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Abstract—Current techniques available for the 

characterization of membrane are destructive, including 
scanning electron microscopy, mercury intrusion porosimetry 
and size exclusion of particles. An alterative technique based on 
ultrasonic frequency domain reflectometry (UTDR) that allows 
easy, non-invasive and real-time analysis of membrane 
morphology would be of significant value to the membrane 
industry. This study presents the technical detection results 
using UTDR, which is capable of diagnosing membrane fouling 
on various operation conditions. The detection technique is the 
combination of the wavelet transforms (WT) and the decision 
tree (DT). WT is used to represent all the possible types of 
transients in generated vibration signals. It is used for feature 
extraction and their relative effectiveness in feature extraction 
is compared. DT has been used for feature selection as well as 
for classification. Experimental results show that the algorithms 
are indeed efficient and effective. 
 

Index Terms — Decision tree; Membrane fouling; 
Ultrafiltration; Wavelet analysis 
 

I. INTRODUCTION 
Membranes are used extensively for separation 

applications in industry. The energy efficient and modular 
nature of membranes has resulted in the replacement of 
several conventional separation processes in industry by 
more selective membrane. However, the most critical 
problem limiting further growth and wider applications of 
membrane-based liquid separations is fouling [1]. Fouling 
results from the deposition of retained particles, colloids, 
macromolecules, and/or salts on or in a membrane [2]. The 
increase in energy consumption and costs of membrane 
cleaning and replacement enlarge the adverse effects of 
fouling. Membrane fouling can occur on the membrane 
surfaces or within the pores of the membrane. The simplest 
approach for characterizing the membrane fouling is to 
measure clean water permeability’s of the system before 
filtration, after filtration and after chemical cleaning. This 
can asses the resistance and reversibility of the fouling and 
the effectiveness of chemical cleaning. The method is simple 
but has the disadvantage of giving no information on fouling 
structure or morphology. Therefore, in order to gain a greater 
understanding of membrane fouling in terms of their 
structure, morphology and the sequential events of their 

development, non-invasive techniques that enable the 
membrane fouling or the fouled membrane to be directly 
detected are strongly required. 
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In the past, optical methods have been applied to detection 
of structural heterogeneities of the deposit, but the lack of 
higher penetration depths and requirements of the specific 
system do potentially limit the application of optical 
techniques to membrane filtration [3]. Our previous work has 
shown that UTDR has the ability to provide rich information 
on membrane inside fouling structures as well as cake 
thickness [4]. While most attention has been given to 
improving ultrasound with integrated electronics for 
operators and engineers through the design of information 
signals [3], processing functionality is seldom considered in 
assessing the measured UTDR data and effectively 
identifying poor performance and faults. For example, Fig. 1 
shows the ultrasonic echo of the filtered membrane for 5 
typical operating conditions. The question is how to classify 
their operating conditions based on those ultrasonic signals 
only. 
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Fig. 1.  The ultrasonic echoes of five different conditions in the filtered 
membrane 
 

This paper addresses these issues using emerging data 
mining technology, including wavelet transforms (WT) and a 
decision tree (DT), to develop approaches to monitoring and 
diagnosis of the membrane filtration processes based on 
UTDR. WT is designed to address a particular frequency of 
interest. WT using differential signals has made it possible to 
observe the growth and change in density of the fouling layer 
[5,6]. The key idea is to apply DT induction algorithms to 
building the symbolic knowledge structure (IF-THEN rules) 
based on C4.5 [7] from WT data. This method summarizes 
UTDR data information into a compact form or a rule that 
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helps us evaluate the fouling status of the current operation. 
 

II. CHARACTERIZATION OF MEMBRANE MATERIALS USING 
UTDR 

In all the experiments, 90mm diameter Millipore MF 
membranes with 0.05 mμ   VMWP are used. The filtration 

apparatus used for all the experiments is a  cell. 
The cell was operated in a dead-end mode forcing to separate 
phospholipids from the canola oil. The permeate flux was 
obtained by measuring the time to collect a certain weight of 
fluid using the A&D electric balance (Tokyo, Japan). The 
pressure of 3  and the temperature of 30  were kept 
constant in the normal operation during the experiment. The 
transmembrane pressure was monitored and adjusted by flow 
control valves and the downstream gas vacuum pump (Tokyo, 
Japan). As the module accommodates standard 76mm 
membrane discs, there is a possibility of investigating fouled 
membranes with a wide range of membranes. The membrane 
along with the filtration cake was removed from the module 
at the end-time points of filtration for the ultrasonic imaging. 
Then, a new membrane was used for each experiment.  
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Fig. 2. Schematic representation of the ultrasonic measurement system 

 
The ultrasonic measurement system shown in Fig. 2 

consists of an ultrasonic transducer (NIH Ultrasonic 
Transducer Resource Center, USC), a high-voltage 
pulser/receiver (Model 5900PR, Panametrics, USA), a three 
dimensional motor stage, a motor controller (DMC-1842, 
Gaili motion control Inc, California, USA), and an 
analog-to-digital converter (PXI 5152, National Instruments, 
TX, USA). The three- dimensional motor stage comprises 
one piezo-ceramic motor (HR8, Nanomotion Ltd., Israel) and 
two servo motors (CM1-C-17L30A, Cool Muscle, Japan). 
The transducer is immersed in the commercial hydrogel 
directly casting on control or fouled membranes, and its 
relative distances, including length, width and depth to the 
membrane, can be precisely controlled by a motor. The 
pulser-receiver generates the required voltage signal that 
triggers the transducer to send an ultrasonic wave. The 
oscilloscope captures and displays the signal amplitude as a 
function of arrival time. Each set of ultrasonic signals 
generated consists of 800 data points. A computer (PC) is 
connected to the oscilloscope to store the data at the required 
intervals.  

The ultrasonic pulse-echo method uses a short pulse of 
ultrasound generated by a transducer. The ultrasonic echoes 

are reflected or scattered from various structures because of 
large interfaces between membrane and fouling or small 
inhomogeneities in the membrane/fouling objects. The pulse 
reflects from the opposite end and returns to generate a signal 
in the same transducer. Fig. 3 shows the ultrasonic echoes at a 
fixed position. 
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Fig. 3.  An ultrasonic echo of the filtered membrane at a fixed position 

 

When the transducer is fixed at a certain position, the echo 
signal set collected at the fixed point upon the observed zone 
can be expressed as 
 

 
'1 z Zu u u⎡ ⎤= ⎣ ⎦u L L   

(1)
 
where zu  refers to the amplitude of the ultrasonic signal at a 
reflection time of z . When the transducer moves zigzag as 
shown in Fig. 4, the echo signal set of the observed zone in 
the xy -plane can be expressed as  
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Fig. 4.  The transducer moving zigzag over the whole plane 
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x y x y x y x yu u u⎡ ⎤= ⎣ ⎦u L L   
(2)

1, ,x X= L ,  1, ,y Y= L  
 
After the reflective signal upon a membrane is collected, the 
experimental data can be constructed in the form of the 
three-dimensional array. A three-dimensional array of data 
matrix U  with X Y Z× ×  summarizes the whole testing 



 
 

 

membrane structure.  Therefore, at the fixed x , Y Z×  with 
 measured along the -axis direction at depth 
 intervals is the front view side shown in Fig. 5. 

Similar signals will be run at a number of intervals 

1,2, ,y = L Y
Z

y
1, 2, ,z = L

1, 2, ,x X= L  along the x -axis direction. 
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Fig. 5.  three-dimensional array of data matrix  summarizes the whole testing 

membrane structure. 

 

III. FALULT DIAGNOSIS OF MEMBRANE FILTRATION USING 
UTDR 

A. Wavelet Transform (WT) Analysis 
To enrich the frequency resolution from ultrasonic 

transient signals, a discrete wavelet packet transform (DWPT) 
is applied here [8]. The basic idea of DWPT is to decompose 
a time series as a weighted sum of shifted and scaled versions 
of the wavelets that are suited for capturing the local behavior 
of non-stationary series, such as sharp changes with different 
characteristics of frequency at the same time intervals. To do 
this, the family of discrete wavelets with different scales and 
time parameters is given by (2

, 0 0( ) m m
m n )0z a a t nbψ ψ− −= − , 

where ,m n  are integer. The wavelet coefficients are 
obtained by computing the correlation between the scaled 
and time shifted version of the wavelets and the analyzed part 
of the series from the ultrasonic signals. The coefficients in 
the linear combinations are computed by a factored or 
recursive algorithm. As a result, expansions in wavelet 
packet base have low computational complexity. The vector 
of coefficients at scale j  is represented by 
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where  and  are the orthonormal wavelet transform 
matrix for a low pass filter and a high pass filter respectively. 
They are gotten from a sequence of linear filtering operations. 

.  is the collections of the measured signals at 

equal space points. 

0H 1H

0,0 =w u u

,2j nw  and ,2 1j n+w  are the projections on 

the high-pass and the low-pass components respectively at 
scale . For notational simplicity, we drop the index j xy  of 
the signal set ( ,x yu ) here. 

To reduce the dimensionality of the feature vectors and 
provide good class separation, the energies of the wavelet 
coefficients at scale J  are used 
 

,n Js = w n  , 0,1, , 2 1Jn = −L   
(4)

 
which is obtained by calculating the root mean square value 
of the wavelet coefficients [13]. 

Thus, each echo signal at the fixed location ( , )x y  consists 
of all the wavelet energy features at different frequencies,  
 

0 1 2 1J

T
s s s

−
⎡ ⎤= ⎣ ⎦s L   

(5)
 

These energies are employed as elements of the feature 
vector. Eq.(5) is calculated only for the fixed location ( , )x y  
in the xy -plane. For the whole plane, the average of ( , )ns x y  
among all the locations is applied, 
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where  and Y  are the number of measured locations in the X

xy -plane. Thus, 0 1 2 1J

T
s s s

−
⎡ ⎤= ⎣ ⎦s L  can be regarded 

as a feature pattern that contains both spatial and frequency 
domain information. For notational simplicity, in the 
following discussion, the hat at the top of the notations s  
and s  is neglected. 
 

B. Classification of Operation States 
The effectiveness and feasibility of the proposed 
auto-clustering method are presented with one frequency 
which contains all the experimental data in all the operation 
conditions. Fig. 6(a) shows the exact number of clusters is 
not clear in the original intensity energy histogram. Fig. 6(b) 
is the Gaussian smoothing result of Fig. 6(a) at initial 

4.36σ = . In the figure, the circle points denote the center of 
each cluster. The spread parameters of smoothing are 
iteratively updated in Fig. 6(c), in which the input signal is 
smoothed at a larger spread parameter. Finally, all the 
operating conditions contain the divided eleven intervals. 
According to this auto-clustering algorithm, the cluster center 

 can be computed. The collection of the energy data ,n cc ,n is , 

1, 2, , 2 1Jn = −L , 1, 2,i I= L  is partitioned into these 
clusters. 
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Fig. 6. Gaussian smoothing extracts the proper number of clusters: (a) 
histogram of original wavelet energy; smoothed signals from (b) to (c) at 
σ = 4.36 and 6.08, respectively 
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Fig. 7.  Energy distributions at (a) the frequency scale 1n = , (b) the 
frequency scale 4n = , and (c)  the frequency scale 8n =  in all the 
operating conditions. Each distribution is divided into several intervals with 
different shaded colors. Each interval is labeled by an attribute. 
 

Because of the space limitation of the paper, Fig. 7 only 
shows the partition intervals of the energy distributions at  
frequency scale 1n = , 4n =  and  in the operating 
conditions from  to . 

8n =

1c 5c
 



 
 

 

C. Rule Extraction Using Decision Tree 
After the frequency energies are characterized and the 
operation states are identified, it is necessary to find out how 
to generate knowledge which correlates the frequency energy 
scales with operational states. To do this, the data structure 
for the above clustering of all the study classes in Fig. 7 is 
shown in Table 1. In Table 1, given a number of samples, 
each row is described by a set of attributes  

A classification scheme is designed for grouping the 
quantitative numbers (shown in Table 1(a)) into a number of 
classes (shown in Table 1(b)) so that instances within a class 
are similar in some respect, but they are distinct from other 
classes. The frequencies around the operation of a certain 
membrane filtration process may cover different frequency 
regions. DT can be built from given attribute sets. The tree 
can be converted into a set of IF-THEN rules. In contrast to 
the data-driven models (such as neural networks), one can 
understand the set of rules while numerical weights of neural 
networks cannot be easily deciphered.  
 
Table 1.  The data structure (a) with numerical values and (b) with the 
attributes of the membrane filtration for knowledge clustering. The rows 
represent observations from UTDR; the columns represent frequency scales. 

 

(a) 

Attribute 
Sample 1 2 ….. 8 Class 

ID 
1s  0.69 -0.38 ….. 1.48 1  
2s  -0.35 0.58 ….. 1.83 1  
M  M  M  ….. M  M  

1i−s  0.75 -0.38 ….. 1.50 1  
is  0.97 -1.46 ….. 39.58 2  
1i+s  1.43 -1.62 ….. 43.78 2  
M  M  M  ….. M  M  

1I −s  2.10 -2.05 ….. 3.09 5  

Is  4.28 -4.06 ….. 0.77 5  

(b) 

Attribute 
Sample 1 2 ….. 8 Class 

ID 
1s  1J  2F  ….. 8J  1c  

2s  1K  2B  ….. 8J  1c  
M  M  M  ….. M  M  

1i−s  1J  2F  ….. 8J  1c  

is  1J  2C  ….. 8F  2c  

1i+s  1A  2C  ….. 8F  2c  

M  M  M  ….. M  M  
1I −s  1B  2C  ….. 8G  5c  

Is  1F  2D  ….. 8I  5c  

 

IV. EXAMPLES 
In the present study, five different operating conditions 

shown in Table 2 was used, including 1 normal condition  

( 30 , , 

1c

Co 3bar 1 100g ml ), 5 abnormal conditions, namely 
high/low operating pressure ( ( ),  
( )), high/low inlet concentration 
( (

2c 3.5 ~ 4bar 3c
2 ~ 2.7bar

4c 1.3 ~ 1.5 100g ml ),  (5c 0.5 ~ 0.7 100g ml )), and the 
faults were created by changing the operating condition in 
order to keep the fault under control.  
 

Table 2.  Detail of the operation conditions under investigation 

Class ID Condition description 
1c  Normal operation 

2c  High operating pressure 

3c  Low operating pressure 

4c  High inlet concentration 

5c  Low inlet concentration 

 
The diagnostic task of the membrane filtration is actually a 

problem of pattern classification and recognition. The crucial 
step of this problem is feature extraction. In this study, the 
ultrasonic signals in the space domain are transformed into 
the multi-scale data in the space-frequency domain using 
DWPT to enrich information. Each set of signals is divided 
into eight different frequency scales. The corresponding 
energy distributions at each frequency scale for all the 
operating conditions are computed. In fact, it is impossible to 
do the analysis as the volume of the above information is 
overwhelming. The proposed automatic classification is 
applied. Fig. 7 shows the energy signals at each frequency are 
grouped into several regions.  

After the energy signals are characterized at each 
frequency and the operation condition is given, the next step 
is to find out the correlation between the frequency scales and 
the operation conditions. All the frequency scales of each 
data set in Fig. 7 constitute Table 1, in which each data set 
can be interpreted as an operation rule. DT developed for the 
case study is shown in Fig. 8 and it can be converted to 
production rules. 
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Fig. 8.  DT is first constructed after the attribute variables of the frequency 
( 8n = ) divided. 

 
Due to the space limitation of the paper, only results of ten 



 
 

 

samples for each condition are listed here. Case  to  for 
each filtration case in Table 3 represent the diagnosis 
outcome of ten samples. It is clear that classification accuracy 
of all the test samples is mostly correct.  

1c 5c

 
Table 3. Results of the testing samples 

Predicted Actual 
1c  2c

 
3c  4c  5c

 
Overall 

detection 
rate 

1c  10 0 0 0 0 100% 

2c  0 9 0 0 0 90% 

3c  0 0 8 1 1 80% 

4c  1 0 0 9 0 90% 

5c  2 0 0 0 8 80% 

 

V. CONCLUSION 
UTDR technique is capable of membrane fouling 

noninvasively under realistic operating conditions. The 
ultrasonic technique can measure the changes on the 
membrane surface in a flat-sheet geometry. Although the 
transducers can be multiplexed and connected to a single 
remote digital oscilloscope-computer combination, a single 
transducer moves zigzag to collect all signals at any depth in 
the x-y-plane. The aforementioned ultrasonic system thereby 
enabling the reconstruction of the three dimensional data 
structure of the membrane is used to detect the structure of 
the membrane.  

In this research the data mining technique which is the 
combination WT and DT from the UTDR signals of the 
fouling membranes is evaluated. It has been shown that the 
proposed method can effectively detect the fault types of the 
membrane fouling.  

It is believed that the problem addressed here has not been 
fully studied before although it is important in membrane 
fouling diagnosis. A new practical method is provided to 
diagnose membrane fouling. The present research has clearly 
shown that the proposed method can be used effectively to 
diagnose membrane fouling from UTDR signals in the plate 
module; however, there are possibilities for implementation 
on other configurations, such as hollow fiber and spiral 
wound modules. 
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