
 

 

Abstract—Let F denote the faulty vertices in an 

n-dimensional folded hypercube FQn. In this paper, we show 

that FQn contains a fault-free path with length of at least 2
n
  

2|F|  1 (respectively, 2
n
  2|F|  2) between two arbitrary 

vertices x and y of odd (respectively, even) Hamming distance in 

FQn  F if |F|  n  1, where n  3. Since FQn is (n + 1)-regular 

and is bipartite when n is odd, both the number of faults 

tolerated and the length of a longest fault-free path obtained are 

worst-case optimal. 

 
Index Terms—Folded hypercubes; bipartite graph; fault 

tolerant embedding; hypercube; interconnection network 

I. INTRODUCTION 

he hypercube is one of the most versatile and efficient 

interconnection networks (networks for short) 

discovered to date for parallel computation. The hypercube 

is ideally suited to both special-purpose and 

general-purpose tasks, and can efficiently simulate many 

other same sized networks [15]. We usually use Qn to 

denote an n-dimensional hypercube. Many variants of the 

hypercube have been proposed. One variant is the folded 

hypercube [1]. An n-dimensional folded hypercube, 

denoted by FQn, is an extension of Qn, constructed by 

adding a link to every pair of nodes with complementary 

addresses. The folded hypercube is superior to the 

hypercube in many measurements, such as diameter, fault 

diameter, connectivity, and so on (see [1], [22]). Previous 

works relating to the folded hypercube can be found in [1], 

[4], [8], [10], [11], [12], [13], [16], [17], [18], [19], [22], 

[24], [25], [26]. 

An embedding of one guest graph G into another host 

graph H is a one-to-one mapping f from the node set of G to 

the node set of H [15]. An edge of G corresponds to a path 

of H under f. Linear arrays and rings, which are two of the 

most fundamental networks for parallel and distributed 

computation, are suitable for designing simple algorithms 

with low communication costs. Numerous efficient 

algorithms designed on linear arrays and rings for solving 

various algebraic problems and graph problems can be 

found in [15]. Linear arrays and rings can also be used as 

control/data flow structures for distributed computation in 

arbitrary networks. All of these motivate the embedding of 

linear arrays and rings in networks. 

The fault-tolerant problem has been one of the most 

important studies on interconnection networks since faults 
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may happen when a network put into use. Some results of 

fault-tolerant embedding on Qn or FQn can be found in [2], 

[3], [5], [6], [7], [8], [9], [10], [12], [13], [14], [20], [21], 

[22], [23]. Let F denote the faulty vertices in an 

n-dimensional folded hypercube FQn. In this paper, we 

show that FQn contains a fault-free path with length of at 

least 2n  2|F|  1 (respectively, 2n  2|F|  2) between two 

arbitrary vertices x and y of odd (respectively, even) 

Hamming distance in FQn  F if |F|  n  1, where n  3. 

Since FQn is (n + 1)-regular and bipartite when n is odd [24], 

both the number of faults tolerated and the length of a 

longest fault-free path obtained are worst-case optimal.  

II. PRELIMINARIES. 

Let G be a graph and let u, v  V(G). We use (u, v) to 

denote an edge whose endpoints are u and v. A path P[x0, xt] 

= x0, x1, , xt is a sequence of nodes such that two 

consecutive nodes are adjacent. Moreover, a path x0, x1, , 

xt may contain other subpaths, denoted as x0, x1, , xi, P[xi, 

xj], xj, , xt, where P[xi, xj] = xi, xi+1, ,xj–1 , xj. A cycle is a 

path with x0 = xt and t  3. 

An n-cube is an undirected graph with 2n nodes each 

labeled with a distinct binary string b1b2…bn. Nodes 

b1…bi…bn and b1… ib …bn are joined by an edge along 

dimension i, where 1  i  n and 
ib  represents the one 

complement of bi. Moreover, suppose x = x1x2…xn and y = 

y1y2…yn. In the rest of the paper, x (i) is used to denote the 

binary string x1…
ix …xn and dH(x, y) is used to denote the 

Hamming distance between x and y, namely, the number of 

different bits between x and y.  

An n-dimensional folded hypercube FQn is Qn 

augmented by adding more links among its nodes. More 

specifically, FQn is obtained by adding a link between two 

nodes whose addresses are complementary to each other in 

Qn; i.e., for a node whose address is b = b1b2…bn, it has one 

more link to connect to node 
nbbbb ...21 , in addition to its 

original n links. So FQn has 2n–1 more links than a regular 

links. Fig. 1 illustrates a 2-dimensional and a 3-dimensional 

folded hypercubes. 
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Fig. 1. The topologies of (a) FQ2 and (b) FQ3 
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Conveniently, FQn can be represented with 

n

**...*  = *
n, 

where *  {0, 1} means “don’t care”. Hence, *
n11 and 

*
n10, which contain the nodes with rightmost bits 1 and 0, 

respectively. An j-partition of FQn = *
n partitions FQn along 

dimension j for some j  {1, 2, …, n} into two subcubes 
0

1nQ   = *
j10*

nj and 1

1nQ   = *
j11*

nj, where 0

1nQ   

(respectively, 1

1nQ  ) is the subgraph of FQn induced by 

{b1b2…bi…bn  V(FQn)| bi = 0} (respectively, 

{b1b2…bi…bn  V(FQn)| bi = 1}). Note that 0

1nQ 
 and 1

1nQ 
 

are isomorphic to an (n1)-cube Qn1. Note that, for each 

vertex b in 0

1nQ 
 (respectively, 1

1nQ 
), there are two nodes b(i) 

and b  in 1

1nQ 
 (respectively, 0

1nQ 
) adjacent to it. 

The following lemmas, which were shown in [6], [7], 

will be used in the following section. 

Lemma 1. [6] Let F  V(Qn) denote the faulty vertices of 

Qn, where |F|  n – 2. Suppose that x and y are two arbitrary 

nodes in Qn  F, where n  3. If dH(x, y) is odd (respectively, 

even), then there exists a path P[x, y] with length of at least 

2n  2|F| 1 (respectively, 2n  2|F|  2) in Qn  F. 

Lemma 2. [7] Let F  V(Qn) denote the faulty vertices of 

Qn, where |F|  n – 1. Let x  V(Qn)  F, where n  3. 

Suppose n – 1 neighbors of x are in F. Then, there exist two 

paths P[x, y1] and P[x, y2] with lengths at least 2n  2(n  1) 

in Qn  F such that dH(x, y1) = dH(x, y2) = 2. 

Lemma 3. [7] Let F  V(Qn) denote the faulty vertices of 

Qn, where |F|  n – 1. Let x  V(Qn)  F, where n  3. 

Suppose that at least two neighbors of x are in Qn – F. Then 

there exists a fault-free cycle with length at least 2n  2|F| 

that contains x in Qn. 

 

III. LONGEST FAULT-FREE PATHS WITH NODE FAULTS 

In this section, we have the main theorem as follows. 

Theorem 1. Let F  V(FQn) denote the faulty vertices of 

FQn, where |F|  n  1 and n  3.. Suppose that x and y are 

two arbitrary nodes in FQn  F. If dH(x, y) is odd 

(respectively, even), then there exists a path P[x, y] with 

length of at least 2n  2|F| 1 (respectively, 2n  2|F|  2) in 

FQn  F.  

Proof. By Lemma 1, the theorem holds when |F|  n  2 

(since Qn  FQn). In the rest of the proof, we assume that |F| 

= n  1. We can partition FQn over some dimension j into 

two (n – 1)-dimension hypercube 0

1nQ   and 1

1nQ   such that 

|F0|  1 and |F1|  1, where F0 = F  0

1nQ   and F1 = F  1

1nQ  . 

Without loss generality, we assume that |F0|  |F1|. Thus, we 

have |F1|  
1

2

n  
 
 

. We have the following case: 

Case 1: x, y  0

1nQ  . Two cases are further considered: 

Case 1.1: |F0|  n – 3. It is not difficult to see that n  5; for 

otherwise |F0|  n  3  1 < (n  1)  (n  3) = 2 = |F1|, which 

contradicts to the assumption that |F1|  |F0|. By  

Lemma 1, there exists a path P[x, y] of length at least 2n–1  

2|F0|  1 (respectively, 2n–1  2|F0|  2) if dH(x, y) is odd 

(respectively, even) in 0

1nQ 
  F0. We can choose an edge (u, 

v)  E(P[x, y]) such that u(j), v
(j)  F1

1. Let P[x, u] and P[v, 

y] be two subpaths of P[x, y] in 0

1nQ 
. Also, By Lemma 1, 

there exists a path P[u(j), v(j)] of length at least 2n–1  2|F1|  

1 in 1

1nQ 
  F1. Thus, x, P[x, u], u, u(j), P[u(j), v(j)], v(j), v, 

P[v, y], y is the desired path of length at least (2n–1  2|F0|  

1)  1 + 2 + (2n–1  2|F1|  1) = 2n  2(|F0| + |F1|)  1 = 2n  

2|F|  1 (respectively, 2n  2(n – 1)  2) if dH(x, y) is odd 

(respectively, even) (see Fig. 2(a)). 

Case 1.2: |F0| = n – 2 (i.e., |F1| = 1). We have two scenarios 

as follows: 

Case 1.2.1: n = 3. We have |F0| = |F1| = 1. Without loss of 

generality, let x = 000. The desired path P[x, y] are listed 

below: 

 
Node 

y 

The 

node 

in F0 

The 

node 

in F1  

P[x, y] (dH(x, y) 

= even) 

P[x, y] (dH(x, y) = odd) 

001 

 

 

 

 

 

 

 

011 

010 

 

 

 

011 

 

 

 

001 

 

 

 

010 

100 

110 

111 

101 

100 

110 

111 

101 

100 

110 

111 

101 

100 

110 

111 

101 

 

 

 

 

 

 

 

 

<000, 010, 011> 

<000, 010, 011> 

<000, 010, 011> 

<000, 010, 011> 

<000, 001, 011> 

<000, 001, 011> 

<000, 001, 011> 

<000, 001, 011> 

<000, 111, 011, 001> 

<000, 100, 101, 001> 

<000, 100, 101, 001> 

<000, 100, 110, 001> 

<000, 111, 101, 001> 

<000, 100, 101, 001> 

<000, 100, 101, 001> 

<000, 100, 110, 001> 

 

Case 1.2.2: n  4. Let w  F0. Then, |F0  {w}| = n  3. By 

Lemma 1, there exists a path P[x, y] of length at least 2n–1  

2(n – 3)  1 (respectively, 2n–1  2(n – 3)  2), if dH(x, y) is 

odd (respectively, even) in 0

1nQ 
  (F0  {w}).  

If w  V(P[x, y]), let (u, v)  E(P[x, y]) such that u(j), v ( j) 

 F1. Let P[x, u] and P[v, y] are two subpaths of P[x, y]. 

Also, By Lemma 1, there exists a path P[u(j), v ( j)] of length 

at least 2n–1  2  1  1 in 1

1nQ 
  F1. Thus, x, P[x, u], u, u(j), 

P[u(j), v(j)], v(j), v, P[v, y], y is the desired path with length 

of at least (2n–1  2(n – 3)  1)  1 + 2 + (2n–1  2  1 1) = 2n 

 2(n – 2)  1 > 2n  2|F|  1 (respectively, 2n  2(n – 2)  2  

> 2n  2|F|  2 ) if dH(x, y) is odd (respectively, even) (see 

Fig. 2(a)).  

If w  V(P[x, y]), let (u, w), (w, v)  E(P[x, y]), and let 

P[x, u] and P[v, y] be two subpaths of P[x, y]. Clearly, We 

have u(j), v ( j)  F1 or u , v   F1. Let u'  {u(j), u }  F1 

and v'  {v(j), v }  F1. By Lemma 1, there exists a path 

P[u' , v'] of length at least 2n  2  1  2  in 
1

1nQ    F1. Thus, 

x, P[x, u], u, u' , P[u' , v' ], v' , v, P[v, y], y is the desired 

path with length of at least 2n–1  2(n – 3)  1  2 + 2 + 2n–1 

 2  1  2 = 2n  2(n – 1)  1 (respectively, 2n  2(n – 1)  

2 ) if dH(x, y) is odd (respectively, even). (see Fig. 2(b)). 

 

 
1 If edge (u, v) does not exist, then |F1|  (2n–1  2|F0|  2)/2 = 2n–2  |F0|  

1  2n–2  (n – 3)  1  n – 3 for n  5, which contradicts to the assumption that 

|F1|  |F0|  n  3 
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Fig. 2. The construction of a path P[x, y] in FQn  F when x, y  0

1nQ   

 

Case 2: x  0

1nQ 
, y 1

1nQ 
. Two cases are further 

considered: 

Case 2.1: |F0|  n – 3. It is not difficult to see that n  5; for 

otherwise |F0|  n  3  1 < (n  1)  (n  3) = 2 = |F1|, which 

contradicts to the assumption that |F1|  |F0|. Let u  0

1nQ    

{x}  F0 such that dH(x, u) is odd and u(j)  1

1nQ 
  F1  {y}‡. 

By Lemma 1, there exists a path P[x, u] of length at least 

2n–1  2|F0|  1 in 0

1nQ    F0. Moreover, By Lemma 1 there 

exists a path P[y, u(j)] of length at least 2n–1  2|F1|  1 

(respectively, 2n–1  2|F1|  2), if dH(y, u(j)) is odd 

(respectively, even) in 1

1nQ    F1. Clearly, dH(x, y) is odd if 

and only if dH(y, u(j)) is odd. Thus, x, P[x, u], u, u(j), P[u(j), 

y], y is a path with length of at least (2n–1  2|F0|  1) + 1 + 

(2n–1  2|F1|  1) = 2n  2(|F0| + |F1|)  1 = 2n  2|F|  1 

(respectively, 2n  2|F|  2) if dH(x, y) is odd (respectively, 

even) (see Fig. 3(a)).  

Case 2.2: |F0| = n – 2 (i.e., |F1| = 1). We have two scenarios 

as follows: 

Case 2.2.1: n = 3. We have |F0| = |F1| = 1. Without loss of 

generality, let x = 000. The desired path P[x, y] are listed 

below: 

 
The 

node 

in F0 

The 

node 

in F1 

Node 

y  

P[x, y] (dH(x, y) 

=even) 

P[x, y] (dH(x, y) =odd) 

001 

 

100 

 

110 

101 

<000, 010, 110> 

<000, 010, 101> 

 

 

 
‡ Let V = {z | dH(x, z) is odd, z  V(

0

1nQ  )}. Note that |V| = 2n–2. If none of 

the vertices in 
0

1nQ   meets the requirements of such a vertex u, then V = F0  

{w | w(j)  F1}  {y(j)}. As a result, |V| = 2n–2 = | F0  {w | w(j)  F1}  {y(j)}| 

 |F0| + |{w | w(j)  F1}| + |{y(j)}| = |F0| + |F1| + |{y(j)}| = (n – 1) + 1 = n, which 

is a contradiction. Therefore, we can always find such a vertex u. 
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<000, 010, 101> 

 

 

<000, 010, 110> 
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<000, 100, 110> 

<000, 010, 110> 
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<000, 010, 101, 111> 

<000, 010, 110, 100> 

 

<000, 010, 110, 111> 

<000, 010, 110, 100> 
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<000, 010,110, 100> 

 

<000, 010, 110, 111> 

<000, 010, 101, 100> 

 

<000, 100, 101, 111> 

<000, 010, 110, 100> 

 

 

Fig 3. The construction of a path P[x, y] in FQn  F when x  0

1nQ  , y  1

1nQ   

 

Case 2.2.2: n  4. Remember that |F1| = 1. Assume that F1 = 

{g}. First, consider that only one neighbor of x in 0

1nQ   is 

not in F0; that is, n – 2 neighbors of x in 0

1nQ 
 are in F0. By 

Lemma 2, there exist two path P[x, r] and P[x, w] with 

length at least 2n–1  2(n – 2) in 0

1nQ    F0 such that dH(x, r) 

= dH(x, w) = 2.  

If r(j)  w  and w(j)  r , then |{r(j), r , w(j), w }| = 4. 

We have {r(j), r }  {g, y} or {w(j), w }  {g, y}. Let z  {r, 

w} such that {z(j), z }  {g, y} and let z'  {z(j), z }  {g, y}. 

Note that dH(x, z) = 2 and dH(z, z') = 1. Thus, we have dH(x, 

z') is odd. Consequently, if dH(x, y) is even (respectively, 

odd), then dH(y, z') is odd (respectively, even). By Lemma 1, 

there exists a path P[y, z'] of length at least 2n–1  2  1  1 

(respectively, 2n  2  1  2) in 1

1nQ    F1. Thus, x, P[x, z], 

z, z', P[z', y], y is a path with length of at least (2n–1  2(n – 



 

2)) + 1 + (2n–1  2  1  1) = 2n  2(n – 1) (respectively, 2n  

2(n – 1)  1) if dH(x, y) is odd (respectively, even) (see Fig. 

3(b)). 

If r(j) = w  or w(j) = r , then n = 52. It is not difficult to 

see that if r(j) = w , then w(j) = r . When {r(j), w(j)}  {g, y}. 

Let z  {r, w} and z'  {r(j), w(j)}  {g, y}. The construction 

is similar as that of in Fig. 3(b). When {r(j), w(j)} = {g, y}, we 

have y(j)  {r, w} (thus, dH(x, y(j)) = 2 and dH(x, y) is odd). 

Since n = 5 and dH(x, y(j)) = 2, by Lemma 2, we have a path 

P[x, y(j)] of length at least 2n–1  2(n – 2)) = 24  2(4 – 1) = 

10 in 
0

1nQ   F0. Since |P[x, y(j)]|  10, we can choose an 

edge (s, t)  E(P[x, z]) such that {s, t}  {r, w} = . Clearly, 

{s(j), t
(j)}  {r(j), w(j)} (= {y, g}) = . Without loss of 

generality, let P[x, s] and P[t, y(j)] be two subpaths of P[x, 

y(j)] in 
0

1nQ . By Lemma 1, there exists a path P[s(j), t(j)] of 

length at least 2n–1  2  2  1 in 
1

1nQ   {g, y}. Thus, x, 

P[x, s], s, s(j), P[s(j), t(j)], t(j), t, P[t, y(j)], y(j), y is a path with 

length of at least (2n–1  2(n – 2))  1 + 3 + (2n–1  2  2  1) 

= 2n  2(n – 1)  1 (see Fig. 3(c)). 

Now, consider that at least two neighbors of x in 
0

1nQ  

are 
0

1nQ   F0. By Lemma 3, there exists a cycle C with 

length at least 2n–1  2(n – 2) that contains x in 
0

1nQ  F0. 

Let r, w denote two neighbor of x in C. Note that since dH(r, 

w) = 2, we have r(j)  w  and w(j)  r , i.e., |{r(j), r , w(j), 

w }| = 4. Thus, {r(j), r }  {g, y} or {w(j), w }  {g, y}. Let 

z  {r, w} such that {z(j), z }  {g, y} and let z'  {z(j), z } 

 {g, y}. Moreover, let P[x, z] = C  {(x, z)}. Since dH(x, z') 

= 2, we have dH(y, z') is odd (respectively, even) if dH(x, y) 

is odd (respectively, even). By Lemma 1, there exists a path 

P[y, z'] of length at least 2n–1  2  1  1 (respectively, 2n  

2  1  2) in 
1

1nQ    F1. Thus, x, P[x, u], u, u(j), P[u(j), y], y 

is a path with length of at least (2n–1  2(n – 2)  1) + 1 + 

(2n–1  2  1  1) = 2n  2(n – 1)  1 (respectively, 2n  2(n – 

1)  2) if dH(x, y) is odd (respectively, even) (see Fig. 3(d)).
  

IV. DISCUSSION AND CONCLUSION 

Fault tolerance is an important research subject in the area 

of the multi-process computer system, and many studies 

have focused on the vertex-fault tolerant or edge-fault 

tolerant properties of various networks. In this paper, we 

show that FQn  F contains a path P[x, y] with length at 

least 2n  2|F| 1 (respectively, 2n  2|F|  2) between two 

arbitrary vertices x and y of odd (respectively, even) 

Hamming distance, where |F|  n  1 and n  3. 

 
2 Suppose r = r1r2…rj10rj+1…rn, w = w1w2…wj10wj+1…wn, where ri, wi 

{0, 1}, for i  {1, 2, …, n}  {j}. We have r(j) = r1r2…rj11rj+1…rn, w
(j) = 

w1w2…wj11wj+1…wn, r  = 
1r 2r …

1jr 1
1jr …

nr , and w  = 

1w 2w …
1jw 1

1jw …
nw . Note that dH(r, w) = 2 or 4. If r(j) = w  or w(j) 

= r , then rk  wk for all k  {1, 2, …, n}  {j}, we have dH(r, w) = n  1. 

When dH(r, w) = 2 = n  1, we have n = 3, which contradicts to the fact that n 

 4. When dH(r, w) = 4 = n  1, we have n = 5. 
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