Comparative Study on Email Spam Classifier using Data Mining Techniques

R. Kishore Kumar, G. Poonkuzhali, P. Sudhakar, Member, IAENG

Abstract— In this e-world, most of the transactions and business is taking place through e-mails. Nowadays, email becomes a powerful tool for communication as it saves a lot of time and cost. But, due to social networks and advertisers, most of the emails contain unwanted information called spam. Even though lot of algorithms has been developed for email spam classification, still none of the algorithms produces 100% accuracy in classifying spam emails. In this paper, spam dataset is analyzed using TANAGRA data mining tool to explore the efficient classifier for email spam classification. Initially, feature construction and feature selection is done to extract the relevant features. Then various classification algorithms are applied over this dataset and cross validation is done for each of these classifiers. Finally, best classifier for email spam is identified based on the error rate, precision and recall.

Index Terms— classifier, e-mail, feature construction, feature selection, relevance analysis, spam

I. INTRODUCTION

Due to the intensive use of internet, email has become one of the fastest and most economical mode of communication. This enables internet user to easily transfer information from anywhere in the world in a fraction of second. However, the increase of email users have resulted in the dramatic increase of spam emails during the past few years. E-mail spam, also known as junk e-mail or unsolicited bulk e-mail (UBE), is a subset of spam that delivers nearly identical messages to numerous recipients by e-mail. Definitions of spam usually include the aspects that spam emails are unsolicited and sent in bulk. E-mail spam has steadily grown since the early 1990s. Botnets, networks of virus-infected computers, are used to send about 80% of spam.

Spammers collect e-mail addresses from chatrooms, websites, customer lists, newsgroups, and viruses which harvest users’ address books, and are sold to other spammers. Since the cost of the spam is borne mostly by the recipient, many individual and business people send bulk messages in the form of spam. The voluminous of spam emails a strain the Information Technology based organizations and creates billions of dollars lose in terms of productivity. In recent years, spam emails lands up into a serious security threat, and act as a prime medium for phishing of sensitive information [13]. Addition to this, it also spread malicious software to various user. Therefore, email classification becomes an important research area to automatically classify original emails from spam emails. Spam email also fascinate problem for individuals and organizations because it is prone to misuse. Automatic email spam classification [18] contains more challenges because of unstructured information, more number of features and large number of documents. As the usage increases all of these features may adversely affect performance in terms of quality and speed. Many recent algorithms use only relevant features for classification. Even though more number of classification techniques has been developed for spam classification, still 100% accuracy of predicting the spam email is questionable. So Identification of best spam algorithm itself became a tedious task because of features and drawbacks of every algorithm against each other.

In this paper, spam dataset from UCI machine learning repository [23] is taken as input data for analyzing the various classification techniques using TANAGRA [22] data mining tool. In this work, feature construction and feature selection is done first to select the relevant features for classification. After feature extraction, 15 different classification algorithms are taken for evaluation. In this evaluation process, different features are considered for choosing best spam filtering algorithm. Finally performance evaluation is done to analyze the various classification algorithms to select the best classifier for spam emails.

Outline of this paper:
Section 2 presents related works on email spam classification, section 3 presents framework implementation of the proposed system, section 4 presents feature relevance analysis, Section 5 presents study on classification algorithms, Section 6 gives experimental results and performance evaluation. Finally section 7 presents conclusion.

II. RELATED WORKS

Email spam is one of the major problems of the today’s Internet, bringing financial damage to companies and annoying individual users. Among the approaches developed to stop spam, filtering is the one of the most
important technique. Spam mail, also called unsolicited bulk e-mail or junk mail that is sent to a group of recipients who have not requested it. The task of spam filtering is to rule out unsolicited e-mails automatically from a user's mail stream. These unsolicited mails have already caused many problems such as filling mailboxes, engulfing important personal mail, wasting network bandwidth, consuming users time and energy to sort through it, not to mention all the other problems associated with spam [11]. Two methods of machine classification were described in paper [4]. The first one is done on some rules defined manually. The typical example is the rule based expert systems. This kind of classification can be used when all classes are static, and their components are easily separated according to some features. The second one is done using machine learning techniques. Paper [15] formalizes a problem of clustering of spam message collection through criterion function. The criterion function is a maximization of similarity between messages in clusters, which is defined by \(k \)-nearest neighbor algorithm. Genetic algorithm including penalty function for solving clustering problem is offered. Classification of new spam messages coming to the bases of antispam system.

A novel distributed data mining approach, called Symbiotic Data Mining (SDM) [7] that unifies Content-Based Filtering (CBF) with Collaborative Filtering (CF) is described. The goal is to reuse local filters from distinct entities in order to improve personalized filtering while maintaining privacy. In paper [26] the effectiveness of email classifiers based on the feed forward back propagation neural network and Bayesian classifiers are evaluated. Results are evaluated using accuracy and sensitivity metrics. The results show that the feed forward back propagation network algorithm classifier provides relatively high accuracy and sensitivity that makes it competitive to the best known classifiers. A fully Bayesian approach to soft clustering and classification using mixed membership models based on the assumptions on four levels: population, subject, latent variable, and sampling scheme was implemented in [8]. In paper [1]-[3], automatic anti-spam filtering becomes an important member of an emerging family of junk-filtering tools for the Internet, which will include tools to remove advertisements. The author separate distance measures for numeric and nominal variables, and are then combined into an overall distance measure. In another method, nominal variables are converted into numeric variables, and then a distance measure is calculated using all variables. Paper [24] analyzes the computational complexity and scalability of the algorithm, and tests its performance on a number of data sets from various application domains. The social networks of spammers [12] by identifying communities of harvesters with high behavioral similarity using spectral clustering. The data analyzed was collected through Project Honey Pot [14], a distributed system for monitoring harvesting and spamming. The main findings are (1) that most spammers either send only phishing emails or no phishing emails at all, (2) that most communities of spammers also send only phishing emails or no phishing emails at all, and (3) that several groups of spammers within communities exhibit coherent temporal behavior or have similar IP addresses [5]. It is demonstrated that both methods obtain significant generalizations from a small number of examples; that both methods are comparable in generalization performance on problems of this type; and that both method asset reasonably efficient, even with fairly large training sets [6]. Spam classification [21] is done through Linear Discriminant Analysis by creating a bag-of-words document for every Web site.

III. FRAMEWORK OF THE PROPOSED SYSTEM

The overall design of the proposed system is given in Fig. 1 and each of these components is addressed in the following sections briefly.

A. Spam Dataset

The spam dataset was taken from UCI machine learning repository and was created by Mark Hopkins, Erik Reeb, George Forman, Jaap Suermondt. Hewlett-Packard Labs. This dataset contains 4601 instances and 58 attributes (57 continuous input attribute and 1 nominal class label target attribute. The attribute description [23] are given in Table I.

B. Pre-processing

Today, most of the data in the real world are incomplete containing aggregate, noisy and missing values. As the quality decision depends on quality mining which is based on quality data, pre-processing becomes a very important tasks to be done before performing any mining process. Major tasks in data pre-processing are data cleaning, data integration, data transformation and data reduction. In this dataset data normalization is done before performing feature relevance analysis.

| Attribute Description | TABLE I |
IV. FEATURE RELEVANCE ANALYSIS

<table>
<thead>
<tr>
<th>Attribute Number</th>
<th>Attribute Type</th>
<th>Attribute Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 to A48</td>
<td>char_freq_CHAR</td>
<td>percentage of characters in the e-mail that match CHAR</td>
</tr>
<tr>
<td>A49 to A54</td>
<td>capital_run_length</td>
<td>average length of uninterrupted sequences of capital letters</td>
</tr>
<tr>
<td>A55</td>
<td>capital_run_length</td>
<td>length of longest uninterrupted sequence of capital letters</td>
</tr>
<tr>
<td>A56</td>
<td>capital_run_length</td>
<td>length of longest uninterrupted sequence of capital letters</td>
</tr>
<tr>
<td>A57</td>
<td>capital_run_length</td>
<td>total number of capital letters in the e-mail</td>
</tr>
<tr>
<td>A58</td>
<td>Class attribute</td>
<td>denotes whether the e-mail was considered spam (1) or not (0)</td>
</tr>
</tbody>
</table>

Feature relevance analysis has been an active and fruitful field of research area in pattern recognition, machine learning, statistics and data mining communities. The main objective of feature selection is to choose a subset of input variables by eliminating features, which are irrelevant or of no predictive information. Feature selection has proven in both theory and practice to be effective in enhancing learning efficiency, increasing predictive accuracy and reducing complexity of learned results. Feature selection in supervised learning has a main goal of finding a feature subset that produces higher classification accuracy.

A. Feature Reduction Techniques

Correspondence Analysis

Correspondence Analysis is a multivariate statistical technique proposed by Hirschfeld and later developed by Jean-Paul Benzécri. It is conceptually similar to principal component analysis, but applies to categorical rather than continuous data. In a similar manner to principal component analysis, it provides a means of displaying or summarizing a set of data in two-dimensional graphical form.[25]

Canonical Discriminant Analysis

Canonical Discriminant Analysis is a dimension-reduction technique related to principal component analysis and canonical correlation. Given a nominal classification variable and several interval variables, canonical discriminant analysis derives canonical variables (linear combinations of the interval variables) that summarize between-class variation in much the same way that principal components summarize total variation [9].

Principal Component Analysis

Principal Component Analysis is a dimensionality reduction technique which enables to visualize a dataset in a lower dimension without loss of information. It is appropriate when obtaining measures on a number of observed variables and wish to develop a smaller number of artificial variables (called principal components) that will account for most of the variance in the observed variables [10].

B. Feature Selection Algorithms

Fisher filtering is a supervised feature selection algorithm [22] which processes the selection independently from the learning algorithm. It follows univariate Fisher's ANOVA ranking which ranks the inputs attributes according to their relevance without considering the redundancy aspects of input attributes.

ReliefF algorithm detects conditional dependencies [20] between attributes and provides a unified view on the attribute estimation in regression and classification. It is not limited to two class problems, is more robust and can deal with incomplete and noisy data.

STEPDISC (Stepwise Discriminant Analysis) [22] procedure performs a stepwise discriminant analysis to select a subset of the quantitative variables for use in discriminating among the classes. The set of variables that make up each class is assumed to be multivariate normal with a common covariance matrix. The STEPDISC procedure can use forward selection, backward elimination, or stepwise selection.

Runs filtering are a non parametric test [22] for predictive attribute evaluation. It is an univariate attribute ranking from runs test. It is a supervised feature selection algorithms based upon a filtering approach i.e. processes the selection independently from the learning algorithm. This component ranks the inputs attributes according to their relevance without considering redundancy aspect. A cutting rule enables to select a subset of these attributes.

After performing feature relevance analysis, various classification algorithms are applied over this training dataset before filtering irrelevant attributes as well as on the relevant attributes after filtration.

V. STUDY ON CLASSIFICATION ALGORITHMS

C4.5

It works similar to ID3 and builds the decision trees, using the concept of information entropy. Information entropy is a measure of the uncertainty associated with a random variable. At each node of the tree, C4.5 chooses one attribute of the data that most effectively splits its set of samples into subsets. Its criterion is the normalized information gain that results from choosing an attribute for splitting the data. Information gain is the difference in entropy associated with an attribute. The attribute with the highest normalized information gain is chosen to make the decision [20].

C-RT & CS-CRT

The CART method under Tanagra is a very popular classification tree learning algorithm. CART builds a decision tree by splitting the records at each node,
according to the function of a single attribute it uses the

gini index for determining the best split. The CS-CRT is

similar to CART but with cost sensitive classification [22].

ID3

In ID3 decision tree, each node corresponds to splitting

attribute. It uses information gain to determine the

splitting attribute. The attribute with the highest

information gain is taken as the splitting attribute.

Information gain is the difference between the amount of

information needed to make a correct prediction before

and after splitting. Information gain can also be defined as

different between the entropy of the original segment

and the accumulated entropies of the resulting split

segments. Entropy is the measure of disorder found in the

data. ID3 can handle high-cardinality predictor variables.

A high-cardinality predictor is a variable which has

different possible values thus having different possible

ways of performing a split [8].

K-NN

The k-nearest neighbor algorithm (k-NN) is a method

for classifying objects based on closest training examples

in an n-dimensional pattern space. When given an

unknown tuple the classifier searches the pattern space for

the k training tuples that are closest to the unknown tuple.

These k training tuple are the k nearest neighbour of the

unknown tuple [19].

LDA

Linear discriminant analysis (LDA) is a classical

statistical approach developed by R.A Fisher for

classifying samples of unknown classes, based on training

samples with known classes. LDA is closely related to

ANOVA (analysis of variance) and regression analysis,

which also attempt to express one dependent variable as a

linear combination of other features or measurements [19].

Log Regression TRIRLS

LR-TRIRLS stands for Logistic Regression with

Truncated Regularized Iteratively Re-weighted Least

Squares. LR-TRIRLS uses IRLS a quasi-Network method

to learn the LR parameters, with some modifications. It is

also used for fitting Generalized Linear Models (GLiMs)

to data. It is an iterative method for solving a weighted

least squares (WLS) linear regression problem on each

iteration.

Multilayer Perceptron

It is the most popular network architecture in today

world. The units each perform a biased weighted sum of

their inputs and pass this activation level through a

transfer function to produce their output. The units are

arranged in a layered feed forward topology. The network

has a simple input-output model, with the weights and

thresholds. Such networks can model functions of almost

arbitrary complexity, with the number of layers, and the

number of units in each layer, determining the function

complexity. The important issues in Multilayer

Perceptrons is the design specification of the number of

hidden layers and the number of units in these layers [20].

Naïve Bayes Continuous

The Naïve Bayes Classifier technique [16] is based on the

Bayesian theorem and is particularly suited inputs which has

dimension high. Despite of its simplicity, It can often

outperform more sophisticated classification methods. The

Naïve Bayes continuous which works similarly with

continuous variable as input [20].

PLS-DA & PLS – LDA

PLS-DA is a regression technique usually designed to

predict the values taken by a group of dependent variables

from a set of independent variables. For the prediction of

continuous target variable, the PLS regression can be

adapted to the prediction of one discrete variable - i.e. the

supervised learning framework in different ways which is

referred as "PLS Discriminant Analysis". In PLS-LDA (PLS

Linear Discriminant Analysis) is similar to PLS-DA where

the number of descriptors is moderately high in relation to

the number of instances.

Random Forest Tree(Rnd Tree)

A Random Tree consists of a collection or ensemble of

simple tree predictors, each capable of producing a response

when presented with a set of predictor values. For

classification problems, this response takes the form of a

class membership, which associates, or classifies, a set of

independent predictor values with one of the categories

present in the dependent variable. For regression problems,

the tree response is estimated for the dependent variable

given by the predictors [20].

SVM

Support Vector Machines are based on the concept of
decision planes that define decision boundaries. A decision

plane is one that separates between a set of objects having

different class memberships. The standard SVM takes a set

of input data and predicts, for each given input, which of

two possible classes comprises the input, making the SVM a

non-probabilistic binary linear classifier.

VI. EXPERIMENTAL RESULTS AND PERFORMANCE EVALUATION

The spambase dataset is downloaded from the UCI

machine learning repository[23] in the form of text file. This
dataset contains 57 input attributes of continuous format and

1 target attribute in discrete format. Then feature

construction is done for feature transformation. Since the

training dataset contains all the input attributes as

continuous and target attribute as discrete, the following

four feature selection algorithms namely, Fisher filtering,

ReliefF, Runs Filtering and Step disc are executed on this

data set for retrieving relevant features and the results are

given in Table II. Classification algorithms such as Naive

bayes continuous, ID3 ,K-NN, multilayer perceptron, C-

SVC, Linear discriminant analysis, CS-MC4, Rnd tree,

PLS-LDA, PLS-DA etc, are applied to each of the above

filtering algorithms and the results are given in Fig. 2.

Fisher filtering produces above 95% accurate results for 3

classifiers (C4.5, CS-MC4 and Rnd – tree classification

algorithms); above 90% accuracy for 8 classifiers and
above 85% for 6 classifiers. ReliefF filtering produce above 95% accuracy for only 1 classifier (Rnd Tree); above 90% accuracy for 6 classifiers; above 85% for 6 classifier and above 80% for 4 classifiers. Runs filtering and Stepwise discriminant analysis provides best result for 2 classifiers (C4.5 and CS-MC4); above 90% for 10 classifiers and above 85% accuracy for 5 classifiers. Runs filtering and Step disc feature selection algorithms almost provide the same result. From the results, the Rnd tree classification is considered as a best classifier, as it produced 99% accuracy through fisher filtering feature selection.

A. Error rate

Error rate of a classifier was defined as the percentage of the dataset incorrectly classified by the method. It is the probability of misclassification of a classifier.

\[\text{Error rate} = \frac{\text{No. of incorrectly classified samples}}{\text{Total No. of Samples in the Class}} \]

B. Accuracy

Accuracy of a classifier was defined as the percentage of the dataset correctly classified by the method. The accuracy of all the classifiers used for classifying spam dataset is represented graphically in Fig 2.

\[\text{Accuracy} = \frac{\text{No. of correctly classified samples}}{\text{Total No. of Samples in the Class}} \]

C. Recall

Recall of the classifier was defined as the percentage of errors correctly predicted out of all the errors that actually occurred.

\[\text{Recall} = \frac{\text{True Positive}}{\text{True Positive} + \text{False Negative}} \]

D. Precision

Precision of the classifier was defined as the percentage of the actual errors among all the encounters that were classified as errors.

\[\text{Precision} = \frac{\text{True Positive}}{\text{True Positive} + \text{False Positive}} \]

The terms positive and negative refer to the classifier's prediction, and the terms true and false refer to classifier's expectation. The precision and recall and error rate for the Rnd tree classifier is done and the results are given in Fig 3.
Email spam classification has received a tremendous attention by majority of the people as it helps to identify the unwanted information and threats. Therefore, most of the researchers pay attention in finding the best classifier for detecting spam emails. From the obtained results, Fisher filtering and runs filtering feature selection algorithms performs better classification for many classifiers. The Rnd tree classification algorithm applied on relevant features after Fisher filtering has produced more than 99% accuracy in spam detection. This Rnd tree classifier is also tested with test dataset which gives accurate results than other classifiers for this spam dataset.

TABLE IV

<table>
<thead>
<tr>
<th>Error rate</th>
<th>0.0089</th>
</tr>
</thead>
<tbody>
<tr>
<td>Values</td>
<td>Recall</td>
</tr>
<tr>
<td>Precision</td>
<td>Spam</td>
</tr>
<tr>
<td>Spam</td>
<td>0.9901</td>
</tr>
<tr>
<td>No</td>
<td>0.9918</td>
</tr>
<tr>
<td>Spam</td>
<td></td>
</tr>
</tbody>
</table>

VII. CONCLUSION

Email spam classification has received a tremendous attention by majority of the people as it helps to identify the unwanted information and threats. Therefore, most of the researchers pay attention in finding the best classifier for detecting spam emails. From the obtained results, Fisher filtering and runs filtering feature selection algorithms performs better classification for many classifiers. The Rnd tree classification algorithm applied on relevant features after Fisher filtering has produced more than 99% accuracy in spam detection. This Rnd tree classifier is also tested with test dataset which gives accurate results than other classifiers for this spam dataset.

ACKNOWLEDGMENT

The authors would like to thank Dr. K. Sarukesi, Vice chancellor of Hindustan Institute of Technology and Science, Chennai – India Dr. Ponnammal Natarajan, Advisor, (Research and Development), Rajalakshmi Engineering College and Dr. K. Ravi, Associate Professor and Head, Department of Mathematics, Sacred Heart College, Tirupattur, India for their intuitive ideas and fruitful discussions with respect to the paper’s contribution.

REFERENCES

[22] Tanagra-Data Mining tutorials http://data-mining-tutorials.blogspot.com/

