
Decomposition of Automata PDL and its
Extension

Xinxin Liu and Bingtian Xue

Abstract—In this work we study the decomposition problem
of automata PDL and one of its extension. We proved that
automata PDL enjoys a good decomposition property under
a very large class of process context, while this problem is
more complicated for regular PDL, which has an exponential
blow-up. We introduce proposition identifiers to automata PDL
to obtain a language which has a good balance between
expressiveness and ease of analysis. We prove that this extended
specification language still has a good decomposition property
for a large class of process contexts. After that we present a
method to solve the weak bisimulation equations as an applica-
tion of the extended language, by combining the decomposition
property and the decision procedure proposed in [1].

Index Terms—decomposition, propositional dynamic logic,
fixed point, weak bisimulation, equation solving.

I. INTRODUCTION

When practicing hierarchical and modular development
methodologies within a specification formalism, you will
inevitably face decomposition problems. Informally and in
short, a decomposition problem is concerned with reducing
a specification required of a combined system into (sufficient
and necessary) specifications of the system’s components.

Facing concurrent systems, the notion of weakest inner
property is a generalization of that of weakest precondition
and strongest postcondition for sequential systems [2]. For a
given specification S in some specification formalism and a
(one hole) process context C, the weakest inner property of
S under C, written as wip(S,C), is the weakest property for
a process p such that the combined process C(p) satisfies S.
When developing a concurrent system with the specification
S and after having decided to use the context C as part of the
implementation, wip(S,C) is obviously the weakest property
for the rest of the system in order that the whole system
satisfies S. Whether wip(S,C) is always expressible as a
specification in the same formalism as S certainly depends
on the expressive power of the specification formalism, but
an increase of expressive power does not necessarily imply
that it is more likely to be able to express the weakest inner
property: when a more expressive specification formalism is
used, on one hand it becomes easier to express properties like
wip(S,C) if S is a specification from a less expressive speci-
fication formalism, on the other hand however, properties like
wip(S,C) are more likely to exceed the expressive power
because S now ranges over more complicated specifications.

Manuscript received December 13, 2011; revised January 12, 2012. This
work was supported by the Laboratory of Computer Science, Institute of
Software, Chinese Academy of Sciences.

X. Liu is with the State Key Laboratory of Computer Science, Institute
of Software, Chinese Academy of Sciences, P.O.Box 8718, 100190 Beijing,
China, e-mail: xinxin@ios.ac.cn.

B. Xue is with the State Key Laboratory of Computer Science, Institute
of Software, Chinese Academy of Sciences, and Graduate School of
Chinese Academy of Sciences, P.O.Box 8718, 100190 Beijing, China, e-
mail: xuebt@ios.ac.cn.

So whether wip(S,C) is always expressible as a specification
in the same formalism as S should be examined individually.

One well known specification formalism is Propositional
Dynamic Logic (PDL) [3]. PDL was introduced by Fisher
and Ladner [4] in the late 1970s as a formalism for reasoning
about programs. Soon afterwards the logic was outdated
for that purpose through the introduction of the modal µ-
calculus [5]. However, PDL has by now become a standard
logic that is far from being outdated. PDL formulas are easy
to understand and analyze, while µ-calculus formulas are
often hard. In particular, some simple properties concerning
repetition of traces often have to be encoded into complex re-
cursive properties in µ-calculus. PDL can be used in program
verification, to describe the dynamic evolution of agent-based
systems, for planning or knowledge engineering, it has links
to epistemic logics, it is closely related to description logics,
etc. There has been a resurgence of interest in PDL in recent
years. In [6], [7] and [8], many interesting problems of PDL
with some extension have been studied.

(Regular) PDL uses regular expressions for programs in
which limited recursive patterns of traces can be described.
In this work we will study automata PDL[3], which uses
automata to describe programs and is equivalent to (regular)
PDL. The use of automata instead of regular expressions has
similar effect as Pratt’s flowgraph in his Propositional Flow-
graph Logic (PFL) [9] and they both bring more succinctness
into the expressions. We will show that automata PDL enjoys
such a good decomposition property for a very large class
of process contexts, while this problem is more complicated
for (regular) PDL, which has an exponential blow-up.

There are two ways to enhance PDL: adding new operators
on the formula level or on the program level. We introduce
limited use of recursive propositions into automata PDL
to obtain a language, which has a good balance between
expressiveness and ease of analysis [1]. We demonstrate that
this language still has a good decomposition property for a
large class of process contexts. In [1] we present a decision
procedure for the satisfiability of the formulas. The worst
case time complexity of the decision procedure is polynomial
in the size of the programs and exponential in the number of
the sub-formulas. Combining the decision procedure and the
decomposition property, we can use this language to solve
weak (or branching) bisimulation equations of processes.

In the following section we define the syntax and seman-
tics of APDL. In section 3 we study the decomposition
problems of APDL. In section 4 we define the syntax
and semantics of the extended language and present the
decomposition property of this extended language. In section
5 we give an example of solving the bisimulation equations.
In the last section we conclude our work, together with some
future and related work. Missing proofs can be found in the
appendix.

II. AUTOMATA PROPOSITIONAL DYNAMIC LOGIC

This section presents the syntax and semantics of APDL,
which is equivalent to regular PDL, because of the Kleene
Theorem [10].

The language of PDL has expressions of two sorts:
propositions or formulas φ,ψ, . . . and programs α, β, . . .
There are countably many atomic symbols of each sort.
Atomic programs are denoted a, b, . . ., which are also called
actions, and the set of all atomic programs is denoted Act
here. Atomic propositions here are tt, which makes the
presentation here slightly different from but equivalent to that
in [3]. APDL is proved to be equivalent to regular PDL, and
it can bring more succinctness in expressivity, and facilitate
development of decomposition. The set of all propositions
is denoted Φ and the set of all programs is denoted Π. We
define Φ and Π inductively as follows:

1) tt ∈ Φ;
2) if φ, ψ ∈ Φ then φ ∨ ψ ∈ Φ;
3) if φ ∈ Φ, α ∈ Π then ⟨α⟩φ∈ Φ;
4) if φ ∈ Φ, ¬φ ∈ Φ.
1) Act ⊆ Π;
2) M ∈ Π, where M = (N,S, i, j, δ) is a finite automa-

ton: N = 0, . . . , n− 1: set of states; S = Act ∪ {?φ |
φ ∈ Φ}: alphabet; i, j ∈ N : start and final states
respectively; δ: N × S ×N : transition relation.

The semantics of APDL is interpreted on a labeled tran-
sition system ⟨S, Act, { a−→ | a ∈ Act}⟩, where S is a set
of states, and each a−→ is a transition relation a−→⊆ S× S.
The satisfaction relation |=⊆ S×Φ and the transition relation
⇒⊆ (S×Π)× S are defined inductively as follows:

1) p |= tt holds for all p ∈ S;
2) p |= φ ∨ ψ in case that p |= φ or p |= ψ;
3) p |= ⟨α⟩φ in case that there exists q ∈ S such that

(p, α) ⇒ q and q |= φ;
4) p |= ¬φ in case that p ̸|= φ.

(p, a) ⇒ q
p

a−→ q
(p, (N,S, i, i, δ)) ⇒ p

(p′, (N,S, i′, j, δ)) ⇒ q

(p, (N,S, i, j, δ)) ⇒ q
p

a−→ p′, (i, a, i′) ∈ δ

(p, (N,S, i′, j, δ)) ⇒ q

(p, (N,S, i, j, δ)) ⇒ q
p |= φ, (i, ?φ, i′) ∈ δ

We write p ̸|= φ when p |= φ does not hold.

III. DECOMPOSITION OF APDL
Decomposition is a desirable property as a specification

language, which relates a specification language to states
(systems) with a structure. In this section we will show that
APDL enjoys such a good decomposition property for a very
large class of process context. For a given APDL formula φ
with declaration D and a (one hole) context C, we can use an
APDL formula ψ to express the specification which requires
that a state p putting together with C satisfies C(p) |= φ.

In order to facilitate a general investigation of how con-
texts transform properties, we use the operational theory of
contexts in terms of action transducers, which is introduced
in [11] and applied in [12], [13]. Informally and in short, a
context is semantically viewed as an object which consumes

actions from its inner processes and produces actions for
an external observer, thus acting as an interface between
them. That is, in the behavior of the process C(p) (as a
state in LTS), the context C acts as an interface between
an external observer and the internal process p, in the sense
that C consumes actions produced by the internal process
p in order to produce actions for the external observer. We
allow transduction in which the context produces actions on
its own without involving the inner process. Also, the context
may change during transduction.

Definition 3.1: A context system is a structure (K,Act,
−→), whereK is a set of contexts, −→⊆ K×(Act0×Act)×
K is the transduction relation,Act0 = Act ∪{0} with 0 being
a distinguished no-action symbol (i.e. 0 /∈ Act).

For (C, (a, b), C ′) ∈−→ we shall adopt the notation
C

b
a−→ C ′ and interpret this as: ”by consuming the action a

the context C can produce the action b and change into C ′”.
For a = 0 the production of b does not involve consumption
of any action.

Semantically, the relationship between the semantics of
process, context, and combined process satisfies the follow-
ing: C(p) b−→ q if and only if there exist C ′, p′ such that
q = C ′(p′), C

b
a−→ C ′, p

a−→ p′ or there exists C ′ such that
q = C ′(p), C

b
0−→ C ′.

Now we will show for contexts which satisfy the above
operational semantics, specifications in APDL are decompos-
able. What we will do is to introduce a (weakest) property
transformer, W , which - given the context C and the property
φ - will construct the weakest inner property W(C,φ).

Definition 3.2: Let (K,Act,−→) be a context system
with K being finite. For APDL formula φ and program α,
and contexts C,C ′ ∈ K, define APDL formula W(C,φ)
inductively:
W(C, tt) = tt

W(C,φ ∨ ψ) = W(C,φ) ∨W(C,ψ)

W(C,¬φ) = ¬W(C,φ)

W(C, ⟨a⟩φ) =
∨

C
a−→
b

C′ ⟨b⟩W(C ′, φ) ∨
∨

C
a−→C′ W(C ′, φ)

W(C, ⟨M⟩φ) = ⟨M ′⟩tt
M ′ = (N ′, S′, (i, C), nf , δ

′), where M = (N,S, i, j, δ)

N ′ = N ×K ∪ {nf}
S′ = Act ∪ {?W(C,ψ) | C ∈ K, ?ψ ∈ S}

∪ {?W(C,φ) | C ∈ K} ∪ {tt}
δ′ = {((k,C1), ?W(C1, ψ), (l, C1)) | (k, ?ψ, l) ∈ δ, C1 ∈ K}

∪ {((k,C1), b, (l, C2)) | (k, a, l) ∈ δ, C1
a−→
b
C2}

∪ {((k,C1), ?tt, (l, C2)) | (k, a, l) ∈ δ, C1
a−→ C2}

∪ {((j, C1), ?W(C1, φ), nf) | C1 ∈ K}
The reason of introducing the final state nf is to make M ′

a deterministic automata. Of course we can built an APDL
formula equivalent to ⟨M ′⟩tt) with a nondeterministic
automata M ′′, which is a little easier to understand:
W(C, ⟨M⟩φ) = ⟨M ′′⟩W(C,φ)

M ′′ = (N ′′, S′′, (i, C), S′′
f , δ

′′), where M = (N,S, i, j, δ)

N ′′ = N ×K

S′′ = Act ∪ {?W(C,ψ) | C ∈ K, ?ψ ∈ S} ∪ {tt}
S′′
f = {(j, C1) | C1 ∈ K}

δ′′ = {((k,C1), ?W(C1, ψ), (l, C1))

| (k, ?ψ, l) ∈ δ, C1 ∈ K}
∪ {((k,C1), b, (l, C2)) | (k, a, l) ∈ δ, C1

a−→
b
C2}

∪ {((k,C1), ?tt, (l, C2)) | (k, a, l) ∈ δ, C1
a−→ C2}

It is easy to prove that ∀p ∈ S, p |= ⟨M ′⟩tt if and only if
p |= ⟨M ′′⟩W(C,φ)

The following theorem shows that this transformer has the
expected properties.

Theorem 3.3: Let (K,Act,−→) be a context system, φ be
an APDL formula, and C,C ′ ∈ K be contexts. Then for any
p ∈ S the following equivalence holds:

C(p) |= φ if and only if p |= W(C,φ).

IV. APDL WITH RECURSION AND ITS DECOMPOSITION

We now study an extension of APDL - APDL with recur-
sive propositions. First we present the syntax and semantics
of this language, which arrows recursion on the properties.
We refer to this language as recAPDL in this paper.

We allow property identifiers in recAPDL, which are
denoted X,Y, . . ., and the set of all property identifiers is
denoted V . The meaning of the property identifiers is deter-
mined by a recursive declaration D. The syntax of recAPDL
programs is the same as APDL, and that of formulas only
needs to add the following:

5. X ∈ Φ;
The recursive declaration D is defined as follows:
Definition 4.1: A declaration is a finite setD with elements

of the formX = φ. Different elements inD have different left
hand sides.

The requirement that different elements of D have dif-
ferent left hand sides is to exclude multiple definition of
identifiers.

A test ?φ is called a positive test if φ is a positive formula,
and a negative test if negative. For an automaton M , if all
tests in the alphabet S are positive (negative) tests, M is
called a positive (negative) program. For formulas, whether
it is positive or negative is defined as:

1) tt, X is positive;
2) φ and ψ are positive (negative), then φ∨ψ is positive

(negative);
3) φ is positive (negative), α is positive (negative), then

⟨α⟩φ is positive;
4) φ is positive (negative), then ¬φ is negative (positive).
D = {X1 = φ1, . . . , Xm = φm} is well defined if

φ1, . . . , φm are positive formulas w.r.t X1, . . . , Xm.
The semantics of formulas and programs under a given

environment ρ are the same as APDL under a given envi-
ronment ρ except for the property identifiers:

5. p |=ρ X in case that p ∈ ρ(X).
D = {X1 = φ1, . . . , Xm = φm} defines an environment

for the identifiers X1, . . . , Xm, which are the weakest prop-
erties they satisfy.

Proposition 4.2: Let ρ, ρ′ be two environments such that
ρ(X) ⊆ ρ′(X), φ a positive formula, α a positive program, β
a negative program w.r.t all the X defined in ρ and ρ′, then:

1) if (p, α) ⇒ρ q then (p, α) ⇒ρ′ q;
2) if (p, β) ⇒ρ′ q then (p, β) ⇒ρ q;
3) if p |=ρ φ then p |=ρ′ φ.

The proof of this proposition only needs simple induction
on the transition rule ⇒ and the structure of φ. We will not
do that because of the limitation of the length. Just be careful
with the ¬ψ case.

Since D is well defined and we have the monotonous
property, there exists a unique maximal environment ρmax =∪
{ρ | ρ satisfies D} and ρmax satisfies D.
Then we have the semantics of formulas under a

declaration D:
p |=D φ iff p |=ρmax φ

(p, α) ⇒D q iff (p, α) ⇒ρmax q

Example 4.3:
1) fairness property:

CTL*: EGFp
µ-calculus: νX.µY.⟨•⟩((X ∧ p) ∨ Y)
recAPDL: X = ⟨•∗.?p⟩X
· −→ · · · · · −→ · −→ · · · · · −→ · −→ · · · · · · · · · ·
X p,X p,X

2) X = ⟨(τ.?X)∗.a⟩Y
Y = ⟨(τ.?Y)∗.b⟩X
· τ−→ · · · · τ−→ · a−→ · τ−→ · · · τ−→ · b−→ · τ−→ · · ·
X · · · X Y · · · Y X · · ·
τ−→ · a−→ · τ−→ · · · τ−→ · b−→ · τ−→ · · · · · · · · ·
X Y · · · Y X · · · · · ·

In the remaining of this section we will show that recAPDL
still has the decomposition property for a large class of
process contexts. That is, for contexts which satisfy the
operational semantics in Section 3, specifications in rAPDL
are decomposable. We will introduce a (weakest) property
transformer, Wr, which is the same as W for APDL except
for the property identifiers:

Wr(C,X) = XC

where XC is an introduced proposition identifier.
Definition 4.4: Let (K,Act,−→) be a context system, φ

be a formula with declaration D, and C,C ′ ∈ K be contexts.
We define a declaration D′ as follows:

if X = φX ∈ D, C ∈ K then XC = Wr(C,φX) ∈ D′.
The following lemma and theorem show that this trans-

former has the expected properties.
Lemma 4.5: Let (K,Act,−→) be a context system, φ be

a recAPDL formula and C,C ′ ∈ K be contexts. Let ρ, ρ′ be
two environment which satisfy the following: C(p) ∈ ρ(X)
if and only if p ∈ ρ′(XC). Then for any p ∈ S the following
equivalences hold:

C(p) |=ρ φ if and only if p |=ρ′ Wr(C,φ).
Theorem 4.6: Let (K,Act,−→) be a context system, φ be

a recAPDL formula with declaration D, and C,C ′ ∈ K be
contexts. Let D′ be constructed as Definition 4. Then for any
p ∈ S the following equivalence holds:

C(p) |=D φ if and only if p |=D′ Wr(C,φ).

V. SOLVING WEAK BISIMULATION EQUATIONS

Now as an application of recAPDL, we give a way to
solve process equations of the form C(x) ≡ p (finding out
whether there is a process x which satisfies the equation),
where ≡ can any equivalence relation among strong bisim-
ulation equivalence, weak bisimulation equivalence, branch-
ing bisimulation equivalence, 2

3 -bisimulation equivalence, n-
nested bisimulation equivalence for any n.

By combining the decomposition property of recAPDL
and the decision procedure presented in [1], we show how to
solve weak bisimulation equations C(x) ≈ p. The following
is how to do it.

Step 1 According to the result of [1], there is a recAPDL
formula φp and a declaration D such that C(x) ≈ p
if and only if C(x) |=D φp.
We associate a proposition identifier Xp for each state
p in the (finite) state space and for each relevant action
a ∈ Act (assuming only finitely many of them are
relevant to the process) we also associate an automaton
Ma with the definition:

– when a = τ , Ma = ({ia, iτ}, Act, ia, iτ , δa)
where δa = {(ia, a, iτ), (ia, τ, ia), (iτ , τ, iτ)};

– when a = τ , Mτ = ({iτ}, Act, iτ , iτ , {(iτ , τ, iτ)}
After that, we construct a declaration

D = {Xp =
∧

p
a−→p′

⟨Ma⟩Xp′∧
∧

a∈Act

[a](
∨

p
â

=⇒p′

Xp′)|p ∈ S}

It has been proved in [1] that:
Lemma 5.1: Let p ∈ S be a finite state process, Xp and
D constructed as above. Then for any process q ∈ S,
p ≈ q if and only if q |=D Xp.

Step 2 By the decomposition property of recAPDL, there is a
recAPDL formula Wr(C,φp) such that

C(x) |=D φp if and only if x |=D Wr(C,φp)
Thus there is an x with C(x) ≈ p if and only if
Wr(C,φp) is satisfiable under D.

Step 3 And then we can use the decision procedure presented in
[1] to check whether Wr(C,φp) is satisfiable under D.
Informally the iterative procedure is as follows:
Starting from the set C of sets of the sub-formulas of
given formula φ, here is Wr(C,φp), do the following
until C does not decrease: find out one set Γ ∈ C in
which the formulas have contradiction - between the
formulas in it or between it and other Γ ∈ C. The
former part tries to find out Γ which avoids the axioms
of propositions, and the latter checks whether all the
transitions required are allowed in C.
Then we have:
Lemma 5.2: φ is satisfiable if and only if, upon termi-
nation there exists Γ ∈ C such that φ ∈ Γ.
The correctness of this algorithm has been proved in [1],
which guarantees that upon termination, all formulas
in C are satisfiable and all satisfiable Γ will not be
deleted from C during the iteration. The worst case time
complexity of the decision procedure is polynomial in
the size of the programs and exponential in the number
of the sub-formulas. 2

In the same way, we can solve the branching bisimulation
equations of processes and any bisimulation equations men-
tioned above. In [13], [14], [15], Disjunctive Modal Transi-
tion Systems (DMTS) were used to solve strong bisimulation
equations of the form C(x) ∼ p. Here by using recAPDL
we can do what we could not do with DMTS.

VI. CONCLUSION

In this work we study the decomposition problem, which is
a desirable property as a specification language, of automata
PDL and one of its extension – recAPDL. Decomposition

is always an interesting issue which relates a specification
language to states (systems) with a structure. We prove that
APDL enjoys a good decomposition property under a very
large class of process context, while this problem is more
complicated for regular PDL, which has an exponential blow-
up. We introduce proposition identifiers to APDL to obtain
a language - recAPDL, which has a good balance between
expressiveness and ease of analysis. We prove that this ex-
tended specification language still has a good decomposition
property for a large class of process contexts. After that we
present a way to solve the weak (branching) bisimulation
equations as an application of recAPDL, by combining the
decomposition property and the decision procedure proposed
in [1], which has a time complexity which is polynomial in
the size of the programs in the formulas and exponential in
the number of the sub-formulas.

By adding nesting to recAPDL [16], we can get a language
which is more expressive than CTL and CTL*, and is still no
more expressive than modal µ-calculus. We demonstrate that
this extended recAPDL with nesting is also decomposable.
This is beyond this paper, and we will present that in [16],
which is in preparing.

According to the results of this paper, tools for decom-
posing recAPDL specifications can be built. Moreover, by
combining the tools for deciding satisfiability of rPDL spec-
ifications and the tools for decomposing rPDL specifications,
equatioin solver (EQ) can be built. EQ can either find a
solution or provide a proof to explain why the equation
system is not solvable. This work is in progressing.

Another interesting future direction is the decomposition
problem for the contexts which have two or more holes
(i.e. there are two or more components to be designed).
In this case for each hole (missing component) we need
to find a sub-specification, such that the sub-specification is
sufficiently strong that the correctness of the overall system is
guaranteed. On the other hand the sub-specifications should
be as weak as possible in order not to restrict unnecessarily
the implementations allowed for the components. The diffi-
culty here is that in general this decomposition will not be
unique: the requirements to one component may be loosened
if in return the requirements to the others are strengthened.
This problem for recADPL is being studied.

APPENDIX A
PROOF OF THEOREM 3.3

Proof Induction on the structure of φ. The cases are quite
simple except for ⟨M⟩φ.
For ⟨M⟩φ we need to prove that:

C(p) |= ⟨M⟩φ iff p |= W(C, ⟨M⟩φ)
”⇒”: C(p) |= ⟨M⟩φ then p |= W(C, ⟨M⟩φ)

C(p) |= ⟨M⟩φ =⇒
∃C ′, p′ s.t. (C(p),M) ⇒ C ′(p′) and C ′(p′) |= φ

If we can prove that:
(C(p),M) ⇒ C ′(p′) & C ′(p′) |= φ then ∃q s.t.
(p,M ′) ⇒ q, it is obvious that p |= ⟨M ′⟩tt
Then p |= W(C, ⟨M⟩φ)
Now we prove that:
(C(p), (N,S, i, j, δ)) ⇒ C ′(p′) & C ′(p′) |= φ then ∃q
s.t. (p, (N ′, S′, (i, C), nf , δ

′)) ⇒ q
Induction on the transition rule of ⇒:

1)
(p, (N,S, i, i, δ)) ⇒ p

(C(p), (N,S, i, j, δ)) ⇒ C ′(p′) & C ′(p′) |= φ

=⇒ i = j, C ′ = C, p′ = p & C ′(p′) |= φ

=⇒ i = j & C(p) |= φ

=⇒ i = j & p |= W(C,φ)

inductive hypothesis

And ((j, C), ?W(C,φ), nf) ∈ δ′

& (p, (N ′, S′, nf , nf , δ
′)) =⇒ p

definition of M ′

=⇒ (p, (N ′, S′, (i, C), nf , δ
′)) =⇒ p

2)
(p′, (N,S, i′, j, δ)) ⇒ q

(p, (N,S, i, j, δ)) ⇒ q
p

a−→ p′, (i, a, i′) ∈ δ

(C(p), (N,S, i, j, δ)) ⇒ C ′(p′) & C ′(p′) |= φ

=⇒ C(p)
a−→ C ′′(p′′), (i, a, i′) ∈ δ &

(C ′′(p′′), (N,S, i′, j, δ)) ⇒ C ′(p′) &

C ′(p′) |= φ

=⇒ C(p)
a−→ C ′′(p′′), (i, a, i′) ∈ δ &

∃q, (p′′, (N ′, S′, (i′, C ′′), nf , δ
′)) ⇒ q

inductive hypothesis

=⇒ C
a−→
b
C ′, p

b−→ p′′ or C a−→ C ′, p′′ = p,

& (i, a, i′) ∈ δ,∃q,
(p′′, (N ′, S′, (i′, C ′′), nf , δ

′)) ⇒ q

– C
a−→
b
C ′, p

b−→ p′′

C
a−→
b
C ′′, p

b−→ p′′, (i, a, i′) ∈ δ

& ∃q, (p′′, (N ′, S′, (i′, C ′′), nf , δ
′)) ⇒ q

=⇒ ((i, C), b, (i′, C ′′)) ∈ δ′, p
b−→ p′′ &

∃q, (p′′, (N ′, S′, (i′, C ′′), nf , δ
′)) ⇒ q

definition of δ′

=⇒ ∃q, (p, (N ′, S′, (i, C), nf , δ
′)) ⇒ q

– C
a−→ C ′′, p = p′′

C
a−→ C ′′, p = p′′, (i, a, i′) ∈ δ

& ∃q, (p′′, (N ′, S′, (i′, C ′′), nf , δ
′)) ⇒ q

=⇒ ((i, C), ?tt, (i′, C ′′)) ∈ δ′, p = p′′ &

∃q, (p′′, (N ′, S′, (i′, C ′′), nf , δ
′)) ⇒ q

definition of δ′

=⇒ ((i, C), ?tt, (i′, C ′′)) ∈ δ′, p |= tt &

∃q, (p, (N ′, S′, (i′, C ′′), nf , δ
′)) ⇒ q

=⇒ ∃q, (p, (N ′, S′, (i, C), nf , δ
′) ⇒ q

3)
(p, (N,S, i′, j, δ)) ⇒ q

(p, (N,S, i, j, δ)) ⇒ q
p |= ψ, (i, ?ψ, i′) ∈ δ

(C(p), (N,S, i, j, δ)) ⇒ C ′(p′) & C ′(p′) |= φ

=⇒ (C(p), (N,S, i′, j, δ)) ⇒ C ′(p′) &

C(p) |= ψ, (i, ?ψ, i′) ∈ δ & C ′(p′) |= φ

=⇒ p |= W(C,φ) &

outer inductive hypothesis

((i, C), ?W(C,ψ), (i′, C)) ∈ δ′ &

definition of δ′

∃q s.t. (p′, (N ′, S′, (i′, C), nf , δ
′)) ⇒ q

inner inductive hypothesis

=⇒ ∃q s.t. (p, (N ′, S′, (i, C), nf , δ
′)) ⇒ q

”⇐”: p |= W(C, ⟨M⟩φ) then C(p) |= ⟨M⟩φ
p |= W(C, ⟨M⟩φ) =⇒ p |= ⟨M ′⟩tt =⇒ ∃q s.t
(p,M ′) ⇒ q and q |= tt
So we need to prove that (p, (N ′, S′, (i, C), nf , δ

′)) ⇒
q then C(p) |= ⟨(N,S, i, j, δ)⟩φ
Induction on the transition rule of ⇒

–
p, (N,S, i, i, δ)) ⇒ p

(p, (N ′, S′, (i, C), nf , δ
′)) ⇒ q

=⇒ p = q, (N,S, i, j, δ) = ∅
& p |= ⟨(N ′, S′, (i, C), nf , δ

′)⟩tt
=⇒ (C(p), (N,S, i, j, δ)) ⇒ C(p)

& p |= W(C, ⟨(N,S, i, j, δ)⟩φ)
=⇒ (C(p), (N,S, i, j, δ)) ⇒ C(p)

& p |= W(C,φ) (N,S, i, j, δ) = ∅
=⇒ (C(p), (N,S, i, j, δ)) ⇒ C(p)

& C(p) |= φ outer inductive hypothesis

=⇒ C(p) |= ⟨(N,S, i, j, δ)⟩φ

–
(p′, (N,S, i′, j, δ)) ⇒ q

(p, (N,S, i, j, δ)) ⇒ q
p

b−→ p′, (i, b, i′) ∈ δ

(p, (N ′, S′, (i, C), nf , δ
′)) ⇒ q

=⇒ p
b−→ p′, ((i, C), b, (i′, C ′)) ∈ δ′ &

(p′, (N ′, S′, (i′, C ′′), nf , δ
′)) ⇒ q

=⇒ p
b−→ p′, & ∃C ′ s.t. (i, a, i′) ∈ δ &

C
a−→
b
C ′ definition of δ′

& C ′(p′) |= ⟨(N,S, i′, j, δ)⟩φ
inductive hypothesis

=⇒ C(p)
a−→ C ′(p′), & (i, a, i′) ∈ δ & ∃C ′′,

p′′ s.t. (C ′(p′), (N,S, i′, j, δ)) ⇒ C ′′(p′′)

& C ′′(p′′) |= φ

=⇒ (C(p), (N,S, i, j, δ)) ⇒ C ′′(p′′) &

C ′′(p′′) |= φ transition rule of ⇒
=⇒ C(p) |= ⟨(N,S, i, j, δ)⟩φ definition of |=

–
(p, (N,S, i′, j, δ)) ⇒ q

(p, (N,S, i, nf , δ)) ⇒ q
p |= ψ, (i, ?ψ, i′) ∈ δ

(p, (N ′, S′, (i, C), nf , δ
′)) ⇒ q

=⇒ p |= ψ, ((i, C), ?ψ, n′) ∈ δ and

(p, (N ′, S′, n′, nf , δ
′)) ⇒ q

=⇒ n′ = (i′, C ′), (i, a, i′) ∈ δ, C
a−→ C ′,

ψ = tt, or n′ = nf , ψ = W(C,φ)

& p |= ψ, & (p, (N ′, S′, n′, nf , δ
′)) ⇒ q

∗ n′ = (i′, C ′), (i, a, i′) ∈ δ, C
a−→ C ′, ψ = tt

=⇒ (i, a, i′) ∈ δ & C(p)
a−→ C ′(p) &

definition of context system

C ′(p) |= ⟨(N,S, i′, j, δ)⟩φ
inductive hypothesis

=⇒ (i, a, i′) ∈ δ & C(p)
a−→ C ′(p) &

∃C ′′, p′′, s.t.

(C ′(p), (N,S, i′, j, δ)) ⇒ C ′′(p′′)

& C ′′(p′′) |= φ definition of |=
=⇒ (C(p), (N,S, i, j, δ)) ⇒ C ′′(p′′)

& C ′′(p′′) |= φ transition rule of ⇒
=⇒ C(p) |= ⟨(N,S, i, j, δ)⟩φ

∗ n′ = nf , ψ = W(C,φ)

=⇒ p |= W(C,φ) & (N,S, i, j, δ) = ∅
=⇒ C(p) |= φ and (N,S, i, j, δ) = ∅

outer inductive hypothesis

=⇒ C(p) |= ⟨(N,S, i, j, δ)⟩φ 2

APPENDIX B
PROOF OF LEMMA 4.5

Proof The proof of this lemma is the same as the proof
for APDL decomposition property (Theorem 3.3) under given
environments ρ and ρ′ except for the proposition identifiers:

• X
C(p) |=ρ X

⇐⇒ C(p) ∈ ρ(X) definition of |=ρ

⇐⇒ p ∈ ρ′(XC) definition of ρ and ρ′

⇐⇒ p |=ρ′ XC definition of |=ρ′

⇐⇒ p |=ρ′ Wr(C,X) definition of Wr 2

APPENDIX C
PROOF OF THEOREM 4.6

Proof
⇒: C(p) |=D φ then p |=D′ Wr(C,φ)

Define: ρ(XC) = {p | C(p) |=D X, p ∈ S, C ∈ K}
We have C(p) |=D φ then p |=ρ Wr(C,φ) holds by
Lemma 1;
We can easily prove that ρ is a post-fix point of D′ as
follows:

– X = φX ∈ D, so XC = Wr(C,φX) ∈ D′

p ∈ ρ(XC) =⇒ C(p) |=D X =⇒ C(p) |=D

φX =⇒ p |=ρ Wr(C,φX)

So p |=ρ φ then p |=D′ φ;
Then C(p) |=D φ then p |=D′ Wr(C,φ).

⇐: p |=D′ Wr(C,φ) then C(p) |=D φ
Define: ρ(X) = {C(p) | p |=D′ XC , p ∈ S, C ∈ K}
Then we have p |=D′ Wr(C,φ) then C(p) |=ρ φ holds
by Lemma 1;
We can easily prove that ρ is a post-fix point of D as
follows:

– X = φX ∈ D, so XC = Wr(C,φX) ∈ D
C(p) ∈ ρ(X) =⇒ p |=D′ XC =⇒ p |=D′

Wr(C,φX) =⇒ C(p) |=ρ φX

So p |=ρ φ then p |=D′ φ;
Then p |=D′ Wr(C,φ) then C(p) |=D φ. 2

REFERENCES

[1] X. Liu and B. Xue, “Specification in pdl with recursion,” submitted
to Nasa Formal Methods Symposium, Norfolk, 2012.

[2] E. Dijkstra, A Discipline of Programming. Prentice–Hall, 1976.
[3] D. Harel, D. Kozen, and J. Tiuryn, Dynamic Logic. MIT Press, 2000.
[4] M.J.Fischer and R.E.Ladner, “Propositional dynamic logic of regular

programs,” J. Comput. System Sci., vol. 18, no. 2, 1979.
[5] D. Kozen, “Results on the propositional mu–calculus,” Lecture Notes

In Computer Science, Springer Verlag, vol. 140, 1982, in Proc. of
International Colloquium on Algorithms, Languages and Programming
1982.

[6] M. Lange, “Model checking propositional dynamic logic with all
extras,” Journal of applied logic, vol. 4, 2006.

[7] D. Leivant, “Propositiona dynamic logic for recursive procedures,”
Lecture Notes In Computer Science, Springer Verlag, vol. 5295, 2008.

[8] C. Löding, C. Lutz, and O. Serre, “Propositional dynamic logic
with recursive programs,” Journal logic and algebraic programming,
vol. 73, 2007.

[9] V. Pratt, “Using graphs to understand pdl,” Lecture Notes In Computer
Science, Springer Verlag, vol. 131, 1982.

[10] B. Khoussainov and A. Nerode, “Automata theory and its application-
s.” Birkhauser Boston, 2001.

[11] K. Larsen, “Context–dependent bisimulation between processes,”
Ph.D. dissertation, University of Edinburgh, Mayfield Road, Edin-
burgh, Scotland, 1986.

[12] K. Larsen and R. Milner, “Verifying a protocol using relativized bisim-
ulation,” Lecture Notes In Computer Science, Springer Verlag, vol.
267, 1987, in Proceedings of International Colloquium on Algorithms,
Languages and Programming 1987.

[13] K. Larsen and X. Liu, “Equation solving using modal transition
systems,” in Proceedings on Logic in Computer Science, 1990.

[14] X. Liu, “Specification and decomposition in concurrency,” Ph.D.
dissertation, University of Aalborg, Fredrik Bajers Vej 7, DK 9220
Aalborg ø, Denmark, 1992.

[15] L. X. K.G. Larsen, “On equation solving,” in 2nd NOrdic Workshop
on Program Correctness, K. Larsen and A. Skou, Eds., 1990.

[16] X. Liu and B. Xue, “Recursive pdl with nesting,” in preparing.

