

Key Generation in Elliptic Curve Cryptosystems over

GF(2
n
)

Tai-Chi Lee

Abstract This paper proposes a public key generation for an ECC

(Elliptic Curve Cryptosystem) using FPGA’s. To improve the

strength of encryption and the speed of processing, the public key and

the private key of EC(Elliptic curve) over GF(2n) are used to form a

shared private key (X,Y). And then the X is used with an initial point

on HEC(Hyper-Elliptic Curve) over GF(2n) to generate session keys,

which are used with 3BC (Block Byte Bit Cipher) algorithm for the

data encryption. We are investigating a novel approach of software/

hardware co-design implemented in Verilog Hardware Description

Language (VHDL), which produces hardware algorithm components

to place onto the FPGAs, thereby creating adaptive software overlays

differentiated by use of a Universal Unique Identifier (UUID) as a

functional operand to a custom arithmetic Logic Unit (ALU).1

Index Terms: EEC, HEC, FPGA, VHDL, UUID, ASIC, 3BC

algorithm.

I. INTRODUCTION

Instead of RSA algorithm, ECC has been widely used for

public-key cryptosystem for encryption/decryption. As a

matter of fact, the key length for secure RSA has increased

over the years. This would demand a heavy computing power

for applications, especially for electronic commerce site that

process a large number of transaction. Recently, a different

approach of generating public key based on elliptic curve

cryptography (ECC) [2, 4, 10] has begun to challenge the

weakness of RSA [11]. Its security relies on the problem of

computing logarithms on the points of an elliptic curve.

However, the use of hyperelliptic curve has recently attracted

some researchers’ interest because it gives the same security

level with a smaller key length compared to cryptosystems

using elliptic curves The main attraction of combining EC

with HEC is that it appears to offer equal security for a far

smaller key size, thereby saving the processing overhead. To

improve the strength of encryption and the speed of

processing, the public key and the private key of ECC are used

with initial point on HEC to generate session keys for the data

encryption. Fundamentally, HECC (Hyper-Elliptic Curve

Cryptosystem) technique is more mathematics involved. We

only give a brief review of the basic concept in the next

section and explain elliptic curve ciphers later.

II. THE MATHEMATICAL OVERVIEW

The elliptic curve cryptosystem makes use of elliptic curve

in which the variables and coefficients are all restricted to

Manuscript submitted December 15, 2011; received December 17, 2011;

revised January 18, 2012.
Tai-Chi Lee is with the Department of Computer Science and Information

Systems, Saginaw Valley State University, University Center, MI 48710 USA

(e-mail: lee@svsu.edu).

elements of a finite field. Two families of elliptic curves are

used in cryptographic applications. They are prime curves

defined over Zp and binary curves constructed over GF(2
n
). It

has been found that prime curves are best for software

applications, because the extended bit-fiddling operations

needed by binary curves are not required. Binary curves are

best for hardware applications, where it takes logic gates to

create a powerful, fast cryptosystem [1]. In this paper, we will

examine only the family of elliptic curves defined over

GF(2
n
). .

 2.1 EC (Elliptic Curves) over)(
2mFE

An elliptic curve with underlying field
mF

2
 is formed by

choosing the element a and b within
mF

2
(the only condition is

that b is not 0. As a result of the field
mF

2
 having a

characteristic 2, the elliptic curve equation is slightly adjusted

for binary representation:

baxxxyy 232 .

The elliptic curve includes all points (x, y) which satisfy the

elliptic curve equation over
mF

2
(where x and y are elements

of
mF

2
). An elliptic curve group over

mF
2

 consists of the points

on the corresponding elliptic curve, together with a point at

infinity, O. The number of points in)(
2mFE is denoted

by)(#
2mFE . It follows from the Hasse theorem that

qqFEqq m 21)(#21
2

,

where q = 2
m
. Furthermore,)(#

2mFE is even.

The set of points)(
2mFE is a group with respect to the

following addition rules:

(1) 0 + 0 = 0.

(2) (x, y) + 0 = (x, y) for all (x, y))(
2mFE .

(3) (x, y) + (x, x + y) = 0 for all (x, y))(
2mFE .

(i.e., the inverse of the point (x, y) is the point (x, x + y)).

(4) Rule for adding two distinct points that are not inverses of

each other :

Let (x1, y1))(
2mFE and (x2, y2))(

2mFE be two points

such that x1 ≠ x2.

Then (x1, y1) + (x2, y2) = (x3, y3), where

x3 = L + L + x1 + x2 + a, y3 = L(x1 + x3) + x3 + y1 and

L =. (y1+ y2)/(x1 + x2)

(5) Rule for doubling a point :

Let (x1, y1))(
2mFE be a point with x1 ≠ 0. Then 2(x1, y1)

= (x3, y3), where

x3 = L
2
 + L + a, y3 = x1

2
 + (L + 1) x3 and L = x1 + y1/ x2.

The group)(
2mFE is abelian, which means that P + Q = Q +

P for all points P and Q in)(
2mFE

2.3 ECC (Elliptic Curve Cryptosystem) over)(
2mFE

The concept of ECC, which was proposed by N. Kobiltz [4]

and V. Miller [10] in 1985 is that when any two points are

selected and added, the point of the sum is generated and is

used for cryptosystem. The elliptic curve (EC) over
mF

2
 is a

set of points (x, y) to satisfy the equation

baxxxyy 232 .

The procedure to generate a public key in ECC is outlined

as follows:

(1) [common] Select any irreducible polynomial f(x)

(2) [common] Select any vector value a, b for EC such that

baxxxyy 232

(3) [common] Select randomly an initial point P among points

on EC

(4) [sender] Receives p, E, P, krP from common

(5) [sender] Generates a random integer ks as a private key

(6) [sender] Computes a public key ksP by multiplying P by ks

and registers it in the common directory.

(7) [sender] Computes a shared secret key ks(krP) by

multiplying ks

(8) [receiver] Generates a random integer as private key kr

(9) [receiver] Computes a public key krP by multiplying P by

kr and registers it in the common directory.

(10) [receiver] Computes a shared secret key ks(krP) by

multiplying ks

Insecure Channel

Common

f(x), E, P, KrP,

KsP

Sender

 Private Key : Ks

 Public Key : KsP

Receiver

 Private Key : Kr

 Public Key : KrP

Shared Secret Key:Ks(KrP) Shared Secret Key:Kr(KsP)

Figure 1. Concept of ECC public key

2.4 HEC (Hyper-Elliptic Curve)

In the study of cryptosystem, hyper-elliptic curve has

recently attracted some researchers’ interests because it gives

The main attraction of combining EC with HEC is that it

appears to offer equal security for a far smaller key size,

thereby saving the processing overhead because it gives the

same security level with a smaller key length as compared to

cryptosystems using elliptic curves. From the fact it is

expected to be possible to use hyper-elliptic curves to factor

integers, since elliptic curve method exploits the property of

the Abelian groups in the same way as the cryptosystems.

A hyper-elliptic curve H of genus g(g 1) over a field F is a

nonsingular curve that is given by an equation of the following

form:

)()(: 2 ufvuhvH (in F[u, v])

Where h(u) F[u] is a polynomial of degree g, and

f(u) F[u] is a monic polynomial of degree 2g+1.

2.4.1 Divisors

Divisors of a hyper-elliptic curve are pairs denoted div(a(u),

b(u)), where a(u) and b(u) are polynomials in)2(nGF [u] that

satisfy the congruence

)()()()(2 ufubuhub (mod a(u)).

They can also be defined as the formal sum of a finite

number of points on the hyper-elliptic curve. Since these

polynomials could have arbitrarily large degree and still

satisfy the equation, the notion of a reduced divisor is needed.

In a reduced divisor, the degree of a(u) is no greater than g,

and the degree of b(u) is less than the degree of a(u).

2.4.2 Reduced Divisors

Let H be a hyper-elliptic curve of genus g over a field F. A

reduced divisor (defined over F) of H is defined as a form

div(a, b), where a, b F[u] are polynomial such that

(1) a is monic, and deg b < deg a g,

(2) a divides)(2 fbhb .

In particular div(1,0) is called zero divisor.

 [Algorithm 1] Reduction of a divisor to a Reduced Divisor.

Input : A semi-reduced divisor, D=div(a, b)

Output : The equivalent reduced divisor, DbadivD ~),(

 1. Set abbhfa /)(2 and))(mod(abhb

 2. If audeg >g then set aa , bb and go to step 1.

 3. Let c be the leading coefficient of a . Set aca 1 .

 4. Output),(badivD

2.4.2 Adding Divisors

If),(111 badivD and),(222 badivD are two reduced

divisors defined over F, then Algorithm 2 finds a semi-

reduced divisor or reduced divisor),(3 badivD . To find the

unique divisor,),(3 badivD , Algorithm 1 should be used just

after the addition of two divisors.

[Algorithm 2] Addition defined over the group of divisors

Input: Two reduced divisors,),(111 badivD and

),(222 badivD

Output : A reduced divisor or semi-reduction divisor,

),(3 badivD

1. Compute
11 ,ed and

2e which satisfy

),(211 aaGCDd and
22111 aeaed

2. If 11d , then
21: aaa , abaebaeb mod)(: 122211

 otherwise do the following:

 (1) Compute d,
1c and

3s which satisfy

),(211 hbbdGCDd and)(21311 hbbsdcd .

 (2) Let
111 : ecs and

212 : ecs , so that

)(2132211 hbbsasasd .

 (3) Let 2

21 /: daaa ,

 adfbbsbasbasb mod/))((: 213122211

3. output),(3 badivD

III. ENCRYPTION AND DECRYPTION WITH

MESSAGE EMBEDDED IN A POINT

After having generated a public key, the

encryption/decryption can be implemented using different

approaches. The simplest one is to embed the message Pm to

be sent as a point (x, y) in Ep(a,b) . Since not all (x, y) are in

Ep(a,b) we have to select a point P’m in Ep(a,b) that is

sufficient close to the point in (x, y) and work with P’m as it

were Pm and recover it by removing the offsets in x or y. To

encrypt and send a message Pm to user B, A choose a random

positive integer k and generate the ciphertext Cm consisting of

the pair of points

 Cm = { kG, Pm + kPB },

where G is base point and PB = KBG is the public key of user

B. Note that user A has masked the message Pm by adding

kPB to it. No one but A knows the value of k, so nobody can

remove the mask kPB. However, to decrypt the ciphertext, B

can multiply the first point in the pair by B’s secret key KB

and subtract the result from the second point, which gives

Pm + kPB - KB(kG) = Pm + k(KBG) - KB(kG) = Pm, since PB = KBG.

3.1 Encryption and Decryption with 3BC Algorithm

With 3BC algorithm, the procedure of data encryption is

divided into three parts, inputting plaintext into data block,

byte-exchange between blocks, and bit-wise XOR operations

between data and session key.

3.1.2 Session Key Generation

As we know that the value which is obtained by multiplying

one's private key by the other's public key is the same as what

is computed by multiplying one's public key to the other's

private key. The feature of EC is known to be almost

impossible to estimate a private and a public key. The

proposed key generation combines EC and HEC with 3BC

algorithm to generate session keys and cipher text. The

encryption and decryption processes are shown in Figure 4.

First, an x of shared secret key (x, y) from ECC is inputted as

a private key x of HEC, and then xD (where, xD means x

times D) is computed, which D is an initial point of HECC.

The result of xD generates a session key for 3BC [5]. With

this advantage and the homogeneity of the result of operations,

the proposed 3BC algorithm uses a 64-bit session key to

perform the encryption and decryption. Given the sender’s

private key Ks and the receiver’s public key Pr, we multiply

Pr by Ks to obtain a point KsPr = (X, Y) on EC, where X= X1

X2,…Xm and Y= Y1 Y2,…Yn. Then we form a key N by

concatenating X and Y (i.e. N = X1 X2, Xm Y1 Y2,…Yn), and

generate the session keys as follows:

i) If the length (number of digits) of X or Y exceed four,

then the extra digits on the left are truncated. And if the length

of X or Y less than four, then they are padded with 0’s on the

right. This creates a number N’ = X1’ X2’ X3’ X4’ Y1’ Y2’ Y3’

Y4’. Then a new number N’’ is generated by taking the

modulus of each digit in N’ with 8.

ii) The first session key sk1 is computed by taking bit-wise

OR operation on N” with the reverse string of N”.

iii) The second session key sk2 is generated by taking a

circular right shift of sk1 by one bit. And repeat this operation

to generate all the subsequent session keys needed until the

encryption is completed. For more details on the use of public

key and session key for encryption and decryption process, see

[5].

3.2.2 Block Data Input

The block size is defined as 64 bytes. A block consists of 56

bytes for input data, 4 byte for the data block number, and 4

byte for the byte-exchange block number (see Figure 2).

During the encryption, input data stream are blocked by 56

bytes. If the entire input data is less than 56 bytes, the

remaining data area in the block is padded with each byte by a

random character. Also, in the case where the total number of

data blocks filled is odd, then additional block(s) will be added

to make it even, and each of those will be filled with each byte

by a random character as well. Also, a data block number in

sequence is assigned and followed by a byte-exchange block

number, which is either 1 or 2.

Figure 2. Structure of block

3.2.3 Byte-Exchanges between Blocks

After filling the data into the blocks, we begin the

encryption by staring with the first data block and select a

block, which has the same byte-exchange block number for

the byte exchange. In order to determine which byte in a

block should be exchanged, we compute its row-column

position as follows:

For the two blocks whose block exchange number, n = 1,

we compute the following:

 byte-exchange row=(Ni*n) mod 8 (i=1,2 …,8)

 byte-exchange col=((Ni*n)+3) mod 8 (i=1,2 …,8),

where Ni is a digit in N”. These generate 8 byte-exchange

postions. Then for n = 1, we only select the non-repeating

byte position (row, col) for the byte-exchange between two

blocks whose block exchange numbers are equal to 1.

aera

ataD

Data block number Byte-exchange block no.

Similarly, we are repeating the procedure for n = 2. The

following examples illustrates the process of byte exchange

operation.

 x

 x

 x

 x

x

 x

 x

 (a) n = 1 (b) n = 2

Figure 3. Exchange bytes at (row, col) for a selected pair of

blocks

Example: Given the values of a sender's public key 21135 and

a receiver's private key 790, we compute the position of row

and col for byte-exchange as follows:

For n = 1, It follows from 3.2.1 that N″= 11357900 (after

truncation, padding and concatenation), and

row = ((1,1,3,5,7,9,0,0)*1) mod 8 = (1,1,3,5,7,1,0,0) and

col = (((1,1,3,5,7,9,0,0)*1+3) mod 8) = (4,4,6,0,2,4,3,3)

This results 8 byte-exchange positions, (1,4), (1,4), (3,6),

(5,0), (7,2), (1,4), (0,3) and (0,3). However, counting only

once for repeating pairs, the four bytes at (1,4) (3,6), (5,0),

and (7,2) will be selected for byte-exchange between two

blocks (see Figure 3 (a)).

For n = 2, we have

row = ((1,1,3,5,7,1,0,0)*2) mod 8 = (2,2,6,2,6,2,0,0) and

col = (((1,1,3,5,7,1,0,0)*2+3) mod 8 = (5,5,1,5,1,5,3,3),

which results 8 byte-exchange positions, (2,5), (2,5), (6,1),

(2,5), (6,1), (2,5), (0,3) and (0,3). Similarly, only three byte

positions at (2,5), (6,1), and (0,3) are used for byte-

exchanges between two blocks as shown in Figure 3 (b).

3.2.4 Bit-wise XOR between Data and Session Keys

After the byte-exchange is done, the encryption proceeds

with a bit-wise XOR operation on the first 8 byte data with the

session sk1 and repeats the operation on every 8 bytes of the

remaining data with the subsequent session keys until the data

block is finished (see Figure 4).

Figure 4. The bit-wise XOR on rows with session keys

Note that the process of byte-exchange hides the meaning of

56 byte data and the exchange of the data block number hides

the order of data block, which needs to be assembled later on.

In addition, the bit-wise XOR operation transforms a character

into a meaningless one, which adds another level of

complexity to deter the network hackers. Figure 4 shows an

encryption procedure using session keys as described in 3.2.1

deriving from a private key and a public key [11, 12].

IV. COMPLEXITY OF ALGORITHM

The addition operation in ECC is the counterpart of modular

multiplication in RSA, and multiple additions are the

counterpart of modular exponentiation. Especially, with the

use of hyperelliptic curve over)(
2mFE , to compute a public

key and the order of base point, it requires much more

intensive computations [5]. Therefore, from computational

aspect, we like to offer few suggestions, which could speed up

the process.

1) Multiple additions:

 Given a point P ε)(
2mFE , to compute a public key kP for

an integer k requires (k – 1) point-additions and each point-

addition needs a number of integer additions, subtractions ,

multiplications and divisions based on modular arithmetic as

described in section 2. To reduce the computation time, we

can compute the point Q = (k/2)P. Then kP can be readily

obtained from 2Q or 2Q+P respectively depending on k is

even or odd, which will cut the time in half. For a large k, this

is a great time saving.

2) Modular arithmetic:

 As seen from the section 2, to obtain the point (x, y) of the

sum of two point P and Q on the elliptic curve, we repeatedly

involve using modular arithmetic with respect to the prime

number p. One can shorten the computation if more efficient

techniques dealing with modular arithmetic is used by either

an improved algorithm or custom computing machine, which

is the purpose of this research.

V. IMPLEMENTATIONS

To generate a public key, the most time consuming process

is to find an initial point P on the given elliptic curve and to

compute kP for an integer k < p for a large prime number p.

The approach we investigate in this paper is to create a 64bit

ALU with its own custom instructions added to an Altera

EP1C12 NIOS II embedded processor. Custom instructions

are designed to be small, re-arrangeable portions of a C

implementation of key generation. This will allow sections of

the algorithm to be in C and other sections to be expressed as

custom instructions. These sections can be easily reordered

and re-factored by recompiling the algorithm and uploading

the overlay to the FPGA via TCP/IP in order to handle the

distribution of the algorithms over the network. See Figure 5.

11110100 0xor

xorSession keys

01111010 xor

00111101 xor

10011110 xor

01001111 xor

10100111 xor

11010011 xor

11101001 xor

Rows in a block

1

2

3

4

5

6

7

NODE[0..n]

FPGA

NIOS II RAM

Ethernet (TCP/IP)

NODE NODE

Master

Figure 5 – System Diagram

5. 1 Hardware Design

The design of this approach consists of four components: A

PC Master Controller, TCP/IP interconnect,

FGPA logic units that each contains a NIOS II processor

and custom ALU, and the creation and selection of the custom

instructions and overlays.

5.2 PC Master Controller

A PC Master Controller will provide benefits over existing

designs. It is capable of systematically assigning algorithms to

logic units based on the specific set of custom instructions

included in the ALU. Our design will implement the most

efficient way to delegate operations and also take advantage of

the parallelism that can be obtained by using a FPGA [6, 7, 8].

Figure 6. The basic design for card with FPGA

5.3 TCP/IP Interconnect

The PC Master Controller will communicate through a

TCP/IP interface with one or more FGPAs in a cluster.

Each FPGA will execute the algorithm, using the custom

instructions. See Figure 7.

Figure 7. The layout of the FPGA

5.4 Custom Instructions

The Altera EP1C12 NIOS II embedded processor is a 32bit

system. By adding a customized 64bit ALU and associated

64bit registers [11, 12], we can have custom instructions to

handle algorithms specific to public key via EC, which

include: XOR, Addition, Multiplication, Division, Right/Left

Shift, and others. These instructions are given 32bit UUIDs as

their opcode, allowing unique naming even when the full set is

not within a single ALU. We are experimenting with various

decompositions of Expansion and Permutation in order to

create sub-algorithms the custom instructions reproduced in

hardware. See Figure 8.

Figure 8. Nios II processor operation from Altera’s Nios

II Custom Instruction User Guide

VI. ANTICIPATED RESULTS

Based upon the above approach we are investigating the

different decomposition of the subalgorithms used.. By using

our approach on the encryption/decryption algorithm we

expect to be able to process on average one key per clock

cycle. This appears reasonable as the custom instructions

allow our design to use several FPGAs to process multiple key

ranges simultaneously. We are interested in locating the

balance between the high implementation time with the low

run time of the pure hardware approach, and the low

implementation time with high run time of the pure software

approach.

For instance, starting with encryption or decryption

algorithm in C that has a nonexistent design time, its average

run time is a constant. When the algorithm is translated into

well optimized hardware, the design time is very high and the

run time is very low. With our approach the design time and

run times are between the pure hardware and pure software

methods. When the number of data sets to run is in the bolded

range on Figure 9, our method should be preferred.

CPU 0

Memory

NIOS II Custom instruction input

Custom instruction output

FPGA

With Nios
II

processor

TCP/IP Interconnect

Card

 Figure 13 - Area of Interest

7. Conclusion

Our approach has the benefit of some of the speed

 Figure 9 Area of interest

VII. CONCLUSION

Our approach has the benefit of some of the speed of ASIC,

while maintaining some of the flexibility of C. The added use

of storing and transferring the algorithms as an overlay allows

the organizational aspects of the algorithm to be re-factored

and delivered without the need of rebuilding the ASIC image

and reconfiguring the FPGA [3, 9] Using a TCP/IP

interconnect network to send both the overlay and the problem

set allows for an efficient and easily scalable infrastructure.

The proposed 3BC, which uses byte-exchange and the bit

operation increases data encryption speed. Even though cipher

text is intercepted during transmission over the network.

Because during the encryption process, the 3BC algorithm

performs byte exchange between blocks, and then the plaintext

is encoded through bit-wise XOR operation, it rarely has a

possibility for cipher text to be decoded and has no problem to

preserve a private key.

REFERENCES

[1] M.J. Bastiaans, FPGA’s as Cryptanalytic Tools,
 http://www.sps.ele.tue.nl/ members/m.j.bastiaans/spc/rouvroy.pdf.

[2] A. Fernaades, Elliptic Curve Cryptography, Dr. Dobb’s Journal,

 December, 1999.
[3] P. Glesner, and M. Zipf, Renovell (Eds.): Programmable Logic and

 Applications. Reconfigurable Computing Is Going Mainstream,

 Proceedings of 12th International Conference, FPL 2002, Montpellier,
 France, September 2-4, 2002.

[4] N. Koblitz, Elliptic Curve Cryptosystems. Math. Comp. 48 203-209,

 1987.
 [5] Tai-Chi Lee, ByungKwan Lee, A HESSL(Highly Enhanced Security

 Socket Layer) Protocol, The Proceedings of the Seventh IEEE

 International Conference on E-Commerce Technology, pp 456-460 July
 19-22, 2005, Munich, Germany.

[6] Tai-Chi Lee, Mark White, Using Software Emulation in FPGAs To

 Improve Co-Design Development Time, The Proceedings of the Fourth
 International Conference of Applied Mathematics and Computing,

 Bulgaria, pp. 359-360, August 12-18, 2007.

[7] Tai-Chi Lee, Patrick Robinson, A FPGA-Based Designed for an Image
 Compressor, International Journal of Pure and Applied Math, Academic

 Publications, Volume 33 No.1, pp. 63-67, 2006.

[8] Tai-Chi Lee, Richard Zeien, Adam Roach, and Patrick Robinson, DES
 Decoding Using FPGA and Custom Instructions, The Proceedings of

 The Third International Conference on Information Technology: New

 Generation, Las Vegas, Nevada, pp. 575-577, 2006.
[9] Tai-Chi Lee, Patrick Robinson, and Erik Henne, Framework for

 executing VHDL code on FPGA, The Proceedings of the International

 MultiConference in Computer Science & Computer, Las Vegas, NV, pp.
 1296-1299, 2004.

[10] V.S. Miller, Use of Elliptic Curve in Cryptography. Advances in

 Cryptology-Proceedings of Crypto '85, Lecture Notes in Computer
 Science 218, pp. 417-426, Springer-Verlag, 1986.

[11] M. Robshaw, Block Ciphers, RSA LaboratoriesTechnical Report TR,

 601, August 1995, http://www.rsasecurity.com/rsalabs/dindex.html.
[12] B. Schneier, Description of a New Variable-Length Key, 64-bit Block

 Cipher (Blowfish), Proceedings, Workshop on Fast 78 Software

 Encryption, New York: Springer-Verlag, 1993.

[13] B. Schneier, The Blowfish Encryption Algorithm, Dr. Dobb’s Journal,
 April 1994.

http://www.sps.ele.tue.nl/
http://www.rsasecurity.com/rsalabs/dindex.html

