
An Improved Java Programming Learning
System Using Test-Driven Development Method

Nobuo Funabiki, Yuuki Fukuyama, Yukiko Matsushima, Toru Nakanishi, Kan Watanabe ∗

Abstract — To enhance educational effects of Java
programming by assisting self-studies of students and
reducing teaching loads of teachers, we have proposed
a Web-based Java programming learning system using
the test-driven development method. In this system,
a teacher should register Java programming assign-
ments with statements, model source codes, and test
codes using a Web browser. Then, a student can
submit a test code and an answer source code for
each assignment, where both codes are tested auto-
matically by a testing tool called Junit at the server.
Unfortunately, the current system cannot identify an
incomplete test code that does not contain the com-
plete test procedures if it has no grammatical error.
In this paper, we introduce a code coverage measure-
ment tool called Cobertura to detect such a test code
by measuring the coverage rate when the submitted
test code tests the model source code. We evaluate
the effectiveness of our improved system through ex-
periments with two simple assignments to 11 students
who have studied Java.

Keywords: Java education, Web system, test-driven

development method, verification, code coverage

1 Introduction

Recently, with penetrations of the information and com-
munication technology (ICT) into our societies, adverse
affects of system failures due to software bugs have be-
come intolerable. From this trend, the software test has
been regarded as the last crucial process to avoid pro-
ductions of software bugs in systems. Then, a test-driven
development (TDD) method has been focused as an ef-
fective software developing method that can avoid bugs
by writing and testing source codes at the same time [1].
In the TDD method, a test code should be written be-
fore writing a source code. A test code is a program code
to verify the correctness of the outputs of the methods
implemented in the source code to be tested.

Java is a useful and practical programming language that
has been used in a lot of important systems including
Web systems and embedded systems. Thus, the Java
programming education in schools has been important so

∗Dept. of Electrical and Communication Engineering, Okayama
University, 3-1-1 Tsushimanaka, Okayama, 700-8530, Japan
Email: funabiki@cne.okayama-u.ac.jp

as to foster professional Java programmers. To enhance
educational effects of the Java programming by assisting
self-studies of students and reducing teaching loads of
teachers, we have proposed a Web-based Java program-
ming learning system using the TDD method [2]. In this
Web application system, a teacher first should register
assignments with their statements, model source codes,
and test codes using a Web browser. Then, a student can
submit a test code and an answer source code for each
assignment. At the submission, these codes are tested
automatically by using the code testing tool called Junit
[3] at the Web server.

Unfortunately, the current system cannot identify an in-
complete test code that does not contain the complete
procedures of testing a source code if it has no grammat-
ical error. In the TDD method, normally, the test code
should generate an object of any class that is defined in
the source code, and execute any path of the methods in
the class for their tests. In our system, a test code from
a student is tested through testing the model source code
registered by a teacher. Even if this test code lacks some
of the procedures for testing the methods in the model
source code, it is passed. As a result, the correctness of
the test code cannot be guaranteed in our current system.

In this paper, we additionally introduce a code cover-
age measurement tool called Cobertura [5] to detect an
incomplete test code of a student by measuring the cov-
erage rate of the model source code that is executed or
covered by the test code. When the rate is not 1.0, the
test code lacks testing procedures for some paths in the
model source code. This means that the test code is in-
complete, assuming the model source code is complete.
Besides, this tool is used to find unnecessary descriptions
in the source code of a student by measuring the cover-
age rate at the source code test by the teacher test code.
When the rate is not 1.0, the source code contains un-
necessary procedures that are not executed by the test
code. We evaluate the effectiveness of the improved sys-
tem through experiments to 11 students who have studied
Java.

The rest of this paper is organized as follows: Section 2
introduces the TDD method. Section 3 reviews our Java
programming learning system. Section 4 presents the im-
provement of our system. Section 5 discusses the evalu-

ation result. Section 6 concludes this paper with some
future works.

2 Test-driven Development Method

In this section, we introduce the test-driven development
method and its features.

2.1 Outline of TDD Method

In the TDD method, the test code should be written be-
fore the source code is implemented, so that it can verify
whether the source code satisfies the required specifica-
tions during its development process. The basic cycle in
the TDD method is as follows:

(1) to write the test code to test every specification,

(2) to write the source code, and

(3) to repeat modifications of the source code until it
passes every test by the test code.

2.2 Junit

In our system, we adopt Junit as an open-source Java
framework to support the TDD method. Junit can as-
sist an automatic single test of a Java code unit or a
class. Because Junit has been designed with the Java-
user friendly style, its use including the test code pro-
gramming is easy for Java programmers. In Junit, a test
is performed by using a method whose name starts from
”assert”. This paper adopts the ”assertEquals” method
to compare the execution result of the source code with
its expected value.

2.3 Test Code

The code test should be written using libraries in Junit.
Here, by using the following MyMath class source code,
we explain how to write a test code. MyMath class returns
the summation of two integer arguments.

1: public class Math{

2: public int plus(int a, int b){

3: return(a + b);

4: }

5: }

Then, the following test code can test the plus method in
the MyMath class.

1: import static org.junit.Assert.*;

2: import org.junit.Test;

3: public class MathTest {

4: @Test

5: public void testPlus(){

6: Math ma = new Math();

7: int result = ma.plus(1, 4);

8: asserEquals(5, result);

9: }

10:}

The names in the test code should be related to those
in the source code so that their correspondence becomes
clear:

• The class name is given by the test class name +
Test.

• The method name is given by the test + test method
name.

The test code imports Junit packages containing test
methods at lines 1 and 2, and declares MathTest at line
3. @Test at line 4 indicates that the succeeding method
represents the test method. Then, it describes the test
method.

The code test is performed as follows:

(1) to generate an instance for the MyMath class,

(2) to call the method in the instance in (1) using given
arguments, and

(3) to compare the result with its expected value for the
arguments in (2) using the assertEquals method.

2.4 Features in TDD Method

In the TDD method, the following features can be ob-
served:

1. The test code can represent the specifications of the
program, because it must describe any function to
be tested in the program.

2. The test process for a source code becomes efficient,
because each function can be tested individually.

3. The refactoring process of a source code becomes
easy, because the modified code can be tested in-
stantly.

Therefore, the study of the test code description is use-
ful even for students, where the test code is equivalent
to the program specification. Beside, students should ex-
perience the software test that has become important in
companies.

3 Java Programming Learning System

In this section, we introduce the outline of the Java pro-
gramming learning system in [2].

NOBASU
(JSP / Servlet)

Tomcat
(Web server)

MySQL
(Database)

Linux
(OS)

NOBASU
(JSP / Servlet)

Tomcat
(Web server)

MySQL
(Database)

Linux
(OS)

Figure 1: Server platform.

3.1 Server Platform

The Java programming learning system is implemented
as a Web application. As the server platform, it adopts
the operating system Linux, the Web server Apache,
the application server Tomcat, and the database system
MySQL, shown in Figure 1.

3.2 Two Learning Steps for Java Program-
ming Self-studies

This system provides two learning steps for Java pro-
gramming self-studies by students. One is a Java code
learning step that allows students to write Java source
codes by referring the test code made by a teacher. An-
other is a TDD method learning step that allows students
to write both test code and source code, so that they can
study the TDD method.

3.3 Java Code Learning Step

The Java code learning step consists of user functions for
teachers and students. The user functions for teachers
include the registration of new classes, the registration
and management of assignments, and the verification of
source codes submitted from students. To register a new
assignment, a teacher needs to submit an assignment ti-
tle, a problem statement, a model source code, and a test
code, which are disclosed to the students except for the
model source code after the registration. Note that the
test code must test the model code correctly. Using the
correspondence between a source code and a test code in
Sect. 2.3, our system automatically generates a template
for the test code from the model source code. Thus, a
teacher only needs to specify figures for the arguments in
each test method to complete the test code.

To evaluate the difficulty of assignments and the com-
prehension of students, it allows a teacher to view the
number of submissions for code testing by each student.
If a teacher finds that a lot of submissions have been tried
by many students for an assignment, it can be considered
too difficult for them and should be changed to an easier
one. If a teacher finds a student who submitted codes
many times whereas other students did so fewer times,
the student should be cared specifically.

The user functions to students include the view of the

Five string arguments
for “encrypt” method

Figure 2: Test code from teacher.

ElGamal encryption

Figure 3: Source code from student.

assignments and the submission of source codes for the
assignments. A student should write a source code for
an assignment by referring the problem statement and
the test code, where he/she must use the class/method
names, the types, and the argument setting specified
in the test code. Our system implements a Web-based
source code editor called CodePress [4] so that a student
can write codes on a Web browser. The submitted source
codes are stored in the database at the server so that they
can view old ones.

Figures 2 and 3 show the test code and a source code
from a student for the ElGamal encryption programming
assignment. Figure 4 shows the test result, where one
error is detected because the last argument of the ”en-
crypt” method in the source code is different from the
specification given in the test code.

3.4 TDD Method Learning Step

3.4.1 Name List

In this step, a test code from a student is verified through
testing the model source code by the teacher, assum-
ing that this model source code contains every necessary
function correctly for the assignment. For this purpose,
a teacher needs to disclose the class/method names, the

Compile success

No main method for Encryption class

One error detected

Compile result

Execution result

Test result

Figure 4: Test result for source code.

types, and the argument setting in the model source code
to students by using the name list. The name list con-
tains every class and method name, the configuration of
the arguments, and the return value type. To reduce
the teacher load, our system automatically extracts the
necessary information to generate the name list from the
model source code, shown in Figure 5

Model source code Name list

Figure 5: Model source code and name list.

3.4.2 Test Code Submission and Verification

A student should write a test code first by referring the
problem statement and the name list from a teacher, and
submit it to the server using the interface in Figure 6.
Then, it is verified by testing the model source code of a
teacher.

3.4.3 Source Code Submission and Verification

Then, a student writes a source code by referring the
problem statement and his/her test code, and submits it.
The source code is verified by both test codes from the
teacher and the student. If both tests are passed, the test
code and the source code can be regarded as correct ones.
Otherwise, they are regarded as incorrect ones, and the
student needs to fix the problems in them.

Source code file upload

Compile & test

Test code

Figure 6: Test code submission.

3.4.4 Problem in Test Code Verification

Unfortunately, this test code verification is not sufficient
because it can be passed even if the test code lacks some
necessary codes to test the corresponding functions in the
source code. Junit tests the functions of the source code
only if they are described in the test code, and cannot
detect the lacks of testing even important functions. The
improvement of this test code verification is actually a
contribution of this paper, which will be discussed in the
next section.

3.5 Secure Test Environment

Here, we should note that source codes from students may
contain defective commands such as an infinite loop and
an illegal file access. To protect the server from them, two
methods, namely a code analysis and an execution time
monitoring, are adopted in our system. The code analysis
analyzes the source code form a student to find whether
it contains commands that may give adverse effects to
the server. Specifically, if it contains a class for the file
access such as ”Buffered Write” and ”PrintWriter”, and a
class for using external commands such as ”Process” and
Runtime”, the test for this code is aborted and the test
failure is returned to the student. The execution time
monitoring executes the source code on a thread so that
the execution time is observed from the main program. If
the time exceeds a given limit or an exception is detected
from the source code, the test is aborted and the failure
is returned.

4 System Improvement by Code Cover-
age Measurement

In this section, we present the improvement of our system
by introducing a code coverage measurement tool called
Cobertura.

4.1 Outline of Cobertura

Cobertura can analyze the test coverage rate in the source
code that is tested by the test code. The measurement
report from Cobertura includes line-rate that represents
the rate of the tested code lines in the source code, and
branch-rate that represents the rate of the tested branches
when branches exist. As these values approach to 1.0, the
test coverage rate is improved. The result can be reported
by an XML format or an HTML format so that it can
be viewed graphically using a Web browser as shown in
Figure 7.

Figure 7: Coverage report by Corbertura.

4.2 Application of Cobertura

Cobertura is used when Junit tests a source code. In
this subsection, we describe when this tool is used in our
system.

4.2.1 Assignment Registration by Teacher

When a teacher registers a new assignment, Cobertura
is used to verify whether the test code covers the tests
of the model source code, so that errors in them can be
avoided as best as possible.

4.2.2 Test Code Submission by Student

When a student submits a test code, Cobertura is used to
verify whether the test code covers the tests of the model
source code. The report is output with the test result
as shown in Figure 8. If line-rate is 1.0, the test code
covers the whole tests of the source code. If it is smaller
than 1.0, the test code does not cover some tests. In this
case, the student can download the coverage report of the
HTML format. Here, we note that this report excludes
the model source code by a teacher.

4.2.3 Source Code Submission by Student

When a student submits a source code, Cobertura is used
to verify whether the source code contains unnecessary
codes that are not tested by the test code from a teacher.

Test result

Coverage measurement report

Download HTML file

Figure 8: Test result of test code.

Table 1: Completions for two assignments.

Item Assign. 1 Assign. 2

of test code completions - 8

of source code completions 11 8

If the test code contains such unnecessary codes, they
should be removed.

5 Evaluation

In order to evaluate the improvement of the Java learning
system, we applied it to 11 students as experiments in our
laboratory who have Java programming experiences.

5.1 Assignments and Test Results

For each of the two steps in our system, we prepared
one assignment at the beginner level that is easy but re-
quires multiple test methods in the test code. Specifi-
cally, assignment 1 for the Java code learning step asks
a source code for handling two-dimensional arrays, and
assignment 2 for the TDD method learning step asks a
test code and a source code for extracting the maximum
and minimum among the integer arrays. The completion
results for them are shown in Table 1.

5.2 Questionnaire Results for Java Code
Learning

As the questionnaire, we first asked them to reply the
six questions in Tables 2 for Java code learning with five
grades. Table 3 shows the results to them. The results to
Q1 and Q2, where about one-third of the students replied
1 or 2, indicate that user interfaces of this system should
be improved. The reason can be that the editor in the
system does not work properly except on FireFox. The
adoption of an editor that can work in any browser will
be in our future works. The results to Q4 and Q5, where

more than half of the students replied 2 or 3, indicate
that the evaluation of the coverage measurement tool in
writing a source code is not sufficient. The reason may be
that the source code is short and can be written without
modifications because the assignment is very easy. The
evaluation using harder assignments will be necessary in
future works. The results to Q6, where more than 80%
of the students replied 4 or 5, indicate that this system
helps students to understand the TDD method.

Table 2: Questions for questionnaire for Java code learn-
ing.

Question

Q1 Do you think to use the system is easy ?

Q2 Do you think to read the test code is helpful in
understanding the assignment specification ?

Q3 Do you understand the system outputs of the
compiling and verification results easily ?

Q4 Do you think the coverage measurement tool in
the system is helpful in learning Java codes ?

Q5 Do you think the graphical coverage report
is useful ?

Q6 Do you understand the TDD method by using
this system ?

Table 3: Questionnaire results for Java code learning.

1 2 3 4 5

Q1 no 1 3 0 4 3 yes

Q2 no 0 3 0 2 6 yes

Q3 no 0 1 2 5 3 yes

Q4 no 0 0 6 2 3 yes

Q5 no 0 1 6 3 1 yes

Q6 no 0 0 2 5 4 yes

5.3 Questionnaire Results for TDD Method
Learning

Then, we asked them to reply the six questions in Ta-
bles 4 for TDD method learning with five grades. Ta-
ble 5 shows the results to the questions. The results to
Q4 and Q5, where more than half of the students replied
4 or 5, indicate that the coverage measurement tool is
useful in writing the test code. Because no student in
this experiment has experience in the TDD method, the
coverage report can help them to write a correct test code
of testing every required specification of the assignment.
The results to Q3, where more than half of the students
replied 3 or smaller grades, indicate that many students
felt the response time of the system is long. Actually,
in our measurement, the response time for one code sub-
mission becomes nearly 10 seconds. The reduction of this
time by improving codes of the system and adopting mul-
tiple servers will be in our future studies.

Table 4: Questions for questionnaire for TDD learning.

Question

Q1 Do you think to use the system is easy ?

Q2 Do you think to write the test code is helpful in
understanding the assignment specification ?

Q3 Do you think the response time after the code
submission is short ?

Q4 Do you think the coverage report is helpful
in writing the test code ?

Q5 Do you think the graphical coverage report is
useful ?

Q6 Do you understand the TDD method by using
this system ?

Table 5: Questionnaire results for TDD method learning.

1 2 3 4 5

Q1 no 0 4 2 2 3 yes

Q2 no 1 0 4 4 2 yes

Q3 no(long) 1 2 3 1 4 yes(short)

Q4 no 0 0 4 2 5 yes

Q5 no 0 1 3 5 2 yes

Q6 no 0 0 3 6 2 yes

6 Conclusion

This paper presented an improvement of the Web-based
Java programming learning system using the test-driven
development method by introducing a code coverage mea-
surement tool called Cobertura. It can detect an incom-
plete test code through measuring the coverage rate of
testing the model source code by the test code. The eval-
uation results through experiments confirmed the effec-
tiveness of the improved system. Improvements of user
interfaces by using a code editor for multiple browsers,
evaluations using harder assignments, and reductions of
the system response time will be in our future studies.

References

[1] K. Beck, Test-driven development: by example,
Addison-Wesley, 2002.

[2] N. Funabiki, T. Nakanishi, N. Amano, H. Kawano,
Y. Fukuyama, and M. Isogai, ”A software architec-
ture and characteristic functions in learning manage-
ment system ”NOBASU”,” Proc. SAINT 2010, pp.
109-112, July 2010.

[3] Junit, http://www.junit.org/.

[4] CodePress, http://sourceforge.net/projects/codepress/.

[5] Code coverage measurement tool Cobertura,
http://cobertura.sourceforge.net/.

