ac-
tion hence two terms - proceed and return terms are
introduced. A proceed term let x = proceed(a) in b
transfers the control to a subsequent aspect in the aspect
precedence and a return term return(a) is used for
transferring the control back to the caller. The pointcut p
used in the description of an advice includes negation,
conjunction and disjunction, method call and method
execution, field get and field set, and target object. Table
I gives the syntax for the simple-typed aspect calculus.

B. Typing Rules

Typing rules for all the terms of the calculus are
described here. The typing rules mainly use two kind of
judgments, i.e., type judgment Γ ` T and value typing
judgment Γ ` a : T . Here Γ represents the typing context
or typing environment which is a sequence of binding of
variables with their types. A type judgment Γ ` T states
that T is a well-formed type in the environment Γ. And
a value typing judgment Γ ` a : T states that term a has
type T in the environment Γ.

The typing rules given in Table II are meant for
building environments and to get the types of variables
from an environment. The type rule (Env Φ) is the
most fundamental rule and does not require any premise
judgments. It states that the empty environment is a well-
formed environment. The rule (Env x) is used to extend
an environment Γ to a longer environment (Γ, x : T), if
and only if T is a valid type in Γ and x is not in domain of
Γ. The rule (V al x) is used to extract the type for variable
x from the environment Γ. Here the notation Γ′, x : T, Γ′′

means that the typing information of variable x may be
available somewhere in the environment.

Next we define the rules for object and aspect typ-
ing and the same are given in Table III. The rule
(Type Object) is related to object typing and according
to this rule, an object type [li : B i∈1..n

i] is well-formed
in the environment Γ, provided that all Bi’s are well-
formed types in Γ. The rule (Type Aspect) is related
to aspect typing and very much similar to the previous
rule (Type Object). The only difference here is that
the types are added for advice methods along with the
conventional methods. As per the rule (V al Object),
an object of type [li : B i∈1..n

i] can be formed from a
collection of n methods whose self parameters are of the

TABLE III
TYPING RULES FOR OBJECT AND ASPECT TERMS

(Type Object) (li distinct) (Type Aspect) (li, di distinct)
Γ ` Bi ∀ i ∈ 1..n Γ ` Di ∀ i ∈ 1..q

——————————– ———————————————
Γ ` [li : B i∈1..n

i] Γ ` [li : Di∈1..p
i , di : Di∈p+1..q

i]

(V al Object) (where A ≡ [li : B i∈1..n
i])

Γ, xi : A ` bi : Bi ∀ i ∈ 1..n
———————————————–

Γ ` [li = ς(xi)b
i∈1..n

i] : A

(V al Aspect) (where C ≡ [li : D i∈1..p
i , di : D i∈p+1..q

i])
Γ, xi : C ` bi : Di ∀i ∈ 1..p Γ, xi : C ` bd

i : Di ∀i ∈ p + 1..q
————————————————————————————-

Γ ` [li = ς(xi)b
i∈1..p

i , di : p = ς(xi)b
d i∈p+1..q

i] : C

same type [li : B i∈1..n
i] and whose bodies are of types

B1, B2, ..., Bn respectively. Next the rule (V al Aspect)
defines typing of an aspect term. According to this rule, an
aspect term [li = ς(xi)b

i∈1..p
i , di : p = ς(xi)b

d i∈p+1..q
i]

is of type C ≡ [li : D i∈1..p
i , di : D i∈p+1..q

i] provided
that the self parameters xi’s are must be of same type,
i.e., C and method bodies are of types D1, D2, ..., Dp

and advice bodies are of types Dp+1, Dp+2, ..., Dq

respectively.
Table IV defines typing rules for all the remaining

terms of the calculus. The rule (V al Inv) states that the
invocation of method lj (where j ∈ 1..n) of an object of
type [li : B i∈1..n

i] produces the result of type Bj . And
the rule (V al Update) preserves the type of an object
whose method is updated. A method lj (where j ∈ 1..n)
of an object of type [li : B i∈1..n

i] can be updated with
the new method ς(x)b provided that the body b of this
new method is of type Bj under the assumption that self
x has the same object type [li : B i∈1..n

i]. According
to the rule (V al Clone), the term clone(a) has type
T provided that the original term a is also of type T .
The rule (V al Let) states that the term let x = a in b
has type T provided that the term a is of type S and
the term b is of type T with the assumption that the
variable x is of type S in the environment. Next we have
the typing rules for the proceed and return terms which
may appear as part of advice body. The typing rule for
proceed is very much similar to the typing rule for let
term and is given as (V al Proceed). Finally, the typing
rule (V al Return) states that the term return(a) has
type T provided that the corresponding term a is also of
type T in the environment Γ.

III. TYPE SOUNDNESS

Now it is to be proved that the operational semantics
of the untyped aspect calculus is consistent with the
given type system of the simple-typed aspect calculus.
This consistency property is known as the type soundness

TABLE IV
TYPING RULES FOR OTHER TERMS

(V al Inv)
Γ ` a : [li : B i∈1..n

i] j ∈ 1..n
——————————————-

Γ ` a.lj : Bj

(V al Update) (where A ≡ [li : B i∈1..n
i])

Γ ` a : A Γ, x : A ` b : Bj j ∈ 1..n
———————————————————

Γ ` a.lj ⇐ ς(x : A)b : A

(V al Clone) (V al Let)
Γ ` a : T Γ ` a : S Γ, x : S ` b : T

———————– —————————————-
Γ ` clone(a) : T Γ ` let x = a in b : T

(V al Proceed) (V al Return)
Γ ` a : S Γ, x : S ` b : T Γ ` a : T

—————————————— —————————-
Γ ` let x = proceed(a) in b : T Γ ` return(a) : T

or type safety. The type soundness property states that
reduction or evaluation must preserve types, i.e., if a well-
typed term t has type T and when the term t reduced
to result v, then result v must has the same type T . To
prove the type soundness for the calculus we need to
provide typing for results and the method store as given
below. Using this typing information, the theorem of type
soundness and its proof is devised and also discussed in
this section.

A. Result and Method Store Typing

For the proof of type soundness property for our
calculus it is necessary to provide types to results as
well as for the method store. The type of method store
σm is represented as Σ, which provides mappings from
each store location to its corresponding method type. A
method type M ::= [li : T i∈1..n

i] → Tj consists of two
components, where the first component [li : T i∈1..n

i] is
the type of self object/aspect and second component Tj is
the result type of the corresponding method/advice body.
Since method type consists of two components, Σs(ι)
represents self type associated with the store location ι
and Σb(ι) represents result type of body associated with
the location ι. Next we define the following judgments
which are required here:

�M well-formed method type judgment
Σ � � well-formed method store type judgment
Σ � v : T result typing judgment
Σ � σm method store typing judgment
Σ � Se : Γ environment stack type judgment

The first judgment �M defines the well-formedness of
the method type M . The well-formedness of the method

store type is given by the judgment Σ � �. Then we have
the judgment Σ � v : T meant for the typing of results.
According to this, the result v has type T with method
store type as Σ. All the locations in v are assigned types
in Σ. The judgment Σ � σm states that the method store
σm is compatible with the method store type Σ. Here all
method closures stored in locations of σm are compatible
to the method types associated with those locations in
method store type Σ. Finally the last judgment Σ � Se : Γ
defines that the environment stack Se is compatible with
the typing context Γ with respect to method store type Σ.

Typing rules for the method store and other related
constructs are defined and given in Table V. According
to the rule (Method Store Type), the method store type
consists of method types Mi’s associated with the loca-
tions ιi’s for all i ∈ 1..m, is well-formed provided that
Mi is well formed for all i ∈ 1..m. There are two rules for
the result typing as there are two possible results - object
and aspect. The rule (Result Type − Object) states
that the result of an object term [li = ι i∈1..n

i] has type
[li : Σb(ιi)

i∈1..n] provided that the corresponding method
store type Σ is well formed and the types associated with
locations ιi are such that Σs(ιi) ≡ [li : Σb(ιi)

i∈1..n],
for all i ∈ 1..n. Similarly, for aspect result typing the
rule (Result Type−Aspect) is defined and according to
which an aspect value [li = ι i∈1..p

i , di : p = ι i∈p+1..q
i]

has type [li : Σb(ιi)
i∈1..p , di : Σb(ιi)

i∈p+1..q] provided
that the store type has Σs(ιi) ≡ [li : Σb(ιi)

i∈1..p]
and Σs(ιi) ≡ [di : Σb(ιi)

i∈p+1..q], for all i ∈
1..p + q. Next two rules (Env Stack φ Typing) and
(Env Stack Se Typing) define the typing rules for
the environment stack used in the underlying operational
semantics. The rule (Env Stack φ Typing) is meant
for empty environment stack and states that the empty
stack is always compatible with the empty typing context
provided that corresponding method store type is well-
formed. The rule (Env Stack Se Typing) states that
the extended environment stack Se, x 7→ v is compatible
with the typing context Γ, x : T with respect to store
type Σ, provided that the stack Se is compatible with
the context Γ and the result v has type T with respect
to the same store type Σ, and the variable x must not
be there in the domain of the context Γ. The last rule
here provides the typing for the method store and named
as (Method Store Typing). According to this rule, the
method store ιi 7→ 〈ς(xi)bi, Sei

〉 i∈1..n is compatible with
the method store type Σ provided that the corresponding
stacks Sei

’s are compatible with the typing contexts Γi’s
and the method bodies bi’s have types Σb(ιi) in the typing
context Γi, xi : Σs(ιi), for all i ∈ 1..n.

B. Proof of Type Soundness

The result typing and store typing described in the
previous sub-section are required for the proof of type
soundness. Now we provide the theorem and proof for
type soundness for the aspect calculi. Before giving
the theorem and its proof we give a definition for the

TABLE V
RULES FOR RESULT AND METHOD STORE TYPING

(Method Store Type) (Result Type − Object)
� Mi ∀i ∈ 1..m Σ � � Σs(ιi) ≡ [li : Σb(ιi)

i∈1..n]
————————– —————————————————–
ιi 7→ M i∈1..m

i � � Σ � [li = ι i∈1..n
i] : [li : Σb(ιi)

i∈1..n]

(Result Type − Aspect)
Σ � � Σs(ιi) ≡ [li : Σb(ιi)

i∈1..p]
Σs(ιi) ≡ [di : Σb(ιi)

i∈p+1..q] ∀i ∈ 1..p + q
————————————————————————————–
Σ � [li = ιi∈1..p

i , di : p = ιi∈p+1..q
i] : [li : Σb(ιi)

i∈1..p,
di : Σb(ιi)

i∈p+1..q]

(Env Stack φ Typing) (Env Stack Se Typing)
Σ � � Σ � Se : Γ Σ � v : T x /∈ dom(Γ)

————– ————————————————–
Σ � φ : φ Σ � Se, x 7→ v : Γ, x : T

(Method Store Typing)
Σ � Sei

: Γi Γi, xi : Σs(ιi) ` bi : Σb(ιi) ∀i ∈ 1..n
——————————————————————————–

Σ � ιi 7→ 〈ς(xi)bi, Sei
〉 i∈1..n

extension of method store type and a lemma related to
this extension.

Definition 1: A store type Σ ′ is an extension of the
store type Σ (written as Σ ′ ⊇ Σ) if dom(Σ ′) ⊇ dom(Σ)
and for all ι ∈ dom(Σ), Σ ′(ι) = Σ(ι).

Lemma 3.1: If Σ � Se : Γ and Σ ′
� � with Σ ′ ⊇ Σ,

then Σ ′
� Se : Γ.

Theorem 3.1:
If Γ ` a : T

(σm , σa).(Se, Sd) ` a v.(σ ′

m , σ ′

a)
Σ � σm

Σ � Se : Γ
then for some Σ ′ ⊇ Σ,

Σ ′
� σ ′

m

Σ ′
� v : T

The above theorem states that with the following
assumptions:

• A term a has type T in the context Γ.
• With the method store σm, aspect sequence σa,

environment stack Se, and the advice stack Sd, the
term a reduces to a result v; method store and
aspect sequence get changed in the process and these
updated structures are represented by σ ′

m and σ ′

a ,
respectively.

• The method store σm is compatible with the method
store type Σ.

• The environment stack Se is compatible with the
typing context Γ with respect to method store type
Σ.

then we have the following conclusion for some method
store type Σ ′ ⊇ Σ:

• The updated method store σ ′

m is compatible with the
extended method store type Σ ′.

• Also the result v has type T with respect to the
extended method store type Σ ′.
Proof: The proof for the above theorem is given

using method of induction on the reduction of terms of
the calculus as defined by the underlying operational
semantics. For every term of the calculus we have
derived the proof, however due to space constraint here
we provide the proof for only some of the terms and is
given below as cases for each of these terms.

Case Variable Term (x):
For the reduction of variable term the rule (Red V ar)
is applicable and given in the operational semantics of
the untyped aspect calculus [9]. The reduction rule for
variable term is given as below:

(Red V ar)
(σm, σa).((S ′

e , x 7→ v, S ′′

e), Sd) ` �
——————————————————————-
(σm, σa).((S ′

e , x 7→ v, S ′′

e), Sd) ` x v.(σm, σa)

By hypothesis

Γ ` x : T
(σm, σa).((S ′

e , x 7→ v, S ′′

e), Sd) ` x v.(σm, σa)
Σ � σm

Σ � S ′

e , x 7→ v, S ′′

e : Γ
we need to prove for some Σ ′ ⊇ Σ,
Σ ′
� σm

Σ ′
� v : T

Since Γ ` x : T , we must have the typing
context Γ ≡ Γ ′, x : T, Γ ′′. The judgment
Σ � S ′

e , x 7→ v, S ′′

e : Γ in the hypothesis must
have been derived using the (Env Stack Se Typing)
rule with premise Σ � v : T . Here for the reduction of
variable term the method store remains unchanged, so
we can take Σ ′ ≡ Σ. Now we conclude that Σ ′

� σm

and Σ ′
� v : T .

Case Aspect Term ([li = ς(xi)b
i∈1..p
i , di : p =

ς(xi)b
d i∈p+1..q
i]):

Now we discuss the proof of the Theorem 3.1 for the
case when the term is an aspect term. The reduction rule
for aspect term (Red Aspect) is as given below.

(Red Aspect) (li, di, ιi distinct)

a ≡ [li = ς(xi)b
i∈1..p
i , di : p = ς(xi)b

d i∈p+1..q
i]

v ≡ [li = ι i∈1..p
i , di : p = ι i∈p+1..q

i]

(σm , σa).(Se, Sd) ` � ιi /∈ dom(σm) ∀i ∈ 1..q
———————————————————————-
(σm, σa).(Se, Sd) ` a v.((σm, ιi 7→ 〈ς(xi)bi, Se〉

i∈1..p,
ιi 7→ 〈ς(xi)b

d
i , Se〉

i∈p+1..q), σa + v)

By hypothesis

Γ ` [li = ς(xi)b
i∈1..p
i , di : p = ς(xi)b

d i∈p+1..q
i] : C

(σm, σa).(Se, Sd) ` a v.((σm, ιi 7→ 〈ς(xi)bi, Se〉
i∈1..p,

ιi 7→ 〈ς(xi)b
d
i , Se〉

i∈p+1..q), σa + v),
where a ≡ [li = ς(xi)b

i∈1..p
i , di : p = ς(xi)b

d i∈p+1..q
i],

v ≡ [li = ι i∈1..p
i , di : p = ι i∈p+1..q

i]
Σ � σm

Σ � Se : Γ
we need to prove for some Σ ′ ⊇ Σ,
Σ ′
� σm, ιi 7→ 〈ς(xi)bi, Se〉

i∈1..p,
ιi 7→ 〈ς(xi)b

d
i , Se〉

i∈p+1..q

Σ ′
� [li = ι i∈1..p

i , di : p = ι i∈p+1..q
i] : C

Let C ≡ [li : D i∈1..p
i , di : D i∈p+1..q

i] and
we take Σ ′ ≡ Σ, ιi 7→ (C → Di)

i∈1..q, by using
(Method Store Type) and using ιi /∈ dom(Σ) since
ιi /∈ dom(σm) for all i ∈ 1..q, we have Σ ′

� � and
Σ ′
� Se : Γ by using Lemma 3.1.

Proof of Σ ′
� σm, ιi 7→ 〈ς(xi)bi, Se〉

i∈1..p,

ιi 7→ 〈ς(xi)b
d
i , Se〉

i∈p+1..q

Using the hypothesis Γ ` [li = ς(xi)b
i∈1..p
i , di : p =

ς(xi)b
d i∈p+1..q
i] : C, we have Γ, xi : C ` bi : Di, ∀i ∈

1..q by the rule (V al Aspect). Further it can be written
as

Γ, xi : Σ ′

s (ιi) ` bi : Σ ′

b (ιi), ∀i ∈ 1..q (1)

The method store σm before the reduction of the
aspect term may be of the form σm ≡ τj 7→
〈ς(xj)bj , Sej

〉 j∈1..m. Now the hypothesis Σ � σm has
come from the (Method Store Typing) rule, with
Σ � Sej

: Γj and Γj , xj : Σs(τj) ` bj : Σb(τj), ∀j ∈
1..m. By Lemma 3.1 we have Σ ′

� Sej
: Γj . Also

Σ ′(τj) = Σ(τj) for all j ∈ 1..m as Σ ′ is an extension
of Σ, so we have

Γj , xj : Σ ′

s (τj) ` bj : Σ ′

b (τj), ∀j ∈ 1..m (2)

Now using equations (1) and (2) above, and using the
rule (Method Store Typing) we have the following
conclusion for Σ ′ ⊇ Σ:

Σ′
� σm, ιi 7→ 〈ς(xi)bi, Se〉

i∈1..p,

ιi 7→ 〈ς(xi)b
d
i , Se〉

i∈p+1..q

Proof of Σ ′
� [li = ι i∈1..p

i , di : p = ι i∈p+1..q
i] : C

Since Σ ′ ≡ Σ, ιi 7→ (C → Di)
i∈1..q and Σ ′

� �, and
using the rule (Result Type − Aspect), we have the
following conclusion for Σ ′ ⊇ Σ:

Σ ′
� [li = ι i∈1..p

i , di : p = ι i∈p+1..q
i] : C

Case Invocation Term (a.l):
There are two reduction rules for the invocation term
of the calculus as there are two possibilities while
invocation. Here we discuss the proof for one such
rule as the other one will have very similar proof. The
reduction rule (Red Inv) when no advice present is
given below.

(Red Inv) (No Advice present)
(σm, σa).(Se, Sd) ` a v.(σ′

m, σ′

a) v1 < v2.. < vn ∈ σ′

a

match(v, lj , v1, φ, inv) = φ σ ′

m(v.lj) = 〈ς(xj)bj , S
′

e〉
(σ ′

m , σ ′

a).((S ′

e , xj 7→ v), Sd) ` bj v ′.(σ ′′

m , σ ′′

a)
———————————————————————-

(σm , σa).(Se, Sd) ` a.lj v ′.(σ ′′

m , σ ′′

a)

By hypothesis
Γ ` a.lj : Bj

(σm , σa).(Se, Sd) ` a.lj v ′.(σ ′′

m , σ ′′

a)
Σ � σm

Σ � Se : Γ
we need to prove for some Σ ′′ ⊇ Σ,

Σ ′′
� σ ′′

m

Σ ′′
� v ′ : Bj

Since Γ ` a.lj : Bj we must have Γ ` a : [lj : Bj , ...]
by the typing rule (V al Inv), and let A ≡ [lj : Bj , ...].
Now by induction hypothesis for the reduction of term a:

Γ ` a : A
(σm , σa).(Se, Sd) ` a v.(σ ′

m , σ ′

a)
Σ � σm

Σ � Se : Γ
there exists some store type Σ ′ ⊇ Σ,

Σ ′
� σ ′

m

Σ ′
� v : A

Let v = [li = ι i∈1..n
i] and we have σ ′

m(v.lj) =
〈ς(xj)bj , S

′

e 〉. Now here Σ ′
� σ ′

m have come through
rule (Method Store Typing) using Σ ′

� S ′

e : Γj

and Γj , xj : Σ ′

s (ιj) ` bj : Σ ′

b (ιj). And Σ ′
� [li =

ι i∈1..n
i] : A (as v ≡ [li = ι i∈1..n

i]) have come through
(Result Type − Object), using A ≡ Σ ′

s (ιj) ≡ [li :
Σ ′

b (ιj)
i∈1..n]. Since A ≡ [lj : Bj , ...], so we have

Σ ′

b (ιj) ≡ Bj . Using this, now we have Γj , xj : A `
bj : Bj .

Also using (Env Stack Se Typing), we have Σ ′
�

S ′

e , xj 7→ [li = ι i∈1..n
i] : Γj , xj : A.

Let Γ ′ ≡ Γj , xj : A and again using induction
hypothesis but this time for the reduction of method body
term bj , for the following assumptions

Γ ′ ` bj : Bj

(σ ′

m , σ ′

a).((S ′

e , xj 7→ v), Sd) ` bj v ′.(σ ′′

m , σ ′′

a)
Σ ′
� σ ′

m

Σ ′
� S ′

e : Γ ′

we have the following conclusion for some store type
Σ ′′ ⊇ Σ ′,

Σ ′′
� σ ′′

m

Σ ′′
� v ′ : Bj

Finally we have the conclusion Σ ′′
� σ ′′

m and Σ ′′
�

v ′ : Bj for the store type Σ ′′ ⊇ Σ (as Σ ′ ⊇ Σ and
Σ ′′ ⊇ Σ ′).

IV. CONCLUSION

The paradigm of aspect-oriented programming lan-
guages is quite new but is of significant value to re-

search in the field of programming languages. With the
advent of aspect-oriented languages like AspectJ and As-
pectC++, the commercial adoption of this new paradigm
is also expected. The formalization for this new class
of programming languages is still under development.
The type system for the aspect-oriented programming
languages in the form of simple-typed aspect calculus
is presented here. The proposed typed calculus is very
useful in studying various properties of current aspect-
oriented languages. The type safety or type soundness is
an important property of any type system. The proof of
type soundness for the aspect calculi is also devised using
the method of induction and the same is discussed in the
paper.

REFERENCES

[1] M. Abadi and L. Cardelli, A Theory of Objects. New York:
Springer-Verlag, 1996.

[2] A. Church, “An Unsolvable Problem of Elementary Number The-
ory,” American Journal of Methematics, vol. 58, no. 2, pp. 345–363,
April 1936.

[3] ——, “A Formulation of the Simple Theory of Types,” The Journal
of Symbolic Logic, vol. 5, no. 2, pp. 56–68, June 1940.

[4] G. Kiczales, J. Irwin, J. Lamping, J. Loingtier, C. Lopes, C. Maeda,
and A. Mendhekar, “Aspect-Oriented Programming,” Proceedings
of the European Conference on Object-oriented programming
(ECOOP), Springer-Verlag, 1997.

[5] T. Elard, R. Filman, and A. Badar, “Aspect-Oriented Programming
: Introduction,” Communication of the ACM, October 2001.

[6] C. Clifton, G. T. Leavens, and M. Wand, “Formal Definition of
the Parameterized Aspect Calculus,” Technical Report 03-12b, Iowa
State University, Nov. 2003.

[7] R. Jagadeesan, A. Jeffrey, and J. Riely, “A Calculus of Untyped
Aspect-Oriented Programs,” In European Conference on Object-
Oriented Programming, Darmstadt, Germany, July 2003.

[8] D. Walker, S. Zdancewic, and J. Ligatti, “A Theory of Aspects,”
In Proceedings of the ACM SIGPLAN International Conference on
Functional Programming, Aug. 2003.

[9] D. Gopalani and M. C. Govil, “Untyped Aspect Calculus : For-
mal Theory of Aspect-Oriented Programming Languages,” IEEE
2nd International Advance Computing Conference, pp. 195–200,
February 2010.

