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Abstract— Novice programmers are having a difficult time 

writing their first programs and instructors handling a 

programming class with a large population are also having 

difficulties in monitoring every student’s activity. One way to 

address this is to develop a tool that can help instructors 

monitor students’ negative affects such that these instructors 

can easily determine students who need attention and guidance. 

This study established a model that is used in the development 

of an affective intelligent agent that can determine two negative 

affect states of students while making a program in C++, 

namely, confused and boredom. The model was established 

through the gathered key log data from novice C++ 

programmers. Processing these data through a data mining tool 

called WEKA, some patterns in detecting the affect states of 

these programmers were discovered. On the other hand, the 

affective intelligent agent can be used to improve monitoring 

student’s attitude towards programming by alerting the teacher 

whenever the agent detects sign of boredom or confusion from 

the students. 

 
Index Terms— affective computing, affect state, intelligent 

agent, key logs, model, novice programmers 

 

I. INTRODUCTION 

earning is very essential in the growth and development 

of an individual. In the process of learning, affect plays 

a significant role in motivating students to logically think 

and effectively respond to assessment. Affect is also critical 

on how students interact and relate within a classroom or 

laboratory setting where it can greatly influence student’s 

learning process. Through students’ speech, facial 

expression and keys pressed (Fig. 1) can convey crucial 

information in determining student’s affect state. Once the 
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affect state, specifically a negative affect is detected from a 

student, teachers may improve learning by giving attention 

to that student.  

 

 
 

Fig. 1.  Affective Monitoring Model 

 

Our study aims to define variables and collect data in 

detecting affect states of confusion and boredom. 

Specifically, to establish a model that can process these two 

negative affect states and to develop a prototype that can 

validate the process model and demonstrate affective 

analysis through key logs.  

Though our study is limited only to the determination of 

affect states through emotional text (Fig. 1), we believe that 

this study could help in the long research of developing an 

affective intelligent agent that can detect affect states not 

only through emotional text but also by means of facial 

expressions and emotional speech [3] ( Fig.1). Through the 

agent, there can be improvement in instructor-students 

interaction by detecting the negative affect of each student 

and alerting the instructor. In this way, the instructor will be 

informed who among the students are not focused in the 

programming activity or may be out of track. 

 

II. REVIEW OF RELATED LITERATURE 

A. Affect States 

Affect usually refers to emotions. A number of studies 

looked at the affective domain in learning programming. In 

the study of [4], [5] and [16] discovered affect states, coding 

scheme and how to detect these in students while 

programming. Table I shows two negative affect states [4] 
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whereas Table II shows the coding scheme created by [5]. 

These were the schemes used to identify students’ affect 

state during their programming session. 

 
TABLE I 

The Two Negative Affect States in Rodrigo’s study 

Affective States Description 

Boredom 
Slouching and resting the chin in his/her palm; 

statements such as “This is boring!” 

Confusion 

Scratching his/her head, repeatedly looking at the 

same interface elements; consulting with a classmate 

or a teacher; flipping through lecture slides or note; 

statements such as “Why didn’t it work?” 

 

TABLE II 

Coding Scheme in Dragon’s study 

Letter-Code Valence Arousal Description 

C - + 

still engage with the software; cannot 

grasp/ experiencing difficulty with the 

material; on-task conversation; pouts; 

frowns/wrinkles forehead; nail biting 

D - - 

yawning; zoned out within the 

software; looks 

uninterested/unfocused; gives loud 

comments; barely uses the mouse 

/keyboard; slouching; eyes wandering 

B. Keyboard Stroke Features 

To facilitate in creating the criteria for keyboard strokes in 

detecting affect states, a study of [6] presented seven 

features that dictates affect in keystrokes such as typing 

speed, typing mean, typing variance, typing standard 

deviation, idle time, total time taken for typing and number 

of backspaces.  

C. Error-Quotient (EQ) 

The online protocol analysis and error-quotient measure 

can be used to increase the effectiveness of the affect model 

in determining negative affect states of confusion and 

boredom [2]. EQ is a quantification of the student’s 

compilation behavior through a grounded theoretic process. 

It characterizes how much or how little a student struggles 

with syntax errors while programming which ranges from 0 

to 1. Students who encountered many syntax errors and 

unsuccessful in fixing them from one compilation to the next 

will get a high error quotient. While students who have few 

syntax errors, or who correct their syntax errors quickly will 

result to a low error quotient. A score of 0 means that the 

student did not encounter the same syntax error on two 

successive compilations of their program, while a score of 1 

means that every compilation resulted to the same syntax 

error. This is done by computing the EQ score [2] in the 

process stated in Fig 2 and Fig. 3.  

 

 

 

 

 

 

 

 
  

Fig. 2. Steps to compute for the EQ score. 

 
Fig. 3. EQ Algorithm Flowchart. 

 

III. THEORETICAL FRAMEWORK 

Motivation has to do with students' desire to participate in 

the learning process [7]. A student may arrive in class with a 

certain degree of motivation, however, the teacher's behavior 

and teaching styles have a great influence on the student’s 

motivation [8]. The affective component of motivation has a 

strong influence on the willingness of a student to engage in 

learning their first program [9]. So in order to motivate the 

learner, a positive affect must be possessed because it can be 

a guiding force in perception and attention [10]. Many 

studies support the claim that affect plays a critical role in 

decision-making and learning performance as it influences 

the cognitive process [11]. For example, students with 

negative affect such as confused and bored do not learn and 

absorb information efficiently or deal with it very well [12]. 

The field of affective computing is concerned with 

understanding and recognizing human emotions in computer 

systems. With the help of this field, educators can now 

monitor student’s behavior and affect states while doing 

programming tasks. It helps educators to easily identify 

students who require immediate attention from the 

instructor. The identification of the affect states observed on 

novice programmers can be categorized as positive or 

negative based on how these states influence the 

programming of students. Thus, negative affect states, 

particularly boredom and confusion seriously influence the 

students’ learning progression by driving them out of track   

[4]. A coding scheme of affect states, which is simply a list 

of observed affect states and their manifestations, help in the 

process of identifying affect via rule-based classification. 

Through the development of an intelligent agent, these affect 

states that arise during programming can be identified and 

sent to the instructor’s terminal to alert the instructor that the 

student is bored or confused and needs an immediate 

attention.  

In order to implement the intelligent agent, experimental 

method can be used to gather data composed of key logs 

(low fidelity data), and videos and real-time observations of 

upper body expressions (high fidelity data). Compilation 

logs, comprised of chronologically-placed build events, are 

the source for data needed to compute the EQ score of an 

observed programming student. The EQ score identifies 

these programmers if they are either at-risk or not and the 

score may show the differences of how affect is exhibited in 

novice programmers. These two types of data fidelity will be 

trained and tested for model development. The model can be 

Given a session of build events e1 through en: 

1.   Collate: Create consecutive pairs from the build events in the 

session. For example: (e1, e2), (e2, e3), ..., (en-1, en). 

2.   Calculate: Score each pair according to the algorithm presented 

in Fig. 3. 

3.    Normalize: Divide the score assigned to each pair by 9 (the 

maximum value possible for each pair). 

4.    Average: Sum the scores and divide by the number of pairs. 

This average is taken as the error quotient (EQ) for the session. 



 

developed using a data mining tool. Data mining can be used 

to discover meaningful, new and hidden correlations, 

patterns and trends through a decision tree which is formed 

with the use of tree-based algorithms such as J48, BF Tree 

and Random Tree algorithm. Patterns discovered through the 

decision trees can now be stored in the constructed GSP 

database to be able to use in the prototype. 

 

IV. METHODOLOGY 

We conducted the study in the School of Information 

Technology of the Mapua Institute of Technology on the 

Fourth Term of Academic Year 2010-2011. The subjects of 

this study are the first year and second year students enrolled 

in CS126 (C++ Programming 1) taking up BS in Computer 

Science and BS in Information Technology. A total of 6 

students agreed to participate, 4 were male and 2 were 

female. It was conducted in a CS126 laboratory room. All 

computers were installed with the same MS Windows 7 

Operating System, MS Visual Studio 6.0, and are controlled 

by a Classroom Management System called NetSupport. 

A. Preparation 

To ensure the assistance of the school authorities and 

parents of the participants to the implementation of the 

study, consent letters were made to obtain permission to 

subject the students in the experiment, to request assistance 

in the installation of the data gathering tools, and to ask for 

the parent’s consent to let their dependents join the 

experiment. In parallel with this, a survey intended to 

identify the potential participants for the experiment that 

manifest the following demographic criteria: (1) a Filipino 

citizen; (2) a first/second year student, regardless of age, 

and; (3) should have no background in C/C++ since high 

school.  

On the other hand, we developed software tools such as 

the Key Logger [14] and the File Watcher program. The Key 

Logger records all the key logs of the students while the File 

Watcher program collects every build logs of the students in 

order to compute for their Error-Quotient for competency 

analysis. In addition, Webcams were also used to capture 

video logs for the high fidelity data.  

B. Data Gathering 

At the start of each session, Key Logger and File Watcher 

programs were turned on and Video capture software was set 

to recording state. In the experiment sessions, the students 

used the Microsoft Visual C++ 6.0 IDE to solve basic 

programming problems concerning conditional statements, 

loops and functions. The participants were seated on the 

terminals assigned by the professor to eliminate things that 

may affect their emotions. Internet access and other software 

applications are also controlled by NetSupport to ensure 

prohibitions of unnecessary software. 

When students begin their machine exercises, one of us 

took note of the start time. The duration of the experiment 

was determined on how long the professor will let the 

students solve the exercise which ranges 1.5 hour to 3.0 

hours. During the entire session, we watched quietly at the 

back so that the students will not be disturbed.  

The low fidelity data was gathered through the Key Logger 

program which recorded every key stroke that the student 

had done which included the keys pressed and the time 

pressed and released. These key logs are saved as Comma 

Separated Value (CSV) file. In parallel with the data 

gathering of the low fidelity data, video was also captured 

via webcam. This is the high fidelity data of the research. 

The video captured facial expressions and actions of the 

students throughout the session. In addition, the competency 

of each student was also analyzed by their build logs 

recorded using the File Watcher program.  

At the end of each session, start time and end time of the 

collected data files (the key log files, video and build logs) 

were noted. Collection of data was done in 3 sessions for 

each of the 2 classes. Altogether, the data collected from the 

experiment had 18 recordings. 

C. Pre-processing 

After the data collection from the experiments, eighteen 18 

key log files, 18 video files and a number of compilation 

logs per student were taken to pre-processing. 

For the low fidelity data, the key log files gathered from 

the experiment was processed through a program called, 

Pre-Processing Tool which is created in Microsoft Visual C# 

2008. This tool produced an output file consisting of a 

collection of unique twenty-second segment mappings of the 

8 features based on [6] such as the typing speed, typing 

mean, typing variance, typing standard deviation, idle time, 

total time taken for typing, and the number of backspaces 

pressed, including the additional time frame that will be used 

as an index. These features were computed in the following 

formula stated in Table III.  

 
TABLE III 

Formulas for Typing Features 

 

Typing Speed 

 

 
 

Typing Mean 
 

Typing Variance 
 

Typing Standard 

Deviation 
 

Idle Time 

 

 
 

 

For the high fidelity, the 1.5 - 3.0 hour video files were 

manually divided per 20-second segments. These segments 

were also tagged with a time frame for indexing. The parts 

of the video where the subject showed reactions of being 

monitored were disregarded. 



 

After pre-processing of the low and high fidelity data, data 

annotation took place. Data annotation is where the high 

fidelity observation that has the same 20-second time frame 

with a low fidelity incomplete mapping was appended with 

each other. This was done by pairing the 20-second time 

frame in the low fidelity incomplete mapping and it is the 

same 20-second time frame in the high fidelity (video). After 

pairing the two data fidelity, the observation found in the 

video was processed through the modified coding scheme 

based on [4] and presented in Table 4 to identify the affect 

that influence the student while programming. 
 

TABLE IV 

Affect States Criteria 

AFFECTIVE STATES DESCRIPTION 

Boredom 

 Slouching and resting the chin in his/her 

palm 

 Yawning 

 Zoned out within the software 

 Looks uninterested/ unfocused 

 Barely uses the mouse /keyboard 

 Slouching 

 Eyes wandering 

Confusion 

 Scratching his/her head 

 Repeatedly looking at the same interface 

elements consulting with a classmate or a 

teacher 

 Flipping through lecture slides or note 

 Statements such as “Why didn’t it work?” 

 Still engage with the software 

 Cannot grasp/experiencing difficulty with 

the material on-task conversation 

 Pouts 

 Frowns/wrinkles forehead 

 Nail biting 

 

The scheme was modified to find the state of confusion 

(negative valence, positive arousal) or boredom (negative 

valence, negative arousal) and a special emotion state of 

“others” which was exclusive to the study. The “others” state 

was made under the premise that the emotion with respect to 

the time frame was found to be neither confused nor bored. 

Data annotation was done simultaneously with the other 

researchers to form an affect observation in the videos. 

Every one of us classifies the emotion for a specific time 

frame and each observation was compared. If different affect 

observations were observed, we have to replay and must 

agree in one emotion. 

The affect state identified from the scheme and agreed 

upon by us was appended to the incomplete mapping of the 

low fidelity. This resulted to a complete mapping of low 

fidelity values with its accompanying affective state. 

On the other hand, compilation build logs gathered from 

the previous phase along with their file information were 

collated into an MS Excel file and every build was 

considered an instance for said file [2].  These logs were 

also processed in Fig. 2. To calculate the error quotient of a 

session, each pair of events is first scored using the 

algorithm [2] presented in Fig. 3 and these values are then 

summed and normalized, assuming a maximum score of 9 

per pair. 

For instance, a student incurred a total of n-builds during 

his or her programming session. From there, (n-1) pairs of 

the n builds were created. Applying the EQ algorithm for the 

first pair, if both builds reported errors then 2 will be added 

to the EQ score. Next, if both builds encountered the same 

error of a missing semicolon then, this constitutes a same 

error type problem so 3 were added to the EQ score. After 

that, if the same error was found in the same line for both 

builds which represents a same error location problem then 

another 3 was added to the score. However, if the edit were 

found on same lines then 1 was added to the score. The sum 

yielded by the first pair was divided by 9 to get its partial 

score. This was done simultaneously for the next pairs to 

provide their partial scores. After computing the partial 

score for every pair, the average then calculated and this 

identified the error quotient score of this student. 

The average score of EQ for every session was tested by 

the Error Quotient (EQ) score criteria created for this study. 

In the statistical data provided by [2], it showed that scores 

that ranged from 0 to 0.3 received a good score on their 

midterm exams. Clustering this using the one-dimensional 

Euclidean distance between the midpoints of the score 

ranges in our data shown in Fig. 4, identifies two clusters or 

competencies that will identify the EQ score criteria. In this 

particular criterion, scores that range from 0.1 – 0.2 and 

lower were considered competent while higher scores were 

considered incompetent. In this experiment, 2 out of 6 

students were considered competent while the remaining 4 

were incompetent. 

 

 
 

Fig. 4.  Distribution of Average EQ Scores 

 

After determining the competency of each student, the 

dataset were divided into 2 CSV files based on the 

competencies associated with them. Most classifiers are 

sensitive to the sequence the data arrived in. If for example, 

the first part of the dataset primarily consists of one 

particular class label, then the other parts of the dataset may 

be misrepresented if they go by another class label. This is 

particularly fatal if the classifier is undergoing a percentage 

split [14]. Therefore, the students’ instances were alternately 

added to their corresponding dataset to prevent the biases in 

the model development. For the dataset of the competent 

students, the total number of instances was 1502 while for 

the dataset of the incompetent students, the total number of 

instances was one 1501. Then, the 2 datasets were combined 

in a single CSV file to produce a total of 3003 mappings 

disregarding the competency attribute. 

D. Model Development 

From the list of algorithms available in WEKA, few were 

capable of handling the nominal attribute of the study’s 



 

dataset. To ensure that the best-fitted classification algorithm 

is used, algorithms such as J48, Random Tree, and BF Tree 

were tried by the following criteria: highest (1) Kappa 

Statistic, (2) recognition rate, and (3) correctly classified 

instances. The dataset with the records of the competent 

students were used as a sample data to determine the best-

fitted classification algorithm that will be used in creating all 

the models. 

After developing the 2 models identifying competency of 

students, the third dataset which is the combined datasets of 

the previous 2 were also developed to become a model. This 

is done for the development of the prototype and for the 

general statements of the new patterns discovered.  

E. GSP Database Construction and Prototyping 

 After the model was tested to be accurate with the use of 

statistical analysis mentioned earlier, the decision trees were 

used to create the GSP (Goals, Standards, and Preferences) 

database of the model. The GSP database was used in 

creating the prototype and in deciding which affective state 

does the student exhibit. GSP Database Construction was 

done by extracting the unique paths from the decision trees 

found in the unified model and putting it into a self-

containing frame called a construal frame (Fig. 5). 

 

 
 

Fig. 5. GSP Database Construction 

 

After constructing the GSP database, we developed a 

prototype using Microsoft Visual C# 2008. It has four 

modules operating in succession such as the key logger, the 

pre-processing tool, the GSP database, and the affect result. 

The key logger module records the actual keystrokes and 

their time of pressing while; the pre-processing module 

translates these keystrokes into an incomplete mapping then; 

the GSP database module provides the affective state 

according to the data supplied by the incomplete mapping 

and; the affect result module provides feedback to the user in 

the form of message and image. 

 

V. RESULTS AND DISCUSSION 

In order to acquire the best-fitted classification algorithm 

appropriate for this study, the following algorithms were 

tested: Random Tree, BF Tree and J48 Algorithm. To test 

these, the dataset containing the records of the competent 

students was used. The dataset contains 1502 instances 

which are identified as the total number of instances that the 

classifier used in testing the model. The criteria in choosing 

the best-fitted algorithm used in this study is the statistical 

measures produced by WEKA such as the following: (1) 

Correctly Classified Instances which is the number of 

instances that the classifier was able to predict correctly; (2) 

Recognition Rate which is the percentage of correctly 

classified instances to the total number of instances and; (3) 

Kappa statistic which is a more reliable measure of model 

performance as it takes account of agreement by chance, a 

given when not doing a singular annotation. Cohen’s kappa 

or the Kappa statistic in this study is an agreement measure 

between the predicted, as done by the classifier, and the 

actual classes which in turn are subject to the probability of 

an instance of the actual class turning up in a dataset. A 

kappa statistic of 1 represents a perfect agreement while a 0 

represents all agreements as conflicting prevalent to 

annotation done purely by chance. This measure is 

commonly used in purely categorical data which the study is 

using. 

 
TABLE V 

Statistical Measures for Model Performance using various tree-based 

classification algorithms for the draft data on competent programmer 

affective states 

 

Table V shows the statistical measures for the 3 

algorithms tested and among these, the J48 algorithm works 

best with this object domain with a correctly classified 

instances of 1432 out of 1502 total number of instances, 

recognition rate of 95.79% and a Kappa statistic of 0.9262. 

The high recognition rate of J48 means that the model 

performed a good classification of the test instances and the 

high Kappa statistic means that the model provides a 

cohesive agreement of prediction with the class. With this 

result, the J48 algorithm was chosen in developing the 

models. 

After testing the performance of the 3 classification 

algorithms, the 2 datasets that distinguishes the competency 

of the students were also fed into WEKA to develop the 

other models. Using 70% training and 30% test set up, 

WEKA also analyzed the model developed by statistical 

accuracy measures presented in the classifier output field. 

Before the statistical analysis, here are some terms that 

needed to be defined: (1) True positives are the desired 

outcomes of the model which is tested by the classification 

algorithm; (2) False positives are the erroneous judgments of 

a particular instance thinking that it is the desired class but it 

is not and; (3) False negatives are the incorrect predictions 

of a test thinking of a particular instance is not of the desired 

class label but in truth it is. And to further discuss the 

model’s accuracy performance, here are the statistical 

measures produced by WEKA: (1) TP Rate (True Positive 

Tree Based 

Classification 

Algorithms 

Total 

Number Of 

Instances 

Correctly 

Classified 

Instances 

Recognition Rate 
Kappa 

Statistics 

Random Tree 1502 1419 94.74% 0.8546 

BF Tree 1502 1428 95.07% 0.8690 

J48 1502 1432 95.79% 0.9262 



 

Rate) indicates the degree of true positives being found by 

the model; (2) FP Rate (False Positive Rate) indicates the 

degree of false positives being found by the model; (3) 

Precision is a measure of exactness and it is derived from the 

number of true positives and false positives found in this 

classification test. A high precision can be easily achieved 

by limiting the observed number of instances; (4) Recall is a 

measure of completeness or the ability of the model to treat 

instances as relevant to a test and it is derived from the 

number of true positives and false negatives in a 

classification test. A high recall can be received by testing 

all the instances; (5) F-measure combines the precision and 

recall rates of the model to produce a more general measure 

of classification performance; (6) ROC area is the area under 

a line graph comparison between true positives and false 

positives and is equal to the probability that it will rank a 

true positive instance higher than a false one. For the 

competent model, it is taken from the 1051 data instances 

out of 1502 while the remaining instances will be reserved 

for the test set which are around 451 instances. For the 

incompetent model, it is taken from the 1052 data instances 

out of 1501 while the remaining instances will be reserved 

for the test set which are around 449 instances. Table VI 

shows the detailed accuracy by class of the competency 

models. 
 

TABLE VI 

Detailed Accuracy by Class of the Competency Models (test set) 

Competency Detailed Accuracy By Class 

Competent 
TP Rate FP Rate Precision Recall F-Measure 

ROC 

Area 

0.958 0.021 0.959 0.958 0.958 0.976 

Incompetent 

0.971 0.032 0.949 0.971 0.96 0.972 

0.856 0.061 0.809 0.856 0.832 0.916 

0.85 0.058 0.902 0.85 0.875 0.924 

0.898 0.049 0.898 0.898 0.897 0.940 

 

The range of the following measures in the table above is 

0 -1. It is also shown in the table that the high TP Rates of 

both models (0.958 and 0.898) indicate that the model 

correctly expresses which affect state should be exhibited 

from the features provided while the low FP rates of both 

models (0.021 and 0.049) implies that the model correctly 

states when not affect others from the features provided 

while; the high precision rate (0.959 and 0.898) indicates 

that the model rarely misclassify an actual instance then; the 

high recall rate (0.958 and 0.898) indicates that the model 

knows when not to classify an instance as incorrect and; the 

high F-measure (0.958 and 0.897) means that the 

relationship between precision and recall is harmonious and 

lastly; having a large ROC area (0.976 and 0.94) correlates 

to a model being accurate at classification and being chance-

corrected and sensitive to class distribution. 

Another gauge in measuring the effectiveness of the 

model is the confusion matrix. It is a visual tool in 

determining how well the performance of the classifier is on 

a given set of data. The rows represent the actual data while 

the columns represent the classifiers prediction that should 

be the same with the actual data. Meeting cells from the 

same row and column headers represent correct predictions 

while meeting cells of different row and column headers 

represent incorrect ones. In Table VII, the confusion 

matrices of the two competency models show that the 

models are efficient in predicting affect states of the novice 

programmer. 

 
TABLE VII 

Confusion Matrices for the affective states on both competency models 

(test set) 

Competency Confusion Matrix 

Competent 

                      a      b      c   <-- classified as 

                    137   10     2   |   a = others 

                      2      92     5  |   b = confused 

                      0       0   203 |   c = bored 

Incompetent 

                     a      b      c     <-- classified as 

                    167    2      3   |   a = bored 

                       2    89    13  |   b = confused 

                       7    19   147 |   c = others 

 

For instance on the competent model, the diagonal {137, 

92, 203} represent the true positives of the classification 

while the non-diagonal values {10, 2, 2, 5, 0, 0} represent 

the false positives of the classification. With the matrix 

presenting large values in the diagonal in comparison to the 

values not found in the diagonal, there are a greater number 

of true positives than the false positives; it means that the 

model is an accurate classifier. This also holds true for the 

incompetent model as its matrix is similar in makeup to the 

competent one. 

Since the class variable is nominal, the effectiveness of 

the models from the summary on the classifier output 

window in WEKA was also shown. Other statistical 

measures on the model performance are the correctly 

classified instances, incorrectly classified instances as well 

as their percentages in relation to the total number of 

instances. In Table VIII, it presented the summary output of 

both competency models. With a high correctly classified 

instance and a low incorrectly classified instance rates, the 

model performance shows its initial measure while having a 

high Kappa statistic means that the model will still perform 

well even if test instances are made in chance. 

 
TABLE VIII 

Summary Table data for both competency models (test set) 

Competency 

Correctly 

Classified 

Instances 

Incorrectly 

Classified 

Instances 

(%) of 

Correctly 

Classified 

Instances 

(%) of 

Incorrectly 

Classified 

Instances 

Kappa 

Statistic 

Competent 432 19 95.7871% 4.2129% 0.9341 

Incompetent 403 46 89.755% 10.245% 0.8432 

 

Another relatively measure in the model performance is 

the ROC curve. ROC (Receiver Operating Characteristic) 

curve is a graphical plot to determine the sensitivity of a 

classifier or a diagnostic. The true positives lie in the (0, 1) 

position or otherwise known as the perfect classification 

while the false positives often follow the diagonal from the 

origin. It means that having an ROC curve which closely 

resembles the line showing that the classifier or diagnostic is 

not that accurate. In Fig. 6, the ROC curves for the class, 

“others” on both competency models are shown. According 

to the curves, both models are sensitive to change criterion 

and avoid random guessing.  



 

 
(a) Curve for the class “others” on the “Competent” model 

 

 
{b) Curve for the class “others” on the “Incompetent” model 

 

Fig. 6.  ROC Curves for Competency Models 

 

For the unified model, it is taken from the 2103 data 

instances out of 3003 while the remaining instances will be 

reserved for the test set which are around 900 instances. The 

unified model exhibits the following performance 

measurements presented in Table IX. 

 
TABLE IX 

Detailed Accuracy by Class of the Unified Model (test set) 

TP Rate FP Rate Precision Recall F-Measure ROC Area 

0.878 0.059 0.901 0.878 0.89 0.937 

0.98 0.036 0.944 0.98 0.962 0.971 

0.833 0.045 0.85 0.833 0.841 0.932 

0.907 0.047 0.906 0.907 0.906 0.949 

 

Table IX, shows that the TP Rate, FP Rate, Precision 

Rate, Recall Rate, F-measure, and ROC Area have lower 

values in comparison to the competency and incompetency 

model performance scores. The combination of the instances 

had introduced a noticeable amount of noise in training the 

model and that somewhat lowered the performance of the 

model.  

The confusion matrix for the unified model shown in 

Table X, means that even with the noise introduction, the 

model is once again efficient in predicting affect states of 

novice programmers. 

 
TABLE X 

(a)Confusion Matrix for the Affective States on the Unified Model  

(test set) 

 
Predicted 

Others Bored Confused 

Actual 

Others 302 13 29 

Bored 5 339 2 

Confused 28 7 175 

   

(b) Summary Table data for the unified model (test set) 

Correctly 

Classified 

Instances 

Incorrectly 

Classified 

Instances 

(%) Of 

Correctly 

Classified 

Instances 

(%) Of 

Incorrectly 

Classified 

Instances 

Kappa 

Statisti

c 

816 84 90.6667% 9.3333% 0.8566 

 

 In Fig, 7, the ROC curve for the class of others on the 

unified model is presented. According to the curve, the 

model is sensitive to change criterion and avoid random 

guessing. 

 
 

Fig. 7. ROC Curve for the Class “Others” on the Unified Model 

 

A. Discovery of New Patterns 

With the data from the decision trees, a deterministic 

model was constructed. It is basically a rudimentary set of 

rules accessed in order according to the values of the feature 

variables derived in keyboard strokes found in novice 

programmers programming in C/C++. The new patterns 

discovered were shown in Table XI. 

 
TABLE XI 

New Patterns Discovered of Student’s Affect via the Notable Features 

Affect Competent Incompetent 

Bored (idle time == 20) && (backspaces == 0) 

Confused (backspaces >idle time) 

(idle time >11 && backspace  

== 0) 

(idle time > 9) && 

(backspace == 0) 

Others (backspaces < idle time) (idle time < =11) && 

(backspaces == 0) 

 

VI. CONCLUSION 

 From the experiment, the data analysis, and performance 

testing of the models, it has been found that key logs can 

provide adequate data to determine affect in novice 

programmers. Key logs produce features in typing present 

affect analyzers with acceptable data. From these logs, the 

models that have been developed were accurate and 

evidence to this is the model performance measures done.  

It was also found out that the dominant typing features in 

the analysis are the idle time and the number of backspaces 

pressed. As shown in Table XI, the number of backspaces 

pressed feature is used to differentiate the affect “confused” 

with the additional affect for this study, “others”. The idle 

time, on the other hand, has a great degree of pull when it 

comes to labeling affect states. It is used to detect the affect 

“boredom” and it correlates with the number of backspaces 

pressed feature for all the affect states. With this, the models 

have been accurate in determining affect states in respect to 

the model performance measures.  

Looking over the accuracy rate for the 3 models, the 

model for competent with a rate of 95.79%, the model for 

incompetent with 89.67%, and the unified model with 

90.67%, these rates have definitely attained and surpassed 

the 80% hypothetical rate of the study. Inter-agreement 

reliability can be found in the Kappa statistic of the three 

models. This is presented through the fact that the model for 

competent has a value of 0.9341, the model for incompetent 

has a value of 0.8432 and the unified model has a value of 

0.8566 Kappa statistics. This also means that the models 

have a less chance of having a wrong classification when 

compared to the same observation done by another model of 

similar construction. 

On the other hand, since there are only few students who 



 

participated in the study and this is the first time to conduct 

experiments like this using our school resources; it is 

recommended that further investigation must be conducted 

to conclude the relevance of our method. That is, by having 

larger sample that may include other students. 

Lastly, the software prototype of the affective intelligent 

agent using the model should be tested not only to novice 

programmers but also to other students having programming 

laboratory classes. 
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