
 

Key Generation in Elliptic Curve Cryptosystems over 

GF(2
n
)   

 
Tai-Chi Lee 

 
Abstract This paper proposes a public key generation for an ECC 

(Elliptic Curve Cryptosystem) using FPGA’s. To improve the 

strength of encryption and the speed of processing, the public key and 

the private key of EC(Elliptic curve)  over GF(2n) are used to form a 

shared private key (X,Y). And then the X is used with an initial point 

on HEC(Hyper-Elliptic Curve) over GF(2n) to generate session keys, 

which are used with 3BC (Block Byte Bit Cipher) algorithm for the 

data encryption. We are investigating a novel approach of software/ 

hardware co-design implemented in Verilog Hardware Description 

Language (VHDL), which produces hardware algorithm components 

to place onto the FPGAs, thereby creating adaptive software overlays 

differentiated by use of a Universal Unique Identifier (UUID) as a 

functional operand to a custom arithmetic Logic Unit (ALU).1 

 

Index Terms: EEC, HEC, FPGA, VHDL, UUID, ASIC, 3BC 

algorithm. 

 

I.  INTRODUCTION 

 

Instead of RSA algorithm, ECC has been widely used for 

public-key cryptosystem for encryption/decryption. As a 

matter of fact, the key length for secure RSA has increased 

over the years. This would demand a heavy computing power 

for applications, especially for electronic commerce site that 

process a large number of transaction. Recently, a different 

approach of generating public key based on elliptic curve 

cryptography (ECC) [2, 4, 10] has begun to challenge the 

weakness of RSA [11]. Its security relies on the problem of 

computing logarithms on the points of an elliptic curve. 

However, the use of hyperelliptic curve has recently attracted 

some researchers’ interest because it gives the same security 

level with a smaller key length compared to cryptosystems 

using elliptic curves The main attraction of combining EC 

with HEC is that it appears to offer equal security for a far 

smaller key size, thereby saving the processing overhead. To 

improve the strength of encryption and the speed of 

processing, the public key and the private key of ECC are used 

with initial point on HEC to generate session keys for the data 

encryption.  Fundamentally, HECC (Hyper-Elliptic Curve 

Cryptosystem) technique is more mathematics involved. We 

only give a brief review of the basic concept in the next 

section and explain elliptic curve ciphers later. 

 

II. THE MATHEMATICAL OVERVIEW 

 

The elliptic curve cryptosystem makes use of elliptic curve 

in which the variables and coefficients are all restricted to  
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elements of a finite field. Two families of elliptic curves are 

used in cryptographic applications. They are prime curves 

defined over Zp and binary curves constructed over GF(2
n
).  It 

has been found that prime curves are best for software 

applications, because the extended bit-fiddling operations 

needed by binary curves are not required.  Binary curves are 

best for hardware applications, where it takes logic gates to 

create a powerful, fast cryptosystem [1]. In this paper, we will 

examine only the family of elliptic curves defined over 

GF(2
n
).  . 

 

 2.1 EC (Elliptic Curves) over )(
2mFE  

An elliptic curve with underlying field 
mF

2
 is formed by 

choosing the element a and b within 
mF

2
(the only condition is 

that b is not 0. As a result of the field 
mF

2
 having a 

characteristic 2, the elliptic curve equation is slightly adjusted 

for binary representation: 

baxxxyy 232 . 

The elliptic curve includes all points (x, y) which satisfy the 

elliptic curve equation over 
mF

2
(where x and y are elements 

of
mF

2
). An elliptic curve group over 

mF
2

 consists of the points 

on the corresponding elliptic curve, together with a point at 

infinity, O. The number of points in )(
2mFE  is denoted 

by )(#
2mFE . It follows from the Hasse theorem that 

qqFEqq m 21)(#21
2

, 

where q = 2
m
. Furthermore, )(#

2mFE  is even. 

The set of points )(
2mFE  is a group with respect to the 

following addition rules: 

(1) 0 + 0 = 0. 

(2) (x, y) + 0 = (x, y) for all (x, y) )(
2mFE . 

(3) (x, y) + (x, x + y) = 0 for all (x, y) )(
2mFE .  

(i.e., the inverse of the point (x, y) is the point (x, x + y)).  

(4) Rule for adding two distinct points that are not inverses of 

each other : 

Let (x1, y1) )(
2mFE and (x2, y2) )(

2mFE be two points 

such that x1 ≠ x2. 

Then (x1, y1) + (x2, y2) = (x3, y3), where 

x3 = L + L + x1 + x2 + a, y3 =  L(x1 + x3) + x3 + y1 and 

L =. (y1+ y2 )/( x1 + x2 ) 

(5) Rule for doubling a point : 

Let (x1, y1)  )(
2mFE be a point with x1 ≠ 0. Then 2(x1, y1)  

= (x3, y3), where 

x3 = L
2
 + L + a,  y3 = x1

2
 + (L + 1) x3   and L =  x1 + y1/ x2. 



 

The group )(
2mFE is abelian, which means that P + Q = Q + 

P for all points P and Q in )(
2mFE  

 

2.3 ECC (Elliptic Curve Cryptosystem) over )(
2mFE  

The concept of ECC, which was proposed by N. Kobiltz [4] 

and V. Miller [10] in 1985 is that when any two points are 

selected and added, the point of the sum is generated and is 

used for cryptosystem. The elliptic curve (EC) over 
mF

2
 is a 

set of points (x, y) to satisfy the equation 

baxxxyy 232 .  

The procedure to generate a public key in ECC is outlined 

as follows: 

(1) [common] Select any irreducible polynomial f(x) 

(2) [common] Select any vector value a, b for EC such that 

baxxxyy 232  

(3) [common] Select randomly an initial point P among points 

on EC 

(4) [sender] Receives p, E, P, krP from common 

(5) [sender] Generates a random integer ks as a private key 

(6) [sender] Computes a public key ksP by multiplying P by ks 

and registers it in the common directory. 

(7) [sender] Computes a shared secret key ks(krP) by 

multiplying ks 

(8) [receiver] Generates a random integer as private key kr 

(9) [receiver] Computes a public key krP by multiplying P by 

kr and registers it in the common directory. 

(10) [receiver] Computes a shared secret key ks(krP) by 

multiplying ks 

 

Insecure Channel

Common

f(x), E, P, KrP, 

KsP

Sender

 Private Key : Ks

 Public Key : KsP

Receiver

 Private Key : Kr

 Public Key : KrP

Shared Secret Key:Ks(KrP) Shared Secret Key:Kr(KsP)

 

Figure 1. Concept of ECC public key 

 

2.4 HEC (Hyper-Elliptic Curve)  

In the study of cryptosystem, hyper-elliptic curve has 

recently attracted some researchers’ interests because it gives 

The main attraction of combining EC with HEC is that it 

appears to offer equal security for a far smaller key size, 

thereby saving the processing overhead because it gives the 

same security level with a smaller key length as compared to 

cryptosystems using elliptic curves. From the fact it is 

expected to be possible to use hyper-elliptic curves to factor 

integers, since elliptic curve method exploits the property of 

the Abelian groups in the same way as the cryptosystems. 

A hyper-elliptic curve H of genus g(g 1) over a field F is a 

nonsingular curve that is given by an equation of the following 

form: 

)()(: 2 ufvuhvH  (in F[u, v]) 

Where h(u) F[u] is a polynomial of degree  g, and 

f(u) F[u] is a monic polynomial of degree 2g+1. 

 

2.4.1 Divisors 

Divisors of a hyper-elliptic curve are pairs denoted div(a(u), 

b(u)), where a(u) and b(u) are polynomials in )2( nGF [u] that 

satisfy the congruence 

)()()()( 2 ufubuhub (mod a(u)). 

They can also be defined as the formal sum of a finite 

number of points on the hyper-elliptic curve. Since these 

polynomials could have arbitrarily large degree and still 

satisfy the equation, the notion of a reduced divisor is needed. 

In a reduced divisor, the degree of a(u) is no greater than g, 

and the degree of b(u) is less than the degree of a(u).  

 

2.4.2 Reduced Divisors 

Let H be a hyper-elliptic curve of genus g over a field F. A 

reduced divisor (defined over F) of H is defined as a form 

div(a, b), where a, b F[u] are polynomial such that 

(1) a is monic, and deg b < deg a  g, 

(2) a divides )( 2 fbhb . 

In particular div(1,0) is called zero divisor. 

  [Algorithm 1] Reduction of a divisor to a Reduced Divisor. 

 

Input : A semi-reduced divisor, D=div(a, b) 

Output : The equivalent reduced divisor, DbadivD ~),(  

  1.  Set abbhfa /)( 2  and ))(mod( abhb  

  2.  If audeg >g then set aa , bb  and go to step 1. 

  3.  Let c be the leading coefficient of a . Set aca 1 . 

  4.  Output ),( badivD   

 

2.4.2 Adding Divisors 

If ),( 111 badivD and ),( 222 badivD are two reduced 

divisors defined over F, then Algorithm 2 finds a semi-

reduced divisor or reduced divisor ),(3 badivD . To find the 

unique divisor, ),(3 badivD , Algorithm 1 should be used just 

after the addition of two divisors. 

[Algorithm 2] Addition defined over the group of divisors 

 

Input:  Two reduced divisors, ),( 111 badivD and 

),( 222 badivD  

Output : A reduced divisor or semi-reduction divisor, 

),(3 badivD  

1.   Compute 
11 ,ed and 

2e  which satisfy 

),( 211 aaGCDd  and 
22111 aeaed  

2.   If 11d , then 
21: aaa , abaebaeb mod)(: 122211

 

         otherwise do the following: 

     (1)  Compute d, 
1c  and 

3s  which satisfy  

       ),( 211 hbbdGCDd and )( 21311 hbbsdcd . 

     (2)  Let 
111 : ecs  and 

212 : ecs , so that 

      )( 2132211 hbbsasasd . 

     (3)  Let 2

21 /: daaa , 



 

      adfbbsbasbasb mod/))((: 213122211
 

3.   output ),(3 badivD  

 

III.  ENCRYPTION AND DECRYPTION WITH 

MESSAGE EMBEDDED IN A POINT 

 

After having generated a public key, the 

encryption/decryption can be implemented using different 

approaches. The simplest one is to embed the message Pm to 

be sent as a point (x, y) in Ep(a,b) . Since not all (x, y) are in 

Ep(a,b) we have to select a point P’m  in Ep(a,b)  that is 

sufficient close to the point in (x, y) and work with P’m as it 

were  Pm and recover it by removing the offsets in x or y. To 

encrypt and send a message Pm to user B, A choose a random 

positive integer k and generate the ciphertext  Cm consisting of 

the pair of points 

 
        Cm = { kG, Pm + kPB },  

 

where G is base point and PB = KBG is the public key of user 

B. Note that user A has masked the message Pm by adding  

kPB to it. No one but A knows the value of k, so nobody can 

remove the mask kPB.  However, to decrypt the ciphertext, B 

can multiply the first point in the pair by B’s secret key KB 

and subtract the result from the second point, which gives 

 
Pm + kPB - KB(kG) = Pm + k(KBG) - KB(kG) =  Pm,  since  PB = KBG. 

 

3.1 Encryption and Decryption with 3BC Algorithm 

With 3BC algorithm, the procedure of data encryption is 

divided into three parts, inputting plaintext into data block, 

byte-exchange between blocks, and bit-wise XOR operations 

between data and session key. 

 

3.1.2 Session Key Generation  

As we know that the value which is obtained by multiplying 

one's private key by the other's public key is the same as what 

is computed by multiplying one's public key to the other's 

private key. The feature of EC is known to be almost 

impossible to estimate a private and a public key. The 

proposed key generation combines EC and HEC with 3BC 

algorithm to generate session keys and cipher text. The 

encryption and decryption processes are shown in Figure 4. 

First, an x of shared secret key (x, y) from ECC is inputted as 

a private key x of HEC, and then xD (where, xD means x 

times D) is computed, which D is an initial point of HECC. 

The result of xD generates a session key for 3BC [5].  With 

this advantage and the homogeneity of the result of operations, 

the proposed 3BC algorithm uses a 64-bit session key to 

perform the encryption and decryption.    Given the sender’s 

private key Ks and the receiver’s public key Pr, we multiply 

Pr by Ks to obtain a point KsPr = (X, Y) on EC, where X= X1 

X2,…Xm and Y= Y1 Y2,…Yn. Then we form a key N by 

concatenating X and Y (i.e. N = X1 X2, Xm Y1 Y2,…Yn), and 

generate the session keys  as follows: 

i) If the length (number of digits) of X or Y exceed four, 

then the extra digits on the left are truncated. And if the length 

of X or Y less than four, then they are padded with 0’s on the 

right.  This creates a number N’ = X1’ X2’ X3’ X4’ Y1’ Y2’ Y3’ 

Y4’. Then a new number N’’ is generated by taking the 

modulus of each digit in N’ with 8. 

ii) The first session key sk1 is computed by taking bit-wise 

OR operation on N” with the reverse string of N”. 

iii) The second session key sk2 is generated by taking a 

circular right shift of sk1 by one bit. And repeat this operation 

to generate all the subsequent session keys needed until the 

encryption is completed. For more details on the use of public 

key and session key for encryption and decryption process, see 

[5]. 

 

3.2.2 Block Data Input  

 

The block size is defined as 64 bytes. A block consists of 56 

bytes for input data, 4 byte for the data block number, and 4 

byte for the byte-exchange block number (see Figure 2). 

During the encryption, input data stream are blocked by 56 

bytes. If the entire input data is less than 56 bytes, the 

remaining data area in the block is padded with each byte by a 

random character. Also, in the case where the total number of 

data blocks filled is odd, then additional block(s) will be added 

to make it even, and each of those will be filled with each byte 

by a random character as well. Also, a data block number in 

sequence is assigned and followed by a byte-exchange block 

number, which is either 1 or 2.  

 

Figure 2.  Structure of block 

 

3.2.3 Byte-Exchanges between Blocks 

After filling the data into the blocks, we begin the 

encryption by staring with the first data block and select a 

block, which has the same byte-exchange block number for 

the byte exchange.  In order to determine which byte in a 

block should be exchanged, we compute its row-column 

position as follows: 

 

For the two blocks whose block exchange number, n = 1, 

we compute the following: 

 

 byte-exchange row=(Ni*n) mod 8 (i=1,2 …,8) 

 byte-exchange col=((Ni*n)+3) mod 8 (i=1,2 …,8),  

 

where Ni is a digit in N”.  These generate 8 byte-exchange 

postions.  Then for n = 1, we only select the non-repeating 

byte position (row, col) for the byte-exchange between two 

blocks whose block exchange numbers are equal to 1.  

aera

ataD

Data block number Byte-exchange block no.



 

Similarly, we are repeating the procedure for n = 2.  The 

following examples illustrates the process of byte exchange 

operation. 

            x     

    x            

             x   

      x          

                

x                

         x       

  x              

 

 (a)    n = 1                                (b)   n = 2 

             

Figure 3. Exchange bytes at (row, col) for a selected pair of 

blocks 

 
Example: Given the values of a sender's public key 21135 and 

a receiver's private key 790, we compute the position of row 

and col for byte-exchange as follows: 

 

For n = 1, It follows from 3.2.1 that N″= 11357900  (after 

truncation, padding and concatenation), and  

row = ((1,1,3,5,7,9,0,0)*1) mod 8 = (1,1,3,5,7,1,0,0) and 

col = (((1,1,3,5,7,9,0,0)*1+3) mod 8)  = (4,4,6,0,2,4,3,3) 

This results 8 byte-exchange positions, (1,4), (1,4), (3,6), 

(5,0), (7,2), (1,4), (0,3) and (0,3).  However, counting only 

once for repeating pairs, the four bytes at (1,4)  (3,6), (5,0), 

and (7,2) will be selected for byte-exchange between two 

blocks (see Figure 3 (a)).  

For  n = 2, we have 

row = ((1,1,3,5,7,1,0,0)*2) mod 8 = (2,2,6,2,6,2,0,0) and 

col = (((1,1,3,5,7,1,0,0)*2+3) mod 8 = (5,5,1,5,1,5,3,3), 

which results 8 byte-exchange positions, (2,5), (2,5), (6,1), 

(2,5), (6,1), (2,5), (0,3) and (0,3).  Similarly, only three byte 

positions at (2,5),  (6,1), and (0,3)  are used for byte-

exchanges between two blocks as shown in Figure 3 (b). 

 

3.2.4 Bit-wise XOR between Data and Session Keys  

After the byte-exchange is done, the encryption proceeds 

with a bit-wise XOR operation on the first 8 byte data with the 

session sk1 and repeats the operation on every 8 bytes of the 

remaining data with the subsequent session keys until the data 

block is finished (see Figure 4). 

Figure 4. The bit-wise XOR on rows with session keys 

 

Note that the process of byte-exchange hides the meaning of 

56 byte data and the exchange of the data block number hides 

the order of data block, which needs to be assembled later on.  

In addition, the bit-wise XOR operation transforms a character 

into a meaningless one, which adds another level of 

complexity to deter the network hackers.  Figure 4 shows an 

encryption procedure using session keys as described in 3.2.1 

deriving from a private key and a public key [11, 12]. 

 

IV. COMPLEXITY OF ALGORITHM 

 

The addition operation in ECC is the counterpart of modular 

multiplication in RSA, and multiple additions are the 

counterpart of modular exponentiation. Especially, with the 

use of hyperelliptic curve over )(
2mFE , to compute a public 

key and the order of base point, it requires much more 

intensive computations [5]. Therefore, from computational 

aspect, we like to offer few suggestions, which could speed up 

the process.  

 

1)  Multiple additions: 

 Given a point P ε )(
2mFE , to compute a public key kP for 

an integer k requires (k – 1) point-additions and each point-

addition needs a number of integer additions, subtractions ,  

multiplications and divisions based on modular arithmetic as 

described in section 2. To reduce the computation time, we 

can compute the point Q = (k/2)P. Then kP can be readily 

obtained from 2Q or 2Q+P respectively depending on k is 

even or odd, which will cut the time in half.  For a large k, this 

is a great time saving. 

 

2)  Modular arithmetic: 

 As seen from the section 2, to obtain the point (x, y) of the 

sum of two point P and Q on the elliptic curve, we repeatedly 

involve using modular arithmetic with respect to the prime 

number p.  One can shorten the computation if more efficient 

techniques dealing with modular arithmetic is used by either 

an improved algorithm or custom computing machine, which 

is the purpose of this research.  

  

V. IMPLEMENTATIONS 

 

To generate a public key, the most time consuming process 

is to find an initial point P on the given elliptic curve and to 

compute kP for an integer k < p for a large prime number p.  

The approach we investigate in this paper is to create a 64bit 

ALU with its own custom instructions added to an Altera 

EP1C12 NIOS II embedded processor. Custom instructions 

are designed to be small, re-arrangeable portions of a C 

implementation of key generation. This will allow sections of 

the algorithm to be in C and other sections to be expressed as 

custom instructions. These sections can be easily reordered 

and re-factored by recompiling the algorithm and uploading 

the overlay to the FPGA via TCP/IP in order to handle the 

distribution of the algorithms over the network. See Figure 5. 

 

11110100 0xor

xorSession keys

01111010 xor

00111101 xor

10011110 xor

01001111 xor

10100111 xor

11010011 xor

11101001 xor

Rows in a block

1

2

3

4

5

6

7



 

NODE[0..n]

FPGA

NIOS II RAM

Ethernet (TCP/IP)

NODE NODE

Master

 
Figure 5 – System Diagram 

 

5. 1  Hardware Design 

The design of this approach consists of four components: A 

PC Master Controller, TCP/IP interconnect, 

FGPA logic units that each contains a NIOS II processor 

and custom ALU, and the creation and selection of the custom 

instructions and overlays. 

 

5.2 PC Master Controller 

A PC Master Controller will provide benefits over existing 

designs. It is capable of systematically assigning algorithms to 

logic units based on the specific set of custom instructions 

included in the ALU. Our design will implement the most 

efficient way to delegate operations and also take advantage of 

the parallelism that can be obtained by using a FPGA [6, 7, 8]. 

 

 
Figure 6. The basic design for card with FPGA 

 

5.3 TCP/IP Interconnect 

The PC Master Controller will communicate through a 

TCP/IP interface with one or more FGPAs in a cluster.  

Each FPGA will execute the algorithm, using the custom 

instructions. See Figure 7. 

 
Figure 7. The layout of the FPGA 

 

 

5.4 Custom Instructions 

The Altera EP1C12 NIOS II embedded processor is a 32bit 

system. By adding a customized 64bit ALU and associated 

64bit registers [11, 12], we can have custom instructions to 

handle algorithms specific to public key via EC, which 

include: XOR, Addition, Multiplication, Division, Right/Left 

Shift, and others. These instructions are given 32bit UUIDs as 

their opcode, allowing unique naming even when the full set is 

not within a single ALU. We are experimenting with various 

decompositions of Expansion and Permutation in order to 

create sub-algorithms the custom instructions reproduced in 

hardware.  See Figure 8. 

 

 
Figure 8.  Nios II processor operation from Altera’s Nios 

II Custom Instruction User Guide 

 

VI. ANTICIPATED RESULTS 

 

Based upon the above approach we are investigating the 

different decomposition of the subalgorithms used.. By using 

our approach on the encryption/decryption algorithm we 

expect to be able to process on average one key per clock 

cycle. This appears reasonable as the custom instructions 

allow our design to use several FPGAs to process multiple key 

ranges simultaneously.  We are interested in locating the 

balance between the high implementation time with the low 

run time of the pure hardware approach, and the low 

implementation time with high run time of the pure software 

approach. 

 

For instance, starting with encryption or decryption 

algorithm in C that has a nonexistent design time, its average 

run time is a constant. When the algorithm is translated into 

well optimized hardware, the design time is very high and the 

run time is very low.  With our approach the design time and 

run times are between the pure hardware and pure software 

methods. When the number of data sets to run is in the bolded 

range on Figure 9, our method should be preferred. 
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  Figure 13 -  Area of Interest 

 

7.  Conclusion 

Our approach has the benefit of some of the speed  

 

 

 

 

          Figure 9  Area of interest 

 

VII.  CONCLUSION 

 

Our approach has the benefit of some of the speed of ASIC, 

while maintaining some of the flexibility of C. The added use 

of storing and transferring the algorithms as an overlay allows 

the organizational aspects of the algorithm to be re-factored 

and delivered without the need of rebuilding the ASIC image 

and reconfiguring the FPGA [3, 9] Using a TCP/IP 

interconnect network to send both the overlay and the problem 

set allows for an efficient and easily scalable infrastructure. 

The proposed 3BC, which uses byte-exchange and the bit 

operation increases data encryption speed. Even though cipher 

text is intercepted during transmission over the network. 

Because during the encryption process, the 3BC algorithm 

performs byte exchange between blocks, and then the plaintext 

is encoded through bit-wise XOR operation, it rarely has a 

possibility for cipher text to be decoded and has no problem to 

preserve a private key.  
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