

Abstract — Coupled with software agent technology, RFID

can transform everyday objects into smart objects. Currently, in

most applications, agent definitions are not encoded directly on

the tags due to tag memory limitations, and RFID technology is

used purely for identification. Such approaches cannot provide

the benefits of flexibility and modularization supplied by smart

object systems. In this paper, we present a system called

A-FRED for effectively encoding smart object data and agent

definitions onto RFID tags. An XML-based memory-efficient

encoding method is implemented and a behavior-based encoding

scheme is adopted. The system provides an alternative

framework for representing smart objects on passive RFID tags

in general, and on memory limited low-cost UHF tags in

particular.

Index Terms — RFID, Software Agents, Smart Objects

I. INTRODUCTION

t is envisioned that in the future everyday objects ranging

from consumer electronic products to company assets will

be tracked and processed automatically using RFID tags.

Under notions such as the Internet of Things (IoT), tagged

objects can be automatically represented, tracked, and

queried over a network, particularly since the proposal of the

EPCglobal architecture standard [1]. Since then, numerous

RFID-based applications have appeared, many of which were

made possible by the widespread availability of low-cost

UHF tags,
1
 despite their limited on-tag memory.

A natural approach to dealing with the large quantity of

RFID data is to combine RFID with software agent

technology [2]. Basically, software agent systems are used to

monitor tag-reading events generated from RFID readers, and

appropriate actions are taken accordingly [3-5]. For instance,

1 In this paper, the term low-cost UHF tags refers to EPCglobal Class 1

Generation 2 tags with no more than 120 bits of available memory space.

an agent may trigger some actions in the local environment,

establish a connection with a remote server [6], or

communicate with other agents in the network to accomplish a

task [7]. Many innovative applications have been developed.

For example, in warehouses, stock volumes can be monitored

automatically and exceptional conditions such as expired

products or low stock volumes can be handled without delay

[8]. In a library, books can be checked out automatically [9].

So far, many of these agent-based RFID systems utilize a

static (non-mobile) system agent approach. That is, the

processing agents and RFID modules of these systems are

loosely coupled. The agents are not represented in the RFID

tags and they function as an autonomous set of programs for

tag processing, perhaps communicating using some

standardized software agent languages and protocols. In such

systems, one can theoretically replace the RFID components

with other identification methods (e.g., barcodes, wireless

location estimation, or even manual inputs), and the

agent-based modules would require only small changes in

basic design.

However, there is also a drawback to such static agent

systems. As mentioned, the RFID technology in these

approaches functions more or less as automated barcodes

supported by elegant agent-based frameworks for

data-processing. These frameworks, although promising in

their own right, do not fully utilize the combined potential of

RFID and software agent technology. For example, there is

little intelligence in the tag level, and tags of all types are

processed by the same set of static agents, making it hard to

apply the modular design concepts often emphasized in agent

systems.

Such potential is explored by smart object applications

[10][11]. Smart objects are the virtual representations of

individual everyday objects that are capable of sensing the

environment, making on-site autonomous decisions, and

communicating with humans or other system components. A

smart RFID object consists of two components, namely,

object processing logics and object data. The former is

self-explanatory. The object data contain a unique identifier

(for example, but not limited to, an EPC code), other

object-related data such as the objects’ current processing

states, current and past sensor readings, and other static object

data required during processing.

An RFID-based smart object requires a substantial amount

of memory space to store object logics and data. This can be

problematic for applications that depend on the more

economical low-cost UHF tags with limited memory

(typically 96 bits for the lower-end tags). Thus, we need some

flexible and efficient ways to encode the required agent

definitions and corresponding smart object data onto RFID

tags. Recently, two possible approaches were identified in

[12]. In the first approach, called identification-centric RFID

systems (IRS), only the identifier of an object is stored on a

tag, whereas the remaining object data and processing logics

A Multi-Agent-based RFID Framework for

Smart-object Applications

6++++++++++++++6

36 Behavioral-Centric Multi-Agent Framework

for Support of Smart-object Applications

I

Chi-Kong Chan, Harry K. H. Chow, Winson S. H. Siu, Hung Lam Ng, Terry H. S. Chu, and Henry C. B. Chan

Part of this work is related to the project “Enhancing the

Competitiveness of the Hong Kong Air Freight Forwarding Industry Using

RFID and Software Agent Technologies,” which is funded by the

Innovation and Technology Fund via the Hong Kong R&D Centre for

Logistics and Supply Chain Management Enabling Technologies. Any

opinions, findings, conclusions, or recommendations expressed in this

material/event (or by members of the project team) do not reflect the views

of the Government of the Hong Kong Special Administrative Region, the

Innovation and Technology Commission, or the Panel of Assessors for the

Innovation and Technology Support Programme of the Innovation and

Technology Fund.

Chi-Kong Chan, Winson S. H. Siu, Terry H. S. Chu, and Henry C. B.

Chan are with the Department of Computing, The Hong Kong Polytechnic

University, Hong Kong (e-mail: {csckchan, csshsiu, cshschu,

cshchan}@comp.polyu.edu.hk).

Harry K. H. Chow was with the Department of Computing, The Hong

Kong Polytechnic University, Hong Kong. He is currently with the Faculty

of Management and Administration, Macau University of Science and

Technology, Macao (e-mail: khchow@must.edu.mo).

Hung Lam Ng is with the Department of Computing, The Hong

Kong Polytechnic University, Hong Kong (e-mail: 09658465g@connect.

polyu.hk).

mailto:%20csckchan,%20csshsiu,%20cshschu,%20cshchan%7D@comp.polyu.edu.hk
mailto:%20csckchan,%20csshsiu,%20cshschu,%20cshchan%7D@comp.polyu.edu.hk
mailto:khchow@must.edu.mo

have to be retrieved from databases over a network. This

approach has the advantage of simplicity and compatibility

with the EPCglobal standard. However, the network-based

code and data storage leads to delays and limits its application

to only those locations with network access. The second

approach is called code-centric RFID systems (CRS). In this

approach, source codes for defining agent-processing logics

(i.e., agent actions) are stored on the tag using a compact

coding scheme. However, as we shall see, agents encoded

using this scheme can still easily exceed the severe memory

limitations of most low-cost applications based on UHF tags.

 Partially inspired by these previous works, we propose in

this a paper a behavior-based encoding schema for smart

objects on RFID tags. Instead of storing the entire (compact)

code on a tag, we specify the desired behaviors that define an

agent. To this end, we developed an Agent-enabled Flexible

RFID Encoding and Decoding (A-FRED) system based on a

novel RFID data compaction method for the efficient storage

of both object logics and data. Our objective is to demonstrate

a flexible and efficient approach to autonomous processing

using smart objects. The efficiency of our system is

demonstrated by experiments. An application example in

logistics and a customer-oriented RFID application using

low-cost UHF tags are discussed in this paper.

 The remaining sections of this paper are organized as

follows. Section II reviews some related works (including the

aforementioned code-centric approach). Section III describes

the A-FRED system. Section IV provides the results of some

experiments to evaluate the efficiency of our system. Section

V discusses two demonstration case study problems. Section

VI compares the applicability of our system and that of some

related approaches in different scenarios. Section VII gives

the conclusion.

II. RELATED WORKS

A. Static RFID Agent Systems

A number of approaches to combining intelligent RFID

systems with software agent technology have been proposed.

Most of these applications employ a static agent approach,

where software agents are employed in some kind of static

environment to react to some RFID tag reading events. For

instance, in manufacturing, an agent-based manufacturing

control and coordination system (AMCC) for a manufacturing

company in Taiwan is reported in [14] and, similarly, a

manufacturing control system using RFID technology and

multi-agent technology is documented in [15] for controlling

material-handling tasks in packing and assembling. Examples

can also be found in wireless sensor applications, for instance,

for monitoring perishable items during transportation [16].

For cargo tracking in warehouses, an application example is

reported in [17]. Similar applications based on static agents

are also reported in the areas of healthcare [7], supply chain

management [8], and library management [9], to name a few.

B. Smart Object Agent Systems

There have been several recent approaches investigating

RFID-based smart objects. Unlike the static RFID agent

approaches mentioned above, each RFID tagged item in a

smart object based system is represented by its own mobile

agent. Two major approaches can be identified, which Chen

et al. called identification-centric RFID Systems (IRS) and

code-centric RFID systems (CRS), respectively [12]. In the

identification-centric approach, smart object logics or

definitions are not stored on the RFID tags. Instead, each time

a tag is identified by the RFID system, the relevant agent

definition is retrieved from a database over the network and

the corresponding agent is then created accordingly.

Examples of this approach include the work of [11], who

studied the use of smart objects for supply chain management,

and the simulated IRS system implemented in [12]. However,

the lack of local on-tag storage for smart object logics and

data in this approach makes it inconsistent with smart object

ideology, which emphasizes distributed intelligence and

mobility, and modularity [13].

To this end, a code-centric approach was proposed and

studied in [12]. In this work, compact action codes were used

to represent smart object processing logics on RFID tags. To

make their code as compact as possible, identifiers, variables,

and operators of one to three characters in length were used

throughout the language for specifying agent actions. For

instance, in their implemented example, the command l$n

instructs an agent to switch on an LED light, whereas the

command #3 instructs the agent to migrate to another

processing node. It was demonstrated in [12] by simulation

experiments that the CRS approach is more efficient than the

IRS approach in terms of system processing time. However,

there is a drawback to the code-centric approach. The issue

here is that even with its compact coding scheme, the memory

limit on many low-cost UHF tags could still easily be

exceeded. For example, the 31 character-long action code

used in the abovementioned experiment would require over

150 bits to store, exceeding the capacity of many low-end

UHF tags. Moreover, the expressive power of this relatively

simple language also limits its applicability in some

applications.

In the next few sections, we shall present an alternative

behavior-based encoding approach called A-FRED. Partially

inspired by [12], A-FRED utilizes a compact encoding

scheme for storing smart object data and the required

behavior on an RFID tag, but without the necessity of storing

the entire processing code.

III. SYSTEM ARCHITECTURE

A. System Overview

We developed a system called the Agent-based Flexible RFID

Encoder and Decoder (A-FRED), which we first describe in the

following way (Fig. 1). The RFID-related functionality of the

system is provided by an agent called the FRED-Agent, which

accesses the services of an Encoder and Decoder module.

This module provides generic RFID tag reading and writing

functions according to user-specified tag schemas, as well as

data compaction functionality for saving tag memory space.

The FRED-Agent passes the decoded tag data to a System

Agent, which extracts the smart object data and behavior

codes, and uses this information to create worker agents in the

designated platforms. The worker agents are the agents that

execute the actions specified by the behavior code. For

instance, a worker agent may access some backend

applications or databases, or coordinate with other worker

agents to accomplish certain tasks.

B. Tag Encoding and FRED-Agent

In order to effectively utilize the limited memory on RFID

tags (and on low-cost UHF tags in particular), all tag data in

our system are encoded, decoded, and compacted using a tag

encoding and compaction scheme, as discussed below.

The content of each type of tag processed by our system is

defined by a corresponding XML-based tag schema file that is

accessible to the Encoder and Decoder module and the

FRED-Agent. An example of a tag-schema file is given in Fig.

2, which illustrates the encoding schema of RFID tags in an

air-cargo tracking application. Each schema is comprised of

two parts: the Agent Rule List (ARL) and the Object Data

Definition (ODD). Note that the schema file is not stored on

the tags. Instead, it is located in an A-FRED Agent Platform

where the Encoder and Decoder and the FRED-Agent are also

located.

The ARL part of the tag-schema file contains information

that deals with the definition of the smart object’s software

agents. This includes the host platform, where the worker

agents are to be created, and a set of Agent Rules. Note that,

unlike other fields defined in the tag-schema, the name of the

host platform is directly specified in the tag-schema instead of

being stored on the tags. The Agent Rules part of the ARL

specifies the actual behaviors of the agent to be created. In

order to achieve maximal savings of memory, each RFID tag

only stores a bitmap to the set of all possible agent behaviors.

Each agent behavior consists of one or more agent actions and

is defined in a separate database that resides on the System

Agent platform.

The ODD part of the schema defines the various fields of

the object data part of the tag data. Each field definition

contains the data type and the length of a field and, optionally,

a valid value range. By requiring the user to specify the length

and/or value range, the system is able to optimize on memory

space by using just the required number of bits for storing

each field according to the provided specification. Five types

of data are currently supported: alphabetic, alphanumeric,

integer, date, and choices. The first four are self-explanatory.

The last type allows the user to specify an enumerated list of

commonly used values that are defined either explicitly on the

tag-schema file, or at an off-file location. The saving of tag

memory space is achieved by storing an index to an element

on the enumerated list. Similarly, data of the other four types

are also stored as enumerated fields of all possible values of

data in the valid data range.

C. Data Tag Compaction

During the reading and writing of tags, corresponding

tag-schemas are used to encode the data into a compacted

enumerated format so that the memory space usage of each

field is minimized according to its declared type and data

range. Additional compaction is then achieved by filling up

unused value slots by further combining all encoded fields

into one enumerated field.

D. System Agent

The decoded agent rules and object data are sent to a System

Agent via an inform-tag-read message. The job of the System

Agent is to create the Worker Agents that perform the tasks of

the smart objects. In our implementation, agent actions are

grouped into a number of agent behaviors. When an

inform-tag-read message is received, the System Agent maps

the decoded Agent Rules against the set of agent behaviors

defined in an Agent Action Behavior Database. The required

worker agents are then created in the specified agent platform

using the retrieved agent behavior and the decoded object

data. Depending on the system requirement, the System Agent

and the Agent Action Behavior Database can reside on a

different platform or on the same platform as the

FRED-Agent.

 Fig. 1. A-FRED System Architecture

Fig. 2. Example of the A-FRED schema

Fig. 3. Average processing time (per tag)

Fig. 4. Accumulated processing time (per batch)

E. Worker Agent

A Worker Agent is the agent for handling a single task on

behalf of a single smart object. The Worker Agents in

A-FRED are mobile agents, which means that it is possible for

them to migrate to different platforms at run time. For

example, a Worker Agent with an “Update Database

Behavior” can be created at a “Main Agent Platform,” and

then migrate to a “Database Agent Platform” to perform the

required updating actions, and finally report back to the

“Main Agent Platform” to complete the remaining tasks.

Note, however, that the Worker Agents for the same type of

tags will initially be created on the same platform as that

defined on the corresponding tag-schema file, which is not

necessarily the System Agent Platform. All agent platforms in

our system are implemented using the Java Agent

Development Framework (JADE). All Worker Agents for a

given smart object are created simultaneously so that any

coordination (or sub-ordination) amongst the Worker Agents

will have to be defined explicitly in the agent behaviors.

IV. EXPERIMENT

Before we proceed to analyze the advantages of the proposed

approach, we first evaluated the running time efficiency of our

system in a series of experiments. In these experiments, a

number of EPCglobal Class 1 Gen 2 UHF RFID tags with 240

bits of memory were encoded and processed using A-FRED,

and the running time was recorded. The tags were arranged

into batches of various sizes, and in each test case tags in the

same batch were processed simultaneously by the system.

There were eleven test cases, corresponding to the batch sizes

of 1, 5, 10, 15, … , and 50 tags, respectively. One agent

behavior was defined, which contained a single action for

logging down the current system time when the worker agent

was created. Thus, for each batch b and each tag i b , we

recorded the RFID tag reading time 1

it , which was logged by

the Encoding and Decoding module when a tag was first read,

and the worker agent registration time, 2

it , which was

recorded by the (single) Worker Agent created for a tag. Each

test case was repeated 10 times, and for each test case we

computed the average tag processing time 2 1()i i

i b

t t t b


 

and average batch processing time
2 1max() min()i i

b
i bi b

t t t


  .

All system components (the tag schema, all agents, and all

databases) resided in a high-performance computer with 6Gs

of memory. For the RFID equipment, a fixed UHF RFID

reader and a single circularly polarized antenna were used.

The tags were placed at a distance of 1.5 meters from the

antenna. During the tests, the total processing time per tag and

per batch was recorded. For comparison, we also

implemented a static agent system and its average processing

time per RFID tag was also recorded.

The results are shown in Figs. 3 and 4. It can be seen that

the per tag processing time remained approximately constant

(at between 15 to 20 ms) for all of the batch sizes that we

tested. In comparison, the processing time in the static agent

system averaged 4.16 ms, and up to 15 ms in the worst case.

Thus, the A-FRED system requires a longer running time than

a static system, although this is anticipated. The overhead is

mainly due to the extra work involved in creating the Worker

Agents, a step that is not required in static systems. However,

the results that were obtained are still within the acceptable

range, as over 50 RFID tags were processed per second, a

figure that falls within the typical reading rate of most UHF

RFID readers in the majority of RFID applications.

V. EXAMPLE APPLICATIONS

A-FRED can be employed to support many advanced smart

object applications. For the purpose of illustration and to

facilitate further discussion, we implemented two case study

applications, described as follows.

A. A-FRED-Logistics

The first demonstration application that we implemented is a

business-oriented application called A-FRED-Logistics.

Currently, many consumer products are transported as air

freight to ensure timely delivery. A-FRED-Logistics is a

system for supporting automated cargo tracking and

processing at various stages of the cargo supply chain. During

the process, the cargo items are transported in cartons

arranged into pallets. Each carton is identified by an RFID

 Fig. 5. RFID-enabled HAWB labels

enabled waybill label (Fig. 5), which contains an identity

number for the carton (called the HAWB number), as well as

other information required during the transportation process,

such as the item’s destination, place of origin, and shipment

date. Two types of tasks are performed at each checkpoint: i)

cargo verification, which means verification that the cartons

are being processed at the correct location, and ii) status

updates, which refers to updates of the carton’s status on

system servers. However, some types of cargo items require

specific status update strategies. For example, some types of

cartons require the system to connect to the backend system of

both the logistics company and the shipping company for

status updates, while this step of updating can be skipped

altogether for some other types of cargo.

 Our implementation of A-FRED-Logistics follows the

architecture as specified in Fig. 1, and the tag schema is

shown in Fig. 6. Three action behaviors are defined for the

actions involved in verifying the location of a carton, and for

the two cargo status updating strategies, respectively. For

each behavior specified on the tag, a corresponding worker is

created on the System Agent Platform after the tag is read.

Overall, the outcome of the system was satisfactory. The

object data and agent behavior required only 61 bits to encode,

which fit well into the low-cost UHF RFID tags and larger

tags alike.

B. An RFID-Mobile-Phone Application for shop customers

Another example of an application that we implemented is

called the Shopper Information Agent System (SIAS). This

system is a customer-oriented application that allows the user

to check in at various checkpoints located in retail stores.

Low-cost UHF RFID tags are issued to the customers, with

each tag storing the following information: a customer’s ID,

gender, the customer’s surname, and an expiry date. Two

behaviors are defined, namely a check-in behavior, which

records the user’s presence at a checkpoint, and a

mobile-message behavior, which retrieves and sends a

user-specific welcome message to a registered smart phone

application to facilitate the user’s shopping experience.

The architecture and tag-schema file of the system are

illustrated in Figs. 7 and 8, respectively. Note that in this case,

unlike in the previous example, more than one FRED-Agent

(representing multiple store locations) can be connected to an

external System Agent. Two types of Worker Agents will be

generated: the Check-in-Worker-Agents and the

Mobile-Message-Worker-Agents. The Mobile-Message-

Worker-Agents in turn communicate with user-agents located

on the users’ mobile phone platform, and user-specific

messages are delivered accordingly. The mobile phone based

user agents are implemented using JADE-LEAP.

The overall performance of SIAS was also satisfactory.

The smart objects behavior and object data required only 86

bits to encode, which again fit well into low-cost UHF RFID

tags.

VI. DISCUSSION

Earlier in this paper, we discussed three types of RFID-based

software agent systems: 1) static RFID agent systems, which

do not support smart objects, 2) identification-centric systems,

where no smart object actions or processing logics are

specified on the tag, and 3) code-centric systems, which store

a smart object’s action code on a tag using a compact

encoding scheme. In this paper, we proposed a fourth

approach, the behavior-based encoding scheme, which is

utilized by our current system, A-FRED. Kiviat diagrams

illustrating various properties of the four approaches are

presented in Fig. 9. It should be noted that all four

approaches have their respective advantages and

Fig. 7. System Overview of the Shopper Information Agent System

Fig. 8. Tag schema for SIAS

Fig. 6. Tag schema for A-FRED-Logistics

disadvantages. For instance, for supporting system

modularity, which is an important concept in software agent

design, the code-centric approach and A-FRED are superior

due to their ability to specify agent behaviors on individual

RFID tag levels. With regard to running time efficiency, the

code-centric approach and the static agents outperform the

identification-centric approach and A-FRED, because the

latter two need to retrieve agent code definitions from the

server during the creation of agents. By contrast, the relatively

simple action encoding language of the code-centric approach

has limited its applicability to applications with relatively

simple tasks, and may not be easily applied in low-cost UHF

tag based applications due to the larger memory size that it

requires. A-FRED, on the other hand, does not have these

limitations, which makes it a good candidate for

implementing smart objects on low-cost UHF tags in general.

VII. CONCLUSION

The concept of smart objects is leading to many innovative

applications, with RFID and software agent technologies

being two of the main components. In this paper, we

presented a flexible RFID data encoding and decoding

mechanism called A-FRED. By using an efficient data

representation scheme and a behavior-based encoding scheme,

our system can be used to encode not only object information

but also the required agent actions onto RFID tags. The

approach that we have presented can complement existing

approaches to RFID-based smart object systems, particularly

for applications that are dependent on low-cost UHF tags.

REFERENCES

[1] EPCglobal Inc., “EPC radio frequency identity protocols Class-1

Generation-2 UHF RFID protocol for communications at 860 MHz –

960 MHz Version 1.2.0”, 2007.

[2] The Foundation for Intelligent Physical Agents(FIPA).

http://www.fipa.org

[3] H. K. H. Chow, K. L. Choy, and W. B. Lee, “A dynamic logistics

process knowledge-based system - An RFID multi-agent approach”,

Knowledge-Based Systems, vol. 20, pp. 357-372, 2007.

[4] A. J. C. Trappey, T. Lu, and L. Fu, “Development of an intelligent

agent system for collaborative mold production with RFID

technology”, Robotics and Computer-Integrated Manufacturing, vol.

25, pp. 42-56, 2009.

[5] M. Tu, Jia-Hong Lin, Ruey-Shun Chen, Kai-Ying Chen, and

Jung-Sing Jwo, “Agent-Based control framework for mass

Customization Manufacturing With UHF RFID Technology”, IEEE

Systems Journal, vol. 3, no. 3, pp. 343-359, Sept 2009.

[6] D. G. Yun, J. M. Lee, M. J. Yu, S. G. Choi, and C. H. Seo,

“Agent-based user mobility support mechanism in RFID networking

environment”, IEEE Transactions on Consumer Electronics, pp.

800-804, 2009.
[7] F. Gîză, C. Turcu and C. Turcu, “RFID technology and multi-agent

approaches in healthcare”, Deploying RFID - Challenges, Solutions,

and Open Issues”, Cristina Turcu (Ed.), ISBN: 978-953-307-380-4,

InTech, pp. 127-140, 2011.

 [8] S. Wang, S. Liu and W. Wang, “The simulated impact of

RFID-enabled supply chain on pull-based inventory replenishment in

TFT-LCD industry”, International Journal of Production Economics,

vol. 112, pp. 570–586, 2007.

[9] T. Minami, “Library services as multi agent system”, Agent and

Multi-Agent Systems: Technologies and Applications, Lecture Notes

in Computer Science, vol. 4953, pp. 222-231, 2008.

[10] G. Kortuem, F. Kawsar, V. Sundramoorthy, and D. Fitton, “Smart

objects as building blocks for the internet of things”, IEEE Internet

Computing, pp. 44-51, 2010.

[11] E. Bajic, “A service-based methodology for RFID-smart object

interactions in supply chain”, International Journal of Multimedia

and Ubiquitous Engineering, vol. 4, no. 3, 2009.

[12] M. Chen, S. Gonzalez-Valenzuela, Q. Zhang, and V. Leung,

“Software agent-based intelligence for code-centric RFID Systems”,

IEEE Intelligent Systems, vol. 99, 2010.

[13] The European technology platform on smart systems Integration

(EPoSS), Internet of Things in 2020: ROADMAP FOR THE FUTURE

(2008), Version 1.1, 2008.

http://ec.europa.eu/information_society/policy/rfid/documents/iotpra

gue2009.pdf

[14] R. S. Chen and M. Tu, “Development of an agent-based system for

manufacturing control and coordination with ontology and RFID

Technology”, Expert Systems with Applications, vol. 36, pp.

7581-7593, 2009.

[15] P. Vrba, F. Macurek and V. Marik, “Using Radio-frequency

identification in agent-based control systems for industrial

applications”, Engineering Applications of Artificial Intelligence,

vol. 21, pp. 331-342, 2008.

[16] R. Jedermann, C. Behrens, D. Westphal, and W. Lang, “Applying

autonomous sensor systems in logistics—combining sensor networks,

RFIDs and Software Agents”, Sensors and Actuators A, vol. 132, pp.

370-375, 2006.

[17] H. K. H. Chow, K. L. Choy, and W. B. Lee, “A dynamic logistics

process knowledge-based system – An RFID Multi-Agent Approach”,

Knowledge-Based Systems, vol. 20, no. 4, pp. 357-372, 2007.

 Fig. 9. Kiviat diagrams for the four types of RFID-based software agent systems

http://www.fipa.org/
http://www.springerlink.com/content/?Author=Toshiro+Minami
http://www.springerlink.com/content/978-3-540-78581-1/
http://www.springerlink.com/content/978-3-540-78581-1/
http://www.springerlink.com/content/0302-9743/
http://www.springerlink.com/content/0302-9743/

