
On Describing Terminating Algebraic
Specifications Based on Their Models

Masaki Nakamura, Kazuhiro Ogata and Kokichi Futatsugi

Abstract—OBJ algebraic specification languages support au-
tomated equational reasoning based on term rewriting systems
(TRSs) for specification verification. Termination is one of
the most important properties of TRSs. Terminating TRSs
guarantee that any equational reasoning terminates in finite
times. Although termination is an undecidable property, several
sufficient conditions have been proposed, and several termina-
tion provers have been developed. In this study, we focus on
a way to describe terminating algebraic specifications, that is,
the coresponding TRSs are terminating. Existing termination
provers may inform us whether a given specification is termi-
nating or not. However, they do not give a guideline to describe
terminating specifications. We propose a model-based method
for describing terminating specifications. In our method, a
model of a given specification can be used for proving its
termination. Since specifiers are describing a specification while
thinking its model in their mind, our model-based termination
methods are suitable for algebraic specifications.

Index Terms—Algebraic specification, Term rewriting, OBJ
languages, Termination.

I. INTRODUCTION

OBJ languages [5], [6], [3], [10] are algebraic specifi-
cation languages, based on order-sorted equational logic.
OBJ languages support many advanced features, e.g. module
system, typing system with ordered sorts, mix-fix syntax, for
describing specifications, and a powerful interactive theorem
proving system based on term rewriting systems (TRSs).
Executability is an important feature of OBJ languages. Since
most OBJ specifications are assumed to be executed for
verifying desired properties, the knowledge about TRSs may
help us to describe executable specifications. Termination
is one of the most important properties of TRSs, which
guarantees that execution of the specification must terminate
in finite times. Properties of TRSs are important for not
only verifying specification but also describing specifications
correctly. For example, termination is strongly related to
the existence of a solution. Confluence is another important
property of TRSs, which is related to the uniqueness of a
solution. Reducibility of TRSs helps us to check whether
a function is well-defined for all elements of its domain
[13], [12], [11]. Termination is considered most important
among those fundamental properties. Although confluence
and reducibility are also undecidable properties in general,
they are decidable and automatically provable when a given
TRS is terminating. In this study, we focus on describing
algebraic specifications whose TRSs are terminating.

Manuscript received November 30, 2011.
This work was supported in part by Grant-in-Aid for Scientific Research

(S) 23220002 from Japan Society for the Promotion of Science (JSPS)
and Grant-in-Aid for Young Scientists (B) 22700027 from Ministry of
Education, Culture, Sports, Science and Technology (MEXT) Japan.

Masaki Nakamura is with the Department of Information Systems Engi-
neering, Toyama Prefectural University, Japan.

Kazuhiro Ogata and Kokichi Futatsugi are with the School of Information
Science, Japan Advanced Institute of Science and Technology (JAIST).

In algebraic specifications, we define functions by a set
of equations (axioms). For example, consider a function
even which take a natural number and returns true if it is
even, otherwise false . The function even (and odd) can be
defined by the following set of equations: even(0) = true,
odd(0) = false, even(n + 1) = odd(n) and odd(n + 1) =
even(n). We can compute the value of even(n) by applying
the equations in the left-to-right manner, like even(3) =
odd(2) = even(1) = odd(0) = false. Computation of
even(n) for any n terminates since the argument of even
or odd is strictly decreasing by application of an equation,
and will eventually reach zero. Consider another example: the
reverse function on lists. The equations rev(nil) = nil and
rev(e; l) = rev(l)@(e; nil) define the reverse function rev
on lists, where nil is the empty list, e; l is the list whose head
element is e and tail list is l, and @ is the list concatenation.
The reverse of 1; 2; 3; nil can be computed as follows:

rev(1; 2; 3; nil) = rev(2; 3; nil)@(1;nil)
= rev(3; nil)@(2;nil)@(1; nil)
= rev(nil)@(3;nil)@(2;nil)@(1; nil)
= nil@(3;nil)@(2; nil)@(1;nil)
= 3; 2; 1; nil

The computation terminates since the length of the argument
list of rev is strictly decreasing. Intuitively, the above exam-
ples are terminating since application of each equation may
decrease something strictly. OBJ specifications provide a way
to describe abstract data type. We can describe ordinary basic
data types like numbers, strings, etc, and more complicated
types like lists, sets, collection types and so on. When
describing large and complex systems consisting of several
data types and functions, it is not easy to describe equations
where any combination of their application must terminate.
In this study, we propose a model-based method for proving
termination, which gives us a mathematical evidence that any
computation must terminate.

II. PRELIMINARIES

In this section, we introduce the notion of algebraic
specifications [3] and term rewriting systems (TRSs) [13].
Though we give CafeOBJ specifications for explanation, our
approach does not restrict the target to CafeOBJ, and can
also be applied to other OBJ languages.

A. Algebraic specifications

An algebraic specification consists of signature and ax-
ioms. A signature (S,≤, Σ) (abbr. Σ) consists of a set S
of sorts, a quasi-order ≤ on S, and a set Σ of operation
symbols defined on the sorts1. An operation symbol f ∈ Σ

1A binary relation is a quasi-order if it is transitive and reflexive.

has its rank. A rank consist of an arity and a sort. An arity is a
sequence of sorts. An OBJ specification consists of modules.
The following is a CafeOBJ module NAT+:

mod! NAT+{
[Zero NzNat < Nat]
op 0 : -> Zero
op s_ : Nat -> NzNat
op _+_ : Nat Nat -> Nat
vars M N : Nat
eq N + 0 = N .
eq M + s N = s(M + N) .

}

NAT+ consists of a single module. Roughly speaking,
NAT+ denotes natural numbers with the addition function.
The symbol 0 stands for zero, and s_ stands for the
Peano style successor function. The terms 0, s 0, s s 0,
. . . are regarded as 0, 1, 2, . . . respectively. In NAT+, the
sorts Zero, NzNat and Nat are declared with the subsort
relation Zero < Nat and NzNat < Nat. In NAT+, the set
SNAT+ of sorts is {Zero, NzNat, Nat} and the partial order
≤NAT+ on SNAT+ is the reflexive and transitive closure of <,
that is, ≤NAT+= {(Zero, Zero), (NzNat, NzNat), (Nat, Nat),
(Zero, Nat), (NzNat, Nat)}.

In CafeOBJ, an operation symbol f is declared with its
rank as op f : arity -> sort. An operation symbol is called
a constant when the arity is empty. Module NAT+ has the
declarations of operation symbols 0, s_ and _+_, where 0
is a constant.

A (Σ, X)-term is a tree whose nodes are operation sym-
bols in Σ and leaves are variables in X . We may omit the
prefix (Σ, X)-. For a given signature (S,≤, Σ) and an S-
sorted set X of variables2, the S-sorted set TΣ(X)s (abbr.
Ts) of (Σ, X)-terms is defined as the smallest set satisfying
that (1) Xs ⊆ Ts for each s ∈ S, (2) Ts ⊆ Ts′ for each
s ≤ s′, and (3) f(~tn) ∈ Ts for each f ∈ Σ with the arity
s1s2 · · · sn and the sort s, and terms ti ∈ Tsi (i ∈ {~n})3.
A term t belonging to Ts is called a term of the sort s.
In CafeOBJ, we can indicate the arguments positions of
an operation symbol in term expression by underlines. For
t, t′ ∈ TNat, the expressions s t and t + t′ are terms of Nat.

In the axiom part, we describe equations to be satisfied
by the models of the specification. A (Σ, X)-equation is a
pair of terms t, t′ ∈ Ts, denoted by t = t′. In CafeOBJ, a
variable x of a sort s is declared with the keyword var (or
vars for plural) like var x : s (or vars x y z : s). An
equation t = t′ is declared with the keyword eq and = like
eq t = t′. In NAT+, the variables M and N of the sort Nat
and two equations are declared in the axiom part. The first
equation means that the terms (or patterns) N + 0 and N
are equivalent. The second means that M + s N and s(M
+ N) are equivalent.

B. Models

A model of a specification is a Σ-algebra which satisfies all
equations in the axiom part. For a signature Σ = (S,≤, Σ),
Σ-algebra M consists of an S-sorted carrier set M where

2An S-sorted set A is a family of sets As (s ∈ S). We may omit the
subscript s if no confusion arises, for example, a ∈ A instead of a ∈ As.

3We may write ~an instead of a1, . . . , an, and ~n instead of 1, . . . , n.

Ms ⊆ Ms′ for each s < s′, and functions Mf : Ms1 ×
· · · × Msn → Ms for each op f : s1 · · · sn -> s in Σ.
For a Σ-algebra M and an assignment a : X → M , a map
ā : T → M is defined as follows: ā(x) = a(x) for each
x ∈ X and ā(f(~tn)) = Mf (

−−−→
ā(tn)) for each f(~tn) ∈ T . We

may use a instead of ā if no confusion arises. A Σ-algebra M
satisfies an equation l = r if a(l) = a(r) for each assignment
a, denoted by Ml = Mr. For a given set E of equations, a
(Σ, E)-algebra is a Σ-algebra which satisfies all equations
in E.

An initial model M of SP is a kind of the smallest (Σ, E)-
algebras, which means that each element e ∈ M corresponds
to some ground (variable-free) term t ∈ TΣ(∅) (no junk)
and Mt = Mt′ implies t =E t′ for all t, t ∈ TΣ(∅) 4

(no confusion). The set of all models of SP is denoted by
M(SP) and the set of all initial models of SP is denoted by
IM(SP). There are two kinds of denotations of CafeOBJ
modules: the tight denotation (mod!) and the loose deno-
tation (mod*). The denotation of a basic CafeOBJ module
SP , denoted by [[SP]], is defined as follows: When mod!
SP{…} , [[SP]] = IM(SP) and when mod* SP{…} ,
[[SP]] = M(SP), where a basic module is a module without
any import. By using module imports, we can describe large
and complex systems easily. For example, when a module
SP ′ imports SP with the protect mode, each denotational
model M ′ ∈ [[SP ′]] includes a model M ∈ [[SP]] of the
imported module as it is, denoted by mod* SP ′{pr(SP)
...}. For example, we can describe specifications of data
types, and a system specification imports them with the
protected mode. We omit details of denotation of modules
including module imports (See the reference [3]).

Consider the following ΣNAT+-algebras B, N,Z, N∗ 5.

• B is a Boolean algebra: BZero = {false}, BNzNat =
{true}, BNat = {false, true}, B0 = false, Bs(x) =
true, B+(x, y) = x ∨ y.

• N is an algebra of natural numbers: NZero = {0},
NNzNat = N+ = {1, 2, . . .}, NNat = N = {0, 1, 2, . . .},
N0 = 0, Ns(x) = x + 1, N+(x, y) = x + y．

• Z is an algebra of integers: Zx is same with Nx except
ZNat = Z = {. . . ,−2,−1, 0, 1, 2, . . .}.

• N∗ is another algebra of natural numbers: N∗
x is same

with Nx except N∗
+(x, y) = x × y．

All B,N,Z, N∗ are ΣNAT+-algebras. Only N∗ is not a
(ΣNAT+, ENAT+)-algebra since the equations are not satisfied,
for example, N∗

N+0 = a(N)× 0 = 0 6= a(N) = N∗N for some a
which assigns N to a positive integer. A specification NAT+
denotes N , i.e. N ∈ [[NAT+]]. Z has negative integers (junk)
and B interpret all positive integers to one element true
(confusion), that is, Bss0 = Bs0 = true though s s 0 6=E

s 0. Thus, Z, B 6∈ [[NAT+]].

C. Term rewriting systems

An OBJ specification is executable, that is, some term may
be reduced into its normal form automatically. The execution
is based on a term rewriting system (TRS), which is a set of

4t =E t′ means that the equation can be deduced from E.
5In this paper, the contents of SP may be written like XSP . For

example, ΣSP and ESP are the signature and the set of all equations
of a specification (or a module) SP respectively.

rewrite rules. In a TRS, an equation is regarded as a left-to-
right rewrite rule. A term is rewritten by replacing an instance
of the left-hand side of an equation with the corresponding
instance of the right-hand side. A term is reduced by applying
rewrite rules to a given term until it cannot. The following is
an example of reducing the term s 0 + s s 0 in NAT+:

CafeOBJ> red in NAT+ : s 0 + s s 0 .
-- reduce in NAT+ : s 0 + s (s 0)
s (s (s 0)) : NzNat

The following is the trace of the above reduction showed
by CafeOBJ system: s 0 + s s 0 → s(s 0 + s 0)
→ s s(s 0 + 0) → s s s 0. The underlined subterms
are matched with left-hand sides of equations, and replaced
with the corresponding right-hand sides. The first and sec-
ond rewrites are obtained by the second equation eq M
+ s N = s(M + N) and the last rewrite is obtained by
the first equation eq M + s N = s(M + N). The input
and output terms of the CafeOBJ reduction command are
equivalent in all models [3]. Thus, the above execution is a
proof of 1 + 2 = 3 in NAT+. The rewrite relation obtained
by an equation e is denoted by →e, and the rewrite relation
obtained by E is denoted by →E . The reflexive and transitive
closure of → is denoted by →∗. The above reduction can be
written as s 0 + s s 0 →∗

NAT+ s s s 0.

D. Termination

A specification SP = (Σ, E) (or a TRS E) is terminating
if there is no infinite rewrite sequence [13]. Let E′ be
the set obtained by adding eq s(0 + N) = 0 + s N to
NAT+. Then, E′ is not terminating since there is an infinite
rewrite sequence s(0 + 0) →E′ 0 + s 0 →E′ s(0 +
0) →E′ · · · . Several useful proof methods for termination
have been proposed and several termination provers have
been developed. We can use those tools to prove a given
specification to be terminating. We introduce two classical
approaches and one recent powerful notion for termination.

1) Recursive Path ordering: Recursive path ordering
(RPO) is one of the most classical syntactic termination
methods. Let Σ be a signature, X a set of variables, and
D ⊂ Σ × Σ a partial order on operation symbols. The RPO
>rpo⊂ T (Σ, X) × T (Σ, X) is defined as follows:

t >rpo t′
def⇐⇒ t = f(~tm) and

1) ∃ i ∈ {~m}.ti ≥rpo t′, or
2) t′ = g(~t′n), f B g and ∀j ∈ {~n}.t >rpo t′j , or
3) t′ = g(~t′n), f ∼ g and {|~tm|} >mul

rpo {|~t′n|},

where a B b
def⇐⇒ a D b ∧ a 6= b, a ∼ b

def⇐⇒ a D b ∧ b D a.
{| . . . |} stands for a multiset. The partial order >mul is a
multiset order w.r.t. >6. The following property holds7.

Proposition 2.1: [13] Let E be a set of equations. If there
exists D such that l >rpo r for each l = r ∈ E, then E is
terminating.

6A multiset is a collection where duplicated elements are allowed. For
example, {|a, a, b|} and {|a, b|} are different. FM(A) is the set of all finite
multisets whose elements are of a given set A, e.g. {|0, 2, 2|} ∈ FM(N).
A multiset order >mul⊆ FM(A)×FM(A) w.r.t. a partial >⊆ A×A is
defined as follows: M1 >mul M2 ⇔ ∃X, Y ∈ FM(A).[X 6= ∅ ∧ X ⊆
M1 ∧ M2 = (M1 \ X) + Y ∧ ∀y ∈ Y.∃x ∈ X.x > y]. For example,
{|2, 2, 3|} >mul {|1, 1, 2, 3|} holds, where X = {|2|} and Y = {|1, 1|}.

7We assume Σ is finite. Thus, there is no infinite sequence f1 Bf2 B · · · .

Let + B s B 0. Then, N + 0 >rpo N and M + s(N)
>rpo s(M + N) hold. The former is trivial from N ≥rpo N
(from 1). The latter is obtained as follows: s(N) >rpo N
holds (from 1). Since {|M, s(N)|} >mul

rpo {|M, N|}, we have M +
s(N) >rpo M + N (from 3). Therefore, M + s(N) >rpo

s(M + N) holds (from 2 with + B s).
2) Polynomial interpretations: In semantic methods, ter-

mination is proved based on a well-founded monotone com-
patible Σ-algebra, that is, a (S,≤, Σ)-algebra together with
a partial order on MS which is well-founded, monotone and
compatible with E. A partial order > is well-founded if there
is no infinite decreasing chain a1 > a2 > · · · . It is monotone
if Mf (~an) > Mf (~bn) whenever f ∈ Σ, ∃i ∈ {~n}.ai > bi

and ∀j 6= i.aj = bj . It is compatible with E if Ml > Mr

whenever l = r ∈ E.
Proposition 2.2: [13] A specification E is terminating if

and only if there exists a well-founded monotone compatible
Σ-algebra.

We show that termination of NAT+ by giving a Σ-algebra
M where operation symbols are interpreted into polynomials
on natural numbers. Let M0 = 1, Ms(x) = x + 1 and
M+(x, y) = x + 2y + 1. Let a be an assignment such that
a(N) = n and a(M) = m. Then the first equation in NAT+ is
ordered by >: MN+0 = M+(n,M0) = n + 3 > n. So is the
second equation: MM+sN = M+(m,Ms(n)) = m + 2n + 3
> m + 2n + 2 = Ms(M+(m,n)) = Ms(M+N). Thus, M is a
proof of termination of NAT+.

3) Dependency pairs: Recently a landmark in termination
methods has been proposed, called the dependency pair
(DP) method [1]. A dependency pair is a pair of terms
obtained from an equation, which is essential for analyzing
termination. Combinations of the DP method and classical
methods like RPO, Polynomial ordering, etc, extend a class
of TRSs which can automatically be proved terminating.
Most of the active termination tools adopt the DP method.

A root symbol, i.e. the symbol at the root position, of
a left-hand side of an equation is called a defined symbol.
For example, _+_ is a defined symbol and 0 and s_ are
not. A rename of an operation symbol f is denoted by f#.
We assume that f# is not included in the original signature
Σ. The term whose root symbol is renamed is denoted by
t#. For example, t# = +#(0, N) when t = 0 + N. For the
readability, we write f#(· · ·) even if f is declared with the
underlines, like f .

Let l = r ∈ E be an equation. A dependency pair
is a pair (l#, u#) of terms where u is a subterm of r
whose root symbol is a defined symbol [1]. The all de-
pendency pairs obtained from E is denoted by DP (E). A
chain of dependency pairs is a (possibly infinite) sequence
(l#i , u#

i) (i = 0, 1, 2, . . .) of dependency pairs in DP (E)
whose variables are distinct such that dependency pairs do
not share variables and there is a substitution θ such that
u#

i θ →∗
E l#i+1θ for each i = 0, 1, 2, . . . 8. Termination can

be characterized by a chain of dependency pairs.
Proposition 2.3: [1] A specification is terminating if and

only if there is no infinite dependency chain.
DP (NAT+) = {(+#(M, sN), +#(M,N))} whose de-

pendency pair is made from the second equation M + s N

8A substitution θ is a map from X to T . For a term t, the term whose all
variable x are replaced with θ(x) is denoted by tθ. For example, let θ(M)
= 0 and θ(N) = s M. Then, (M + s N)θ =0 + s s M.

= s(M + N) of NAT+. The following sequence is a DP
chain:

(+#(M0, sN0), +#(M0, N0))
(+#(M1, sN1), +#(M1, N1))
(+#(M2, sN2), +#(M2, N2))

where each Mi and Ni are variables, since there exists θ
such that +#(Mi, Ni)θ = +#(Mi+1, sNi+1)θ (i = 0, 1),
where θ(Mi) = 0 for each i = 0, 1, 2, and θ(N0) = s s 0,
θ(N1) = s 0 and θ(N2) = 0. Note that →∗ includes
the zero-step rewrite, i.e. =⊆→∗. Intuitively there is no
infinite DP-chain in DP (NAT+). Let us assume an infinite
DP chain (+#(Mi, sNi), +#(Mi, Ni)) (i = 0, 1, 2, . . .).
Since +#(Mi, Ni)θ →∗

NAT+ +#(Mi+1, sNi+1)θ and the
renamed root symbol +# must not be rewritten, it holds that
Niθ →∗

NAT+ sN i+1θ. In the model, Niθ and sN i+1θ are
interrupted into a same natural number since they are con-
nected by →∗

NAT+, i.e. they are deducible from the equations
in NAT+. Therefore, a(Niθ) = a(sNi+1θ) > a(Ni+1θ)
and it contradicts to the well-foundedness of > on natural
numbers.

III. PROVING TERMINATION BASED ON MODELS

Existing methods and tools for proving termination, in-
cluding those we introduced above, are used after describing
specifications. Those methods and tools tell us ”Yes”, ”No”
or ”Unknown” for the query of whether a specification is
terminating or not, and they do not tell how to describe
terminating ones. One way to give a guideline to describe
terminating specification is to give a syntactic condition
under which any specification satisfying the condition is
terminating. However, it may restrict the flexibility of OBJ
languages. Another way is to describe a specification with
a terminating proof. To do it, specifiers are expected to be
familiar with a termination method. Our motivation is to
propose a termination method which is easy to be learned
and used by OBJ users.

Since algebraic specifications denote Σ-algebras, semantic
methods based on well-founded Σ-algebras seemingly may
fit for algebraic specifications. However, as we showed
above, they are completely different models. Equations l = r
are interpreted into the equalities Ml = Mr in their denota-
tional models, while they are interpreted to the inequalities
Ml > Mr in well-founded Σ-algebras for termination, like
the above example of polynomial interpretations for NAT+,
where M+(x, y) = x + 2y + 1.

The DP method gives us a solution for reducing the
gap between denotational models of specifications and well-
founded models for termination. In classical methods, a
rewrite relation corresponds to a well-founded order directly.
Thus, each rewrite relation should be strictly decreased. In
the DP method, only dependency pairs are strictly decreased,
and rewrite relations are not needed to be strictly decreased.
The following proposition holds.

Proposition 3.1: [1] A specification is terminating if there
exists a quasi-order & on terms which satisfies the following
conditions:

1) > is well-founded,
2) & is weakly monotonic,
3) & and > are closed under substation,
4) l & r for each l = r ∈ E and

5) l# > u# for each (l#, u#) ∈ DP (E)
where > is defined as a > b ⇔ a & b ∧ b 6& a. A quasi-
order & is weakly monotonic if ∀i ∈ {~n}.si & ti implies
∀f.f(~sn) & f(~tn).

Note that Σ and T do not include renamed operation sym-
bols g#. The point of the above proposition is that equations
are allowed to be interpreted into equations because of =⊆&.
Thus we can use a model of a specification for constructing a
model for proving termination. For a given specification, we
define a specification SP# importing SP such that a model
of SP# can be used for proving termination of SP .

Definition 3.2: Let SP be a specification. The DP-
specification of SP , denoted by SP#, is defined as the loose
module including the followings:

1) a protected import of SP ,
2) a sort DP, which is not included in SP ,
3) an operation symbol op _>_: DP DP -> Bool 9,
4) an operation symbol op f# :s1 · · · sn -> DP for each

op f :s1 · · · sn -> s in SP ,
5) an equation eq l# > u# = true for each dependency

pair (l#, u#) ∈ DP (SP).
Let SP = ((S,≤, Σ), E) be a specification. A DP-

specification SP# is formed as follows:

mod* SP# {
pr(SP)
[DP]
op _>_ : DP DP -> Bool
op f1# : ... -> DP
op f2# : ... -> DP
...
ep f1#(...) > f1#(...) = true .
ep f2#(...) > f1#(...) = true .
ep f2#(...) > f2#(...) = true .
...

}

where pr(SP) stands for the import of SP with the protect
mode. The arguments of f# (omitted as ...) are same with
the original f . For each ep f#

i (. . .) > f#
j (. . .) = true,

there exists (f#
i (. . .), f#

j (. . .)) in DP (SP), and for each
(f#

i (. . .), f#
j (. . .)) ∈ DP (SP), SP# includes ep f#

i (. . .)
> f#

j (. . .) = true. Let us consider a model of SP#. The
sort DP can be interpreted into an arbitrary set, and renamed
operation symbols f# can also be arbitrary functions. Since
BOOL denotes the Boolean algebra B and true stands for
true of B, the operation symbol _>_ is interpreted into a
predicate which returns true for each dependency pair. Since
the import of SP is protected, a model M ′ of SP# interprets
all SP ’s contents as same as M ∈ [[SP]], i.e., for each
M ′ ∈ [[SP#]] there exists M ∈ [[SP]] such that Ms = M ′

s

for each s ∈ S and Mf = M ′
f for each f ∈ Σ.

A model M ∈ [[SP#]] is well-founded if M> is well-
founded. We have the following theorem.

Theorem 3.3: If there exists a well-founded model M ∈
[[SP#]], then SP is terminating.

9Each CafeOBJ specification implicitly imports the built-in module BOOL,
which includes the sort Bool, the constants true and false of Bool,
and the operation symbols _and_, _or_, etc of Boolean operations. BOOL
denotes the Boolean algebra B, i.e. [[BOOL]] = {B}, where B interprets
elements in BOOL naturally.

Proof of Theorem 3.3 Let SP = ((S,≤, Σ), E). We give
a S-sorted quasi-order & satisfying Proposition 3.1. Define
& as follows:

a) For each s ∈ S and t, t′ ∈ Ts, t & t′ ⇔ Mt = Mt′ .
b) For each t, t′ ∈ TDP, t & t′ ⇔ ∀a.M>(a(t), a(t′)).

Note that t and t′ in the case a) are terms of the original SP ,
i.e., no renamed symbols are included, and their sort are not
DP. Consider the strict part > of &. For each t, t′ ∈ Ts

(s ∈ S), Since t & t′ ⇒ Mt = Mt′ ⇒ Mt′ = Mt ⇒
t′ & t from the definition of the case a), t > t′ does not
hold. For each t, t′ ∈ TDP, if t & t′ then t′ 6& t from the
well-foundedness of M>, therefore t > t′ holds. Thus, we
have the following lemma: t > t′ ⇔ ∀a.M>(a(t), a(t′)) for
each t, t′ ∈ TDP.

We show & satisfies 1) - 5) of Proposition 3.1.
1) Since M> is well-founded, > is well-founded from the

lemma.
2) Assume ∀i ∈ {~n}.si & ti. We show f(~sn) & f(~tn)

for each operation symbol f . The sorts of si, ti are not
DP since no operation symbol can take terms of DP in
its argument. From a), Msi = Mti and thus Mf(~sn) =
Mf(~tn). From a) again, we have f(~sn) & f(~tn).

3) Let θ be an arbitrary substitution and t, t′ ∈ Ts for
some s ∈ S. Assume t & t′. From a) Mt = Mt′ , and
it means that ∀a.a(t) = a(t′). Let a0 be an arbitrary
assignment. Define the assignment a′

0 as a′
0(x) =

a0(θ(x)). Then, a0(tθ) = a′
0(t). From the assumption,

a′
0(t) = a′

0(t
′). Thus, ∀a.a(tθ) = a′(t) = a′(t′) =

a(t′θ)holds, and & is closed under substitution θ. For
>, it can be proved similarly.

4) Since M satisfies l = r ∈ E, i.e. Ml = Mr. Thus,
l & r.

5) Let (l#, u#) ∈ DP (SP). From the definition of SP#,
M>(a(l#), a(u#)) holds for each assignment a. From
the lemma, l# > u#. �

IV. DESCRIBING TERMINATING SPECIFICATIONS

In this section, we show examples of proving termination
based on Theorem 3.3.

A. The specification NAT+

Since DF (NAT+) =_+_ and DP (NAT+) = (+#(M, s
N), +#(M, N)), the DP-specification NAT+# is given as
follows:

mod* NAT+#{
pr(NAT+)
[DP]
op _>_ : DP DP -> Bool
op +# : Nat Nat -> DP
vars M N : Nat
eq +#(M, s N) > +#(M, N) = true .

}

Note that the terms +#(M, s N) and +#(M, N) are
of the sort DP. Let N ∈ [[NAT+]]. We give a model M of
NAT+# as follows: Mx = Nx for all x ∈ NAT+ where x is
Nat, NzNat, Zero, 0, s_ or _+_. The sort DP is inter-
preted into the set of the natural numbers, i.e. MDP = N . The
operation symbol _>_ is interpreted into the ordinary order
on N . The renamed operation symbol +# is interpreted as

M+#(x, y) = y. Then, M satisfies the equations in NAT+#.
Since Mx = Nx for all x ∈ NAT+, M satisfies all equations
in NAT+. We have M+#(M,sN) = MN + 1 > MN = M+#(M,N).
Thus, M satisfies the equation +#(M, s N) > +#(M, N)
= true. Since the ordinary order on N is well-founded,
M ∈ [[NAT+#]] is a well-founded model.

The reason why M+#(x, y) is defined as y is because
the equations in NAT+ define the operation symbol _+_
recursively on the second argument. Such an interpretation
is not allowed in the classical semantic methods, where the
strict order > should be monotonic, i.e. f(~an) > f(~bn)
whenever ∃i.ai > bi and ∀j 6= i.aj = bj . Consider
f(x, y) = y. Then, f(a, c) = f(b, c) even if a > b.

B. The specification LIST

The following specification LIST specifies lists on natural
numbers and the reverse function on the lists:

mod! LIST{
pr(NAT+) [List]
op nil : -> List
op _;_ : Nat List -> List
op rev : List -> List
op revApp : List List -> List
vars L L’ : List
var N : Nat
eq revApp(nil, L) = L .
eq revApp(N ; L, L’)

= revApp(L, N ; L’) .
eq rev(L) = revApp(L, nil) .

}

The following is the CafeOBJ execution of applying the
reverse function rev to the list [2, 1, 0], which returns the
list [0, 1, 2]:

LIST> red rev(s s 0 ; s 0 ; 0 ; nil) .
...
0 ; (s 0 ; (s (s 0) ; nil)) : List

LIST denotes the following model L. All elements in
NAT+ are interpreted as same as N ∈ [[NAT+]]. The sort
List is interpreted into the set List(N) of all lists on
natural numbers. The operation symbols nil, _;_, rev
and revApp are interpreted into the empty list [], the
list constructer L;(x, [~xn]) = [x, ~xn], the reverse function
rev : List(N) → List(N), and the auxiliary function
LrevApp(l0, l1) = rev(l0)@l1 where @ is the concatenation
of lists. For example, LrevApp([3, 4], [2, 1]) = [4, 3, 2, 1].

We show termination of LIST. The DP-specification
LIST# is given as follows:

mod* LIST#{
pr(LIST) [DP]
op _>_ : DP DP -> Bool
op +# : Nat Nat -> DP
op rev# : List -> DP
op revApp# : List List -> DP
vars M N : Nat
vars L L’ : List
eq +#(M, s N) > +#(M, N) = true .
eq revApp#(N ; L, L’)

> revApp#(L, N ; L’) = true .

eq rev#(L) > revApp#(L, nil) = true .
}

The set DF (LIST) of all defined symbols in LIST is
{rev,revApp,_+_}. Note that we should consider the
defined symbols in the imported module NAT+. We give a
model M ∈ LIST#. Mx = Lx for all elements x in the
original LIST. The sort DP is given as MDP = N . The re-
named functions are interpreted as follows: M+#(x, y) = y,
MrevApp#(l, l′) = |l| and Mrev#(l) = |l| + 1, where |l|
is the length of the list l. Since the operational symbol
revApp is inductively defined on the length of the list
in the first argument, we give MrevApp#(l, l′) = |l|. Since
rev is defined by revApp, Mrev#(l) is defined larger than
MrevApp#(l, l′). Then, M ∈ [[LIST#]] is well-founded, and
LIST is terminating from Theorem 3.3.

The notion of dependency cycles has been proposed for
analyzing which dependency pairs are essential to prove
termination [1]. By using the dependency cycles, the de-
pendency pair (rev#(L), revApp#(L, nil)) can be
removed from elements of the dependency sequence. Thus,
we do not need to give an interpretation for rev. See [1]
for details.

V. CONCLUSION

We proposed a termination method for algebraic speci-
fications based on their models. In our method, models of
specifications are used for obtaining models for proving ter-
mination unlike classical semantic methods, e.g. polynomial
interpretation. A combination of the dependency pair method
and polynomial interpretation is known as a useful approach
to give powerful termination prover [2], and is adopted
by several termination provers like AProVE10, CiME11 and
TTT12. Our method can be seen as a generalization of the
combination of the dependency pair method and polynomial
interpretation. In polynomial interpretation, all operation
symbols are interpreted into a polynomials on natural num-
bers, where the order on natural numbers is well-founded.
In our method, the sorts and the operation symbols in the
original specification are interpreted by a denotational model
of the specification, and the renamed operation symbols are
interpreted into functions on a well-founded ordered set.
Unfortunately, our method is not suitable for automated
reasoning since it is impossible in practice to implement
all models of algebraic specifications to be described in
advance. Our method is useful for describing terminating
specifications since a model of the specification exists on
the mind of the specifiers. The purpose of a specifier is to
describe specification of some model, for example, a system
to be implemented.

In this article, we restrict target specifications to simple
ones, that is, no operation attributes and no conditional equa-
tions, which are useful to describe practical specifications.
For example, associate and commutative operation attributes
are very useful to describe a collection type. The associativity
((a◦ b)◦ c = a◦ (b◦ c)) and the commutativity (a◦ b = b◦a)
of a binary operation symbol (◦) are commonly used in
algebraic specifications, however, they make a specification

10http://aprove.informatik.rwth-aachen.de/
11http://cime.lri.fr/
12http://colo6-c703.uibk.ac.at/ttt/

to be non-terminating and/or non-confluent. OBJ languages
provide operation attributes to solve this problem. We de-
scribe associativity and commutativity as operation attributes
instead of describing their equations directly. In reduction,
those operation attributes are implemented in the matching
phase, that is, the term (a◦ b)◦ c is matched with the rewrite
rule (c ◦ b) ◦ a = d and is rewritten to d as a one-step
rewriting. AC-TRS is a generalization of TRS, in which
we declare associative and commutative operation symbols.
Termination of AC-TRS has also been studied. Application
of the dependency pair method to AC-TRS has been studied,
for example, in [8], [7]. We may apply these results to obtain
DP-specification with AC-symbols. A conditional equation is
an equation equipped with a condition c, which is a term
of Boolean term, formed of l = r if c. A model has
to satisfy the body part lθ = rθ if the condition part cθ
is interpreted into true. In reduction, before applying the
body part to a given term, the condition part is checked
whether to be reduced into true. CTRS is a generalization
of TRS, in which we declare conditional rewrite rules.
Besides infinite rewrite sequences we should care infinite
calls of reductions of condition parts. Effective termination
[12] and operational termination [9], [4] give the notion of
termination for CTRS. Termination methods for effective (or
operational) termination have been proposed. In the existing
methods, effective (or operational) termination is proved by
transforming a given CTRS into a TRS whose termination
implies effective (or operational) termination of the original
CTRS. Transformations may not preserve models of the
original specification. To give a DP-specification for CTRS
is one of our future work.

REFERENCES

[1] T.Arts and J.Giesl, Termination of term rewriting using dependency
pairs, Theor. Comp. Sci. 236 (2000), 133-178.

[2] E.Contejean, C.Marche, A.P.Tomas, X.Urbain, Mechanically Proving
Termination Using Polynomial Interpretations, Journal of Automated
Reasoning, Vol.34, No.4, 325 -363, 2005.

[3] R.Diaconescu and K.Futatsugi, ”CafeOBJ report,” World Scientific,
1998.

[4] F.Duran, S.Lucas, C.Marche, J.Meseguer, and X.Urbain, Proving oper-
ational termination of membership equational programs, Higher-Order
and Symbolic Computation, 21(1-2), pp. 59?88, 2008.

[5] K.Futatsugi, J.A.Goguen, J.-P.Jouannaud, and J.Meseguer, Principles
of OBJ2., Proceedings of the 12th ACM Symposium on Principles of
Programming Languages, POPL, pp. 52-66, 1985.

[6] J.A.Goguen, T.Winkler, J.Meseguer, K.Futatsugi and J.-P.Jouannaud,
Software Engineering with OBJ: Algebraic Specification in Action,
Kluwers Academic Publishers, 2000, chapter Introducing OBJ*.

[7] K.Kusakari, M.Nakamura and Y.Toyama, Elimination Transformations
for Associative-Commutative Rewriting Systems, Journal of Auto-
mated Reasoning, Vol.37, No.3, pp.205-229, Oct 2006.

[8] K.Kusakari and Y.Toyama, On Proving AC-Termination by AC-
Dependency Pairs, IEICE Transactions on Information and Systems,
Vol.E84-D, No.5, pp.604-612, 2001.

[9] S.Lucas, C.Marche and J.Meseguer, Operational termination of con-
ditional term rewriting systems, Information Processing Letter, 95(4),
pp. 446-453, 2005.

[10] The Maude System, http://maude.cs.uiuc.edu/.
[11] M.Nakamura, K.Ogata, and K.Futatsugi, Reducibility of operation

symbols in term rewriting systems and its application to behavioral
specifications, Journal of Symbolic Computation, Volume 45, Issue 5,
May, 2010.

[12] E.Ohlebusch, Advanced topics in term rewriting, Springer, 2002.
[13] Terese:, Term Rewriting Systems, Vol. 55 of Cambridge Tracts in

Theoretical Computer Science, Cambridge University Press, 2003.

