



Abstract— Novice programmers are having a difficult time

writing their first programs and instructors handling a

programming class with a large population are also having

difficulties in monitoring every student’s activity. One way to

address this is to develop a tool that can help instructors

monitor students’ negative affects such that these instructors

can easily determine students who need attention and guidance.

This study established a model that is used in the development

of an affective intelligent agent that can determine two negative

affect states of students while making a program in C++,

namely, confused and boredom. The model was established

through the gathered key log data from novice C++

programmers. Processing these data through a data mining tool

called WEKA, some patterns in detecting the affect states of

these programmers were discovered. On the other hand, the

affective intelligent agent can be used to improve monitoring

student’s attitude towards programming by alerting the teacher

whenever the agent detects sign of boredom or confusion from

the students.

Index Terms— affective computing, affect state, intelligent

agent, key logs, model, novice programmers

I. INTRODUCTION

earning is very essential in the growth and development

of an individual. In the process of learning, affect plays

a significant role in motivating students to logically think

and effectively respond to assessment. Affect is also critical

on how students interact and relate within a classroom or

laboratory setting where it can greatly influence student’s

learning process. Through students’ speech, facial

expression and keys pressed (Fig. 1) can convey crucial

information in determining student’s affect state. Once the

Manuscript received December 8, 2011; revised January 25, 2012. This

manuscript will also be submitted for presentation in the forthcoming 12th

Philippine Computing Science Congress (PCSC 2012), organized by the

Computing Society of the Philippines, on March 1-3, 2012 at the De La Salle

– Canlubang, Biñan, Laguna, Philippines.

D. A. M. Felipe is a senior Bachelor of Science in Computer Science

student of Mapua Institute of Technology, Makati City, Philippines (e-mail:

pepesmith130@yahoo.com).

K. I. N. Gutierrez just graduated in Bachelor of Science in Computer

Science at Mapua Institute of Technology, Makati City, Philippines (e-mail:

kimivangutierrez@gmail.com).

E. C. M. Quiros just graduated in Bachelor of Science in Computer

Science at Mapua Institute of Technology, Makati City, Philippines (e-mail:

eilynn.charm09@gmail.com).

L. A. Vea is a faculty and currently the Course Coordinator in Computer

Science of the School of Information Technology, Mapua Institute of

Technology, Makati City, Philippines. (e-mail: lavea@mapua.edu.ph).

affect state, specifically a negative affect is detected from a

student, teachers may improve learning by giving attention

to that student.

Fig. 1. Affective Monitoring Model

Our study aims to define variables and collect data in

detecting affect states of confusion and boredom.

Specifically, to establish a model that can process these two

negative affect states and to develop a prototype that can

validate the process model and demonstrate affective

analysis through key logs.

Though our study is limited only to the determination of

affect states through emotional text (Fig. 1), we believe that

this study could help in the long research of developing an

affective intelligent agent that can detect affect states not

only through emotional text but also by means of facial

expressions and emotional speech [3] (Fig.1). Through the

agent, there can be improvement in instructor-students

interaction by detecting the negative affect of each student

and alerting the instructor. In this way, the instructor will be

informed who among the students are not focused in the

programming activity or may be out of track.

II. REVIEW OF RELATED LITERATURE

A. Affect States

Affect usually refers to emotions. A number of studies

looked at the affective domain in learning programming. In

the study of [4], [5] and [16] discovered affect states, coding

scheme and how to detect these in students while

programming. Table I shows two negative affect states [4]

Towards the Development of Intelligent Agent

for Novice C/C++ Programmers through

Affective Analysis of Event Logs

Daniel Andrew M. Felipe, Kim Ivan N. Gutierrez, Eilynn Charm M. Quiros, and Larry A. Vea

L

whereas Table II shows the coding scheme created by [5].

These were the schemes used to identify students’ affect

state during their programming session.

TABLE I

The Two Negative Affect States in Rodrigo’s study

Affective States Description

Boredom
Slouching and resting the chin in his/her palm;

statements such as “This is boring!”

Confusion

Scratching his/her head, repeatedly looking at the

same interface elements; consulting with a classmate

or a teacher; flipping through lecture slides or note;

statements such as “Why didn’t it work?”

TABLE II

Coding Scheme in Dragon’s study

Letter-Code Valence Arousal Description

C - +

still engage with the software; cannot

grasp/ experiencing difficulty with the

material; on-task conversation; pouts;

frowns/wrinkles forehead; nail biting

D - -

yawning; zoned out within the

software; looks

uninterested/unfocused; gives loud

comments; barely uses the mouse

/keyboard; slouching; eyes wandering

B. Keyboard Stroke Features

To facilitate in creating the criteria for keyboard strokes in

detecting affect states, a study of [6] presented seven

features that dictates affect in keystrokes such as typing

speed, typing mean, typing variance, typing standard

deviation, idle time, total time taken for typing and number

of backspaces.

C. Error-Quotient (EQ)

The online protocol analysis and error-quotient measure

can be used to increase the effectiveness of the affect model

in determining negative affect states of confusion and

boredom [2]. EQ is a quantification of the student’s

compilation behavior through a grounded theoretic process.

It characterizes how much or how little a student struggles

with syntax errors while programming which ranges from 0

to 1. Students who encountered many syntax errors and

unsuccessful in fixing them from one compilation to the next

will get a high error quotient. While students who have few

syntax errors, or who correct their syntax errors quickly will

result to a low error quotient. A score of 0 means that the

student did not encounter the same syntax error on two

successive compilations of their program, while a score of 1

means that every compilation resulted to the same syntax

error. This is done by computing the EQ score [2] in the

process stated in Fig 2 and Fig. 3.

Fig. 2. Steps to compute for the EQ score.

Fig. 3. EQ Algorithm Flowchart.

III. THEORETICAL FRAMEWORK

Motivation has to do with students' desire to participate in

the learning process [7]. A student may arrive in class with a

certain degree of motivation, however, the teacher's behavior

and teaching styles have a great influence on the student’s

motivation [8]. The affective component of motivation has a

strong influence on the willingness of a student to engage in

learning their first program [9]. So in order to motivate the

learner, a positive affect must be possessed because it can be

a guiding force in perception and attention [10]. Many

studies support the claim that affect plays a critical role in

decision-making and learning performance as it influences

the cognitive process [11]. For example, students with

negative affect such as confused and bored do not learn and

absorb information efficiently or deal with it very well [12].

The field of affective computing is concerned with

understanding and recognizing human emotions in computer

systems. With the help of this field, educators can now

monitor student’s behavior and affect states while doing

programming tasks. It helps educators to easily identify

students who require immediate attention from the

instructor. The identification of the affect states observed on

novice programmers can be categorized as positive or

negative based on how these states influence the

programming of students. Thus, negative affect states,

particularly boredom and confusion seriously influence the

students’ learning progression by driving them out of track

[4]. A coding scheme of affect states, which is simply a list

of observed affect states and their manifestations, help in the

process of identifying affect via rule-based classification.

Through the development of an intelligent agent, these affect

states that arise during programming can be identified and

sent to the instructor’s terminal to alert the instructor that the

student is bored or confused and needs an immediate

attention.

In order to implement the intelligent agent, experimental

method can be used to gather data composed of key logs

(low fidelity data), and videos and real-time observations of

upper body expressions (high fidelity data). Compilation

logs, comprised of chronologically-placed build events, are

the source for data needed to compute the EQ score of an

observed programming student. The EQ score identifies

these programmers if they are either at-risk or not and the

score may show the differences of how affect is exhibited in

novice programmers. These two types of data fidelity will be

trained and tested for model development. The model can be

Given a session of build events e1 through en:

1. Collate: Create consecutive pairs from the build events in the

session. For example: (e1, e2), (e2, e3), ..., (en-1, en).

2. Calculate: Score each pair according to the algorithm presented

in Fig. 3.

3. Normalize: Divide the score assigned to each pair by 9 (the

maximum value possible for each pair).

4. Average: Sum the scores and divide by the number of pairs.

This average is taken as the error quotient (EQ) for the session.

developed using a data mining tool. Data mining can be used

to discover meaningful, new and hidden correlations,

patterns and trends through a decision tree which is formed

with the use of tree-based algorithms such as J48, BF Tree

and Random Tree algorithm. Patterns discovered through the

decision trees can now be stored in the constructed GSP

database to be able to use in the prototype.

IV. METHODOLOGY

We conducted the study in the School of Information

Technology of the Mapua Institute of Technology on the

Fourth Term of Academic Year 2010-2011. The subjects of

this study are the first year and second year students enrolled

in CS126 (C++ Programming 1) taking up BS in Computer

Science and BS in Information Technology. A total of 6

students agreed to participate, 4 were male and 2 were

female. It was conducted in a CS126 laboratory room. All

computers were installed with the same MS Windows 7

Operating System, MS Visual Studio 6.0, and are controlled

by a Classroom Management System called NetSupport.

A. Preparation

To ensure the assistance of the school authorities and

parents of the participants to the implementation of the

study, consent letters were made to obtain permission to

subject the students in the experiment, to request assistance

in the installation of the data gathering tools, and to ask for

the parent’s consent to let their dependents join the

experiment. In parallel with this, a survey intended to

identify the potential participants for the experiment that

manifest the following demographic criteria: (1) a Filipino

citizen; (2) a first/second year student, regardless of age,

and; (3) should have no background in C/C++ since high

school.

On the other hand, we developed software tools such as

the Key Logger [14] and the File Watcher program. The Key

Logger records all the key logs of the students while the File

Watcher program collects every build logs of the students in

order to compute for their Error-Quotient for competency

analysis. In addition, Webcams were also used to capture

video logs for the high fidelity data.

B. Data Gathering

At the start of each session, Key Logger and File Watcher

programs were turned on and Video capture software was set

to recording state. In the experiment sessions, the students

used the Microsoft Visual C++ 6.0 IDE to solve basic

programming problems concerning conditional statements,

loops and functions. The participants were seated on the

terminals assigned by the professor to eliminate things that

may affect their emotions. Internet access and other software

applications are also controlled by NetSupport to ensure

prohibitions of unnecessary software.

When students begin their machine exercises, one of us

took note of the start time. The duration of the experiment

was determined on how long the professor will let the

students solve the exercise which ranges 1.5 hour to 3.0

hours. During the entire session, we watched quietly at the

back so that the students will not be disturbed.

The low fidelity data was gathered through the Key Logger

program which recorded every key stroke that the student

had done which included the keys pressed and the time

pressed and released. These key logs are saved as Comma

Separated Value (CSV) file. In parallel with the data

gathering of the low fidelity data, video was also captured

via webcam. This is the high fidelity data of the research.

The video captured facial expressions and actions of the

students throughout the session. In addition, the competency

of each student was also analyzed by their build logs

recorded using the File Watcher program.

At the end of each session, start time and end time of the

collected data files (the key log files, video and build logs)

were noted. Collection of data was done in 3 sessions for

each of the 2 classes. Altogether, the data collected from the

experiment had 18 recordings.

C. Pre-processing

After the data collection from the experiments, eighteen 18

key log files, 18 video files and a number of compilation

logs per student were taken to pre-processing.

For the low fidelity data, the key log files gathered from

the experiment was processed through a program called,

Pre-Processing Tool which is created in Microsoft Visual C#

2008. This tool produced an output file consisting of a

collection of unique twenty-second segment mappings of the

8 features based on [6] such as the typing speed, typing

mean, typing variance, typing standard deviation, idle time,

total time taken for typing, and the number of backspaces

pressed, including the additional time frame that will be used

as an index. These features were computed in the following

formula stated in Table III.

TABLE III

Formulas for Typing Features

Typing Speed

Typing Mean

Typing Variance

Typing Standard

Deviation

Idle Time

For the high fidelity, the 1.5 - 3.0 hour video files were

manually divided per 20-second segments. These segments

were also tagged with a time frame for indexing. The parts

of the video where the subject showed reactions of being

monitored were disregarded.

After pre-processing of the low and high fidelity data, data

annotation took place. Data annotation is where the high

fidelity observation that has the same 20-second time frame

with a low fidelity incomplete mapping was appended with

each other. This was done by pairing the 20-second time

frame in the low fidelity incomplete mapping and it is the

same 20-second time frame in the high fidelity (video). After

pairing the two data fidelity, the observation found in the

video was processed through the modified coding scheme

based on [4] and presented in Table 4 to identify the affect

that influence the student while programming.

TABLE IV

Affect States Criteria

AFFECTIVE STATES DESCRIPTION

Boredom

 Slouching and resting the chin in his/her

palm

 Yawning

 Zoned out within the software

 Looks uninterested/ unfocused

 Barely uses the mouse /keyboard

 Slouching

 Eyes wandering

Confusion

 Scratching his/her head

 Repeatedly looking at the same interface

elements consulting with a classmate or a

teacher

 Flipping through lecture slides or note

 Statements such as “Why didn’t it work?”

 Still engage with the software

 Cannot grasp/experiencing difficulty with

the material on-task conversation

 Pouts

 Frowns/wrinkles forehead

 Nail biting

The scheme was modified to find the state of confusion

(negative valence, positive arousal) or boredom (negative

valence, negative arousal) and a special emotion state of

“others” which was exclusive to the study. The “others” state

was made under the premise that the emotion with respect to

the time frame was found to be neither confused nor bored.

Data annotation was done simultaneously with the other

researchers to form an affect observation in the videos.

Every one of us classifies the emotion for a specific time

frame and each observation was compared. If different affect

observations were observed, we have to replay and must

agree in one emotion.

The affect state identified from the scheme and agreed

upon by us was appended to the incomplete mapping of the

low fidelity. This resulted to a complete mapping of low

fidelity values with its accompanying affective state.

On the other hand, compilation build logs gathered from

the previous phase along with their file information were

collated into an MS Excel file and every build was

considered an instance for said file [2]. These logs were

also processed in Fig. 2. To calculate the error quotient of a

session, each pair of events is first scored using the

algorithm [2] presented in Fig. 3 and these values are then

summed and normalized, assuming a maximum score of 9

per pair.

For instance, a student incurred a total of n-builds during

his or her programming session. From there, (n-1) pairs of

the n builds were created. Applying the EQ algorithm for the

first pair, if both builds reported errors then 2 will be added

to the EQ score. Next, if both builds encountered the same

error of a missing semicolon then, this constitutes a same

error type problem so 3 were added to the EQ score. After

that, if the same error was found in the same line for both

builds which represents a same error location problem then

another 3 was added to the score. However, if the edit were

found on same lines then 1 was added to the score. The sum

yielded by the first pair was divided by 9 to get its partial

score. This was done simultaneously for the next pairs to

provide their partial scores. After computing the partial

score for every pair, the average then calculated and this

identified the error quotient score of this student.

The average score of EQ for every session was tested by

the Error Quotient (EQ) score criteria created for this study.

In the statistical data provided by [2], it showed that scores

that ranged from 0 to 0.3 received a good score on their

midterm exams. Clustering this using the one-dimensional

Euclidean distance between the midpoints of the score

ranges in our data shown in Fig. 4, identifies two clusters or

competencies that will identify the EQ score criteria. In this

particular criterion, scores that range from 0.1 – 0.2 and

lower were considered competent while higher scores were

considered incompetent. In this experiment, 2 out of 6

students were considered competent while the remaining 4

were incompetent.

Fig. 4. Distribution of Average EQ Scores

After determining the competency of each student, the

dataset were divided into 2 CSV files based on the

competencies associated with them. Most classifiers are

sensitive to the sequence the data arrived in. If for example,

the first part of the dataset primarily consists of one

particular class label, then the other parts of the dataset may

be misrepresented if they go by another class label. This is

particularly fatal if the classifier is undergoing a percentage

split [14]. Therefore, the students’ instances were alternately

added to their corresponding dataset to prevent the biases in

the model development. For the dataset of the competent

students, the total number of instances was 1502 while for

the dataset of the incompetent students, the total number of

instances was one 1501. Then, the 2 datasets were combined

in a single CSV file to produce a total of 3003 mappings

disregarding the competency attribute.

D. Model Development

From the list of algorithms available in WEKA, few were

capable of handling the nominal attribute of the study’s

dataset. To ensure that the best-fitted classification algorithm

is used, algorithms such as J48, Random Tree, and BF Tree

were tried by the following criteria: highest (1) Kappa

Statistic, (2) recognition rate, and (3) correctly classified

instances. The dataset with the records of the competent

students were used as a sample data to determine the best-

fitted classification algorithm that will be used in creating all

the models.

After developing the 2 models identifying competency of

students, the third dataset which is the combined datasets of

the previous 2 were also developed to become a model. This

is done for the development of the prototype and for the

general statements of the new patterns discovered.

E. GSP Database Construction and Prototyping

 After the model was tested to be accurate with the use of

statistical analysis mentioned earlier, the decision trees were

used to create the GSP (Goals, Standards, and Preferences)

database of the model. The GSP database was used in

creating the prototype and in deciding which affective state

does the student exhibit. GSP Database Construction was

done by extracting the unique paths from the decision trees

found in the unified model and putting it into a self-

containing frame called a construal frame (Fig. 5).

Fig. 5. GSP Database Construction

After constructing the GSP database, we developed a

prototype using Microsoft Visual C# 2008. It has four

modules operating in succession such as the key logger, the

pre-processing tool, the GSP database, and the affect result.

The key logger module records the actual keystrokes and

their time of pressing while; the pre-processing module

translates these keystrokes into an incomplete mapping then;

the GSP database module provides the affective state

according to the data supplied by the incomplete mapping

and; the affect result module provides feedback to the user in

the form of message and image.

V. RESULTS AND DISCUSSION

In order to acquire the best-fitted classification algorithm

appropriate for this study, the following algorithms were

tested: Random Tree, BF Tree and J48 Algorithm. To test

these, the dataset containing the records of the competent

students was used. The dataset contains 1502 instances

which are identified as the total number of instances that the

classifier used in testing the model. The criteria in choosing

the best-fitted algorithm used in this study is the statistical

measures produced by WEKA such as the following: (1)

Correctly Classified Instances which is the number of

instances that the classifier was able to predict correctly; (2)

Recognition Rate which is the percentage of correctly

classified instances to the total number of instances and; (3)

Kappa statistic which is a more reliable measure of model

performance as it takes account of agreement by chance, a

given when not doing a singular annotation. Cohen’s kappa

or the Kappa statistic in this study is an agreement measure

between the predicted, as done by the classifier, and the

actual classes which in turn are subject to the probability of

an instance of the actual class turning up in a dataset. A

kappa statistic of 1 represents a perfect agreement while a 0

represents all agreements as conflicting prevalent to

annotation done purely by chance. This measure is

commonly used in purely categorical data which the study is

using.

TABLE V

Statistical Measures for Model Performance using various tree-based

classification algorithms for the draft data on competent programmer

affective states

Table V shows the statistical measures for the 3

algorithms tested and among these, the J48 algorithm works

best with this object domain with a correctly classified

instances of 1432 out of 1502 total number of instances,

recognition rate of 95.79% and a Kappa statistic of 0.9262.

The high recognition rate of J48 means that the model

performed a good classification of the test instances and the

high Kappa statistic means that the model provides a

cohesive agreement of prediction with the class. With this

result, the J48 algorithm was chosen in developing the

models.

After testing the performance of the 3 classification

algorithms, the 2 datasets that distinguishes the competency

of the students were also fed into WEKA to develop the

other models. Using 70% training and 30% test set up,

WEKA also analyzed the model developed by statistical

accuracy measures presented in the classifier output field.

Before the statistical analysis, here are some terms that

needed to be defined: (1) True positives are the desired

outcomes of the model which is tested by the classification

algorithm; (2) False positives are the erroneous judgments of

a particular instance thinking that it is the desired class but it

is not and; (3) False negatives are the incorrect predictions

of a test thinking of a particular instance is not of the desired

class label but in truth it is. And to further discuss the

model’s accuracy performance, here are the statistical

measures produced by WEKA: (1) TP Rate (True Positive

Tree Based

Classification

Algorithms

Total

Number Of

Instances

Correctly

Classified

Instances

Recognition Rate
Kappa

Statistics

Random Tree 1502 1419 94.74% 0.8546

BF Tree 1502 1428 95.07% 0.8690

J48 1502 1432 95.79% 0.9262

Rate) indicates the degree of true positives being found by

the model; (2) FP Rate (False Positive Rate) indicates the

degree of false positives being found by the model; (3)

Precision is a measure of exactness and it is derived from the

number of true positives and false positives found in this

classification test. A high precision can be easily achieved

by limiting the observed number of instances; (4) Recall is a

measure of completeness or the ability of the model to treat

instances as relevant to a test and it is derived from the

number of true positives and false negatives in a

classification test. A high recall can be received by testing

all the instances; (5) F-measure combines the precision and

recall rates of the model to produce a more general measure

of classification performance; (6) ROC area is the area under

a line graph comparison between true positives and false

positives and is equal to the probability that it will rank a

true positive instance higher than a false one. For the

competent model, it is taken from the 1051 data instances

out of 1502 while the remaining instances will be reserved

for the test set which are around 451 instances. For the

incompetent model, it is taken from the 1052 data instances

out of 1501 while the remaining instances will be reserved

for the test set which are around 449 instances. Table VI

shows the detailed accuracy by class of the competency

models.

TABLE VI

Detailed Accuracy by Class of the Competency Models (test set)

Competency Detailed Accuracy By Class

Competent
TP Rate FP Rate Precision Recall F-Measure

ROC

Area

0.958 0.021 0.959 0.958 0.958 0.976

Incompetent

0.971 0.032 0.949 0.971 0.96 0.972

0.856 0.061 0.809 0.856 0.832 0.916

0.85 0.058 0.902 0.85 0.875 0.924

0.898 0.049 0.898 0.898 0.897 0.940

The range of the following measures in the table above is

0 -1. It is also shown in the table that the high TP Rates of

both models (0.958 and 0.898) indicate that the model

correctly expresses which affect state should be exhibited

from the features provided while the low FP rates of both

models (0.021 and 0.049) implies that the model correctly

states when not affect others from the features provided

while; the high precision rate (0.959 and 0.898) indicates

that the model rarely misclassify an actual instance then; the

high recall rate (0.958 and 0.898) indicates that the model

knows when not to classify an instance as incorrect and; the

high F-measure (0.958 and 0.897) means that the

relationship between precision and recall is harmonious and

lastly; having a large ROC area (0.976 and 0.94) correlates

to a model being accurate at classification and being chance-

corrected and sensitive to class distribution.

Another gauge in measuring the effectiveness of the

model is the confusion matrix. It is a visual tool in

determining how well the performance of the classifier is on

a given set of data. The rows represent the actual data while

the columns represent the classifiers prediction that should

be the same with the actual data. Meeting cells from the

same row and column headers represent correct predictions

while meeting cells of different row and column headers

represent incorrect ones. In Table VII, the confusion

matrices of the two competency models show that the

models are efficient in predicting affect states of the novice

programmer.

TABLE VII

Confusion Matrices for the affective states on both competency models

(test set)

Competency Confusion Matrix

Competent

 a b c <-- classified as

 137 10 2 | a = others

 2 92 5 | b = confused

 0 0 203 | c = bored

Incompetent

 a b c <-- classified as

 167 2 3 | a = bored

 2 89 13 | b = confused

 7 19 147 | c = others

For instance on the competent model, the diagonal {137,

92, 203} represent the true positives of the classification

while the non-diagonal values {10, 2, 2, 5, 0, 0} represent

the false positives of the classification. With the matrix

presenting large values in the diagonal in comparison to the

values not found in the diagonal, there are a greater number

of true positives than the false positives; it means that the

model is an accurate classifier. This also holds true for the

incompetent model as its matrix is similar in makeup to the

competent one.

Since the class variable is nominal, the effectiveness of

the models from the summary on the classifier output

window in WEKA was also shown. Other statistical

measures on the model performance are the correctly

classified instances, incorrectly classified instances as well

as their percentages in relation to the total number of

instances. In Table VIII, it presented the summary output of

both competency models. With a high correctly classified

instance and a low incorrectly classified instance rates, the

model performance shows its initial measure while having a

high Kappa statistic means that the model will still perform

well even if test instances are made in chance.

TABLE VIII

Summary Table data for both competency models (test set)

Competency

Correctly

Classified

Instances

Incorrectly

Classified

Instances

(%) of

Correctly

Classified

Instances

(%) of

Incorrectly

Classified

Instances

Kappa

Statistic

Competent 432 19 95.7871% 4.2129% 0.9341

Incompetent 403 46 89.755% 10.245% 0.8432

Another relatively measure in the model performance is

the ROC curve. ROC (Receiver Operating Characteristic)

curve is a graphical plot to determine the sensitivity of a

classifier or a diagnostic. The true positives lie in the (0, 1)

position or otherwise known as the perfect classification

while the false positives often follow the diagonal from the

origin. It means that having an ROC curve which closely

resembles the line showing that the classifier or diagnostic is

not that accurate. In Fig. 6, the ROC curves for the class,

“others” on both competency models are shown. According

to the curves, both models are sensitive to change criterion

and avoid random guessing.

(a) Curve for the class “others” on the “Competent” model

{b) Curve for the class “others” on the “Incompetent” model

Fig. 6. ROC Curves for Competency Models

For the unified model, it is taken from the 2103 data

instances out of 3003 while the remaining instances will be

reserved for the test set which are around 900 instances. The

unified model exhibits the following performance

measurements presented in Table IX.

TABLE IX

Detailed Accuracy by Class of the Unified Model (test set)

TP Rate FP Rate Precision Recall F-Measure ROC Area

0.878 0.059 0.901 0.878 0.89 0.937

0.98 0.036 0.944 0.98 0.962 0.971

0.833 0.045 0.85 0.833 0.841 0.932

0.907 0.047 0.906 0.907 0.906 0.949

Table IX, shows that the TP Rate, FP Rate, Precision

Rate, Recall Rate, F-measure, and ROC Area have lower

values in comparison to the competency and incompetency

model performance scores. The combination of the instances

had introduced a noticeable amount of noise in training the

model and that somewhat lowered the performance of the

model.

The confusion matrix for the unified model shown in

Table X, means that even with the noise introduction, the

model is once again efficient in predicting affect states of

novice programmers.

TABLE X

(a)Confusion Matrix for the Affective States on the Unified Model

(test set)

Predicted

Others Bored Confused

Actual

Others 302 13 29

Bored 5 339 2

Confused 28 7 175

(b) Summary Table data for the unified model (test set)

Correctly

Classified

Instances

Incorrectly

Classified

Instances

(%) Of

Correctly

Classified

Instances

(%) Of

Incorrectly

Classified

Instances

Kappa

Statisti

c

816 84 90.6667% 9.3333% 0.8566

 In Fig, 7, the ROC curve for the class of others on the

unified model is presented. According to the curve, the

model is sensitive to change criterion and avoid random

guessing.

Fig. 7. ROC Curve for the Class “Others” on the Unified Model

A. Discovery of New Patterns

With the data from the decision trees, a deterministic

model was constructed. It is basically a rudimentary set of

rules accessed in order according to the values of the feature

variables derived in keyboard strokes found in novice

programmers programming in C/C++. The new patterns

discovered were shown in Table XI.

TABLE XI

New Patterns Discovered of Student’s Affect via the Notable Features

Affect Competent Incompetent

Bored (idle time == 20) && (backspaces == 0)

Confused (backspaces >idle time)

(idle time >11 && backspace

== 0)

(idle time > 9) &&

(backspace == 0)

Others (backspaces < idle time) (idle time < =11) &&

(backspaces == 0)

VI. CONCLUSION

 From the experiment, the data analysis, and performance

testing of the models, it has been found that key logs can

provide adequate data to determine affect in novice

programmers. Key logs produce features in typing present

affect analyzers with acceptable data. From these logs, the

models that have been developed were accurate and

evidence to this is the model performance measures done.

It was also found out that the dominant typing features in

the analysis are the idle time and the number of backspaces

pressed. As shown in Table XI, the number of backspaces

pressed feature is used to differentiate the affect “confused”

with the additional affect for this study, “others”. The idle

time, on the other hand, has a great degree of pull when it

comes to labeling affect states. It is used to detect the affect

“boredom” and it correlates with the number of backspaces

pressed feature for all the affect states. With this, the models

have been accurate in determining affect states in respect to

the model performance measures.

Looking over the accuracy rate for the 3 models, the

model for competent with a rate of 95.79%, the model for

incompetent with 89.67%, and the unified model with

90.67%, these rates have definitely attained and surpassed

the 80% hypothetical rate of the study. Inter-agreement

reliability can be found in the Kappa statistic of the three

models. This is presented through the fact that the model for

competent has a value of 0.9341, the model for incompetent

has a value of 0.8432 and the unified model has a value of

0.8566 Kappa statistics. This also means that the models

have a less chance of having a wrong classification when

compared to the same observation done by another model of

similar construction.

On the other hand, since there are only few students who

participated in the study and this is the first time to conduct

experiments like this using our school resources; it is

recommended that further investigation must be conducted

to conclude the relevance of our method. That is, by having

larger sample that may include other students.

Lastly, the software prototype of the affective intelligent

agent using the model should be tested not only to novice

programmers but also to other students having programming

laboratory classes.

ACKNOWLEDGMENT

This research would not have been possible without the

inspiration, guidance and help of several individuals who in

one way or another contributed and extended their valuable

assistance in the preparation and completion of this study.

To our mentors, Dr. Ma Mercedez Rodrigo and Dr. Proceso

Fernandez Jr who inspired us in the field of Affective

Computing and Data Mining respectively, to Dean Nilda

Eliquen of the School of Information Technology for her

moral support and steadfast encouragement to accomplish

this study, to the Development Office for Information

Technology for their assistance in installing our data

gathering tools in the laboratories, and to CS126 students

who actively participated in the study.

REFERENCES

[1] A.R. Wight. Toward a Definition of Affect in Education. Interstate

Educational Resource Service Center, Salt Lake City, Utah, 1972.

[2] E. S. Tabanao, M. M. T. Rodrigo, and M .C. Jadud. Identifying At-

Risk Novice Java Programmer Through the Analysis of Online

Protocols. 2008.

[3] Mao, Xia and Li, Zheng. Agent based affective tutoring systems: A

pilot study. Computers and Education, 505. 204. 2010.

[4] M. M. T. Rodrigo, R. S. Baker, M. C. Jadud, A. C. M. Amarra, T.

Dy, M.B.V., Lim, S. A. L. Espejo-Lahoz, S. A. M. S. Pasuca, J. O.

Sugay, and E. S. Tabanao. Affective and Behavioral Predictors of

Novice Programmer Achievement. 2009

[5] T. Dragon, I. Arroyo, B. P. Woolf, W. Burleson, R. Kaliouby, and H.

Eydgahi. Viewing Student Affect and Learning through Classroom

Observation and Physical Sensor. ITS ’08 Proceedings of the 9th

international conference on Intelligent Tutoring System. 2008

[6] P. Khanna and M. Sasikumar. Recognising Emotions from Keyboard

Stroke Patterns. International Journal for Computing

Application.11(9). 2010.

[7] Student Motivation to Learn. ERIC Clearinghouse on Education

Management:

http://www.kidsource.com/kidsource/content2/Student_Motivatation.

html

[8] K. B. Kirk. Motivating Students, 2011. On the Cutting Edge –

Professional Development for Geoscience

Faculty:http://serc.carleton.edu/NAGTWorkshops/affective/motivatio

n.html

[9] E. Vockel, Ph.D. Affective Components of Motivation. Educational

Psychology – A Practical Approach:

http://education.calumet.purdue.edu/vockell/edPsybook/Edpsy5/Edps

y5_affective.htm

[10] C. Izard. Four Systems for Emotion Activation: Cognitive and Non-

cognitive Processes. Psychological Review, 100 (1), 68-90, 1993.

[11] E. Kinard. Perceived and Actual Academic Competence in

Maltreated Children. Child Abuse and Neglect, 25 (1), 33-45.

[12] D. Goleman. Emotional Intelligence .Bantam Books, New York,

2000.

[13] A. Yüksektepe and N. Russler. Superkeylogger, 2011. Whitebyte:

http://www.whitebyte.info/projects/superkeylogger.

[14] Preserving order in split leads to Inferior results - Why?, 2008.

Wekalist Mailing List:

https://list.scms.waikato.ac.nz/pipermail/wekalist/2008-

February/012603.html

[15] W. A. Anorma, C. A. Contreras, and A. M. D. Cotaco. Modeling

Students Affect and Behavior using High and Low Fidelity Replay.

2010.

