
 
Abstract -- An efficient and reliable fault tolerance protocol 
plays an important role in making the system more stable. The 
most common technique used in High Performance Computing 
is rollback recovery, which relies on the availability of 
checkpoints and stability of storage media. Unstable media can 
result in failure of the nodes of the grid. Furthermore 
dedicating powerful resources solely as checkpoint storage 
results in loss of computation power of these resources which 
may become bottlenecks when the load on the network is high. 
A new protocol based on replication is proposed in this paper. 
To ensure the availability of valid checkpoints even in the case 
of checkpoint server or a whole cluster failure, the checkpoints 
are replicated on all checkpoint servers in the same cluster as 
well as on other clusters. To minimize the wastage of 
computational power of the most stable nodes in the cluster, 
our protocol utilizes the CPU cycles of dedicated servers in the 
case of high loads on the network. 
 
Index Terms: Checkpoint storage; fault tolerance in grid; 
checkpoint replication 

I. INTRODUCTION 

The development of Wide Area Networks and the 
availability of powerful resources are changing the way 
servers interact. Technological advancements make it poss-
ible to utilize geographically distributed resources in multiple 
owner domains to solve large-scale problems in the fields of 
science, engineering and commerce. Therefore Grid and 
cluster computing have gained popularity in High Perfor-
mance Computing. However, the technologies pose many 
challenges with respect to computational nodes, storage 
media and interconnection mechanism, which affect overall 
system reliability. As the size of Grid increases the Mean 
Time Between Failure (MTBF) decreases to a critical level 
[1]. Large applications (e.g. scientific and engineering) 
which require a computing power of hundreds or thousands 
of nodes create problems with respect to reliability which 
occur due to node or link failure giving rise to the need for 
dynamic configuration of the grid over runtime. Thus fault 
tolerance is an indispensable characteristic of Grid. In tra-
ditional implementation a failure causes the whole distribu-
ted application to shutdown requiring it to be restarted 
manually [2]. To avoid restarting the application from the 
beginning a technique called rollback recovery is used which 
is based on the checkpointing concept. In checkpoint-based 
strategies, the executed portion of the process is periodically 
saved to a stable storage medium as a checkpoint, which is 
not subject to failures. In the case of a failure, further comp-
utation is started from one of these previously saved states. 
Checkpointing can be classified into three categories [3]: 
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 Uncoordinated checkpointing: Every process 
independently saves its checkpoints, thus, eliminating 
the need to communicate with other processes in order 
to initialize checkpoints but this technique suffers from 
domino effect 

 Coordinated checkpointing: Processes have to 
coordinate with each other in order to form a consistent 
global state of checkpoints, so there is no chance of 
domino effect in this technique, and 

 Communication-induced checkpointing: Processes 
initiate some of their checkpoints independently while a 
domino effect is prevented by the addition of 
checkpoints that are forced by protocol. 
 

The fault-tolerance mechanism must have the ability to 
save generated checkpoints on a stable storage [4]. Usually 
this can be achieved by installing dedicated checkpoint 
servers, but these dedicated servers may become a bottleneck 
when the grid size increases. To overcome this problem, 
grid’s shared nodes can be used to store checkpoint data. The 
following figure illustrates the concept of checkpoint storage 
over a stable storage media. 
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Figure 1.  Fault tolerance by checkpoint/restart. 

 
One way to provide checkpoint storage reliability is 

replication, in which multiple copies of a checkpoint are 
stored on different nodes so that data can be recovered even 
when part of the system is unavailable. Another approach 
used is to break data into fragments and add some 
redundancy so that data can be recovered from a subset of 
the fragments. The most common technique used to break 
data into redundant fragments is the addition of parity 
information. Parity calculation is less reliable as compared to 
replication, since failure of only one checkpoint can be 
tolerated, failure of two consecutive checkpoints results in 
loss of data, while replication can provide N-1 failure 
tolerance where N is the total number of nodes in the system. 
Checkpoints stored on storage disks are called disk-based 
checkpointing and checkpoints stored in memory are called 
diskless checkpointing. 

Beside checkpoint storage, a fault tolerant protocol must 
also address the heterogeneity and dynamic nature of 
resources which is unavoidable in a Grid environment. 

In this paper a new protocol named Reliable Checkpoint 
Storage Strategy (RCSS) is proposed which ensures 
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availability of valid checkpoints even in the case of 
checkpoint server or a whole cluster failure. It also shortens 
the checkpoint wave completion time by having the 
checkpoint server partially acknowledge the client when it 
records the chunk and then replicate it over other servers as 
well as on other clusters. Also our protocol utilizes the CPU 
cycles of dedicated servers in the case of high network load; 
hence, it minimizes the wastage of processing power of these 
most stable nodes of clusters. 

 

II. RELATED WORK 
 

In order to tolerate faults the strategies based on 
checkpointing save the executed portion of processes on 
stable storage so that the executed portion can be retrieved in 
case of failure and further computation can be carried out. 
Checkpoints can be initiated in three ways which have been 
discussed in the previous section. Chandy and Lamport [5] 
were the first to introduce a coordinated checkpointing 
protocol for distributed applications.  

A. Disk-based Checkpointing 
Disk-based checkpointing is advantageous in the sense 

that it can tolerate the failure of N-1 nodes, where N is the 
total number of nodes in the system. Bouabache et al [2] 
consider the scenario of a cluster of clusters; replication of 
checkpoints is done over stable storage and the number of 
these stable storage called checkpoint servers, are fixed in 
each cluster. Checkpoint servers are responsible for 
replicating the received chunk of the checkpoints on all other 
checkpoint servers. Two variants of replications are 
presented in [2] 

 Simple Hierarchical Replication Strategy (SHRS): 
The checkpoint server receiving the chunk of a 
checkpoint from a client becomes primary 
checkpoint server for that chunk and is responsible 
to replicate the checkpoint on all the checkpoint 
servers of its group and to checkpoint servers of 
other groups. So each primary server replicates the 
chunk to (s+i0 mode [2m]) nodes. But in this 
technique the intermediary servers have no role to 
play. 

 

Figure 2.  Checkpoint replication. 

  Greedy Hierarchical Replication Strategy (GHRS): 
Here the replication process is accelerated by the 
involvement of intermediary servers in the 
replication. For this a set of checkpoint servers is 
defined for each checkpoint server using a formula 
{s, s+20, s+21, …, s+2m-1} called children of 
checkpoint server ‘s’. However this technique 

suffers from the overhead of time to store the 
checkpoint on stable storage [6]. 

 

 The Figure 2 shows the checkpointing replication 
transaction steps. Here f is the chunk to be 
replicated, CS is Checkpoint Server, Rq is Request 
to inquire whether the chunk has been received or 
not, Rp and Rn are the response of the request Rq. 
The client sends its checkpoint to the checkpoint 
server which becomes primary for that chunk. The 
primary checkpoint server then replicates the chunk 
to its children according to the formula given above 
as depicted in figure 2. Then each intermediary 
server sends request to its children to inquire about 
arrival of the chunk, if the children send negative 
reply then the checkpoint is forwarded to children. 

 
B. Diskless Checkpointing 

To reduce the overhead of disk-based checkpointing 
Plank et al. [7] introduced the concept of diskless 
checkpointing where the stable storage media is replaced by 
memory for checkpoint storage. Z. Chen at al [8] presented 
checksum-based checkpointing strategy which relies on 
diskless checkpointing. The technique is scalable as the 
overhead to survive K failures does not increase with 
increasing number of application processes. The key idea in 
this technique is pipelining of data segments. All the 
computational processors and the checkpoint processor are 
organized in chain, where each processor receives the data 
segment from its predecessor, calculates the checksum and 
sends it to the next processor in the chain and the process 
continues until the segment reaches the checkpoint server 
which is at the end of the chain. The checkpoint server will 
receive a segment at the end of each step and the checkpoint 
will be completed as soon as the last segment is received at 
the checkpoint server. 

In Checkpoint Mirroring (MIR) [7], the checkpoint 
mirroring technique is used in which each processor saves a 
copy of its checkpoint to another processor’s local disk. In 
the case of processor failure the copy of that checkpoint will 
be available for a spare processor to continue the execution 
of that process. The drawback of this technique is the need 
for space to store m+1 checkpoints per processor. The 
phenomenon is shown in Figure 3. N+1 Parity (PAR) [9] is 
motivated diskless checkpointing technique; it overcomes the 
space overhead of checkpoint mirroring with parity 
calculation that is stored on the central disk. The PAR 
checkpointing process is presented in Figure 4. 
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Figure 3.  MIR checkpointing. 



P. Sobe [9] presented two variants of parity 
calculation based on a Redundant Array of Independent 
Disks (RAID)-like storage scheme. In Parity Grouping over 
Local Checkpoints (PG-LCP) parity is calculated over local 
checkpoints and then stored on an additional node. If the 
size of the local checkpoint is different from the checkpoints 
received, then to calculate parity, the size of each checkpoint 
has to be enlarged to the size of the biggest checkpoint and 
these unused bits are assumed to be zero in calculation. To 
restart a single failed process, its last saved state has to be 
reconstructed which is done by XOR-ing all other 
checkpoints and parity. This process requires the transfer of 
N-1 checkpoints and parity. The unit of the parity scheme is 
the entire checkpoint here. The Phenomenon is elaborated in 
Figure 5. 
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Figure 4.  PAR chekpointing. 

 
In Intra Checkpoint Distribution (ICPD), the checkpoint 

is divided into strips at local nodes and the parity is then 
calculated over these stripes (as shown in Figure 6). Then 
distributed software system transfer and write the parity and 
strips to disks. Here the unit of parity scheme is a strip. In 
addition to the parity information the length of the 
checkpoint is also stored at the parity node so that the 
checkpoint can be recovered in the original length even if the 
strip and information related to it is lost. 

However diskless checkpointing incurs the overhead of 
high memory for storing checkpoints. While calculating the 
parity each processor has to communicate with the parity 
processor which may cause a communication bottleneck. 
Also to recover a failed processor, checkpoints from all other 
processors as well as from the parity node are required which 
is also an expensive task in terms of communication.  

 
 

III. SYSTEM MODEL 
 

As the Grid is the collection of powerful resources that 
are managed by different administrative domains, in this 
paper the Grid is considered as a cluster of clusters. The Grid 
architecture is defined by the following: 

 There are “K” clusters in the Grid.  
 Each cluster has “N” nodes. 
 Among these “N” nodes some are dedicated 

checkpoint servers, and some have dual roles to play, 
i.e., in high load, these nodes will perform the 
processing and also store chunks, and in low load, 
they will only perform the processing, and the rest of 
the machines in the cluster will perform processing 
only. 

 The clusters are connected through front-end 
machines. 

 It is quite possible for any component to fail at any 
time in a Grid environment. A coordinated 
checkpoint protocol will handle the client failures. 

 In this paper a strategy will be outlined to deal with 
the failure of checkpoint servers to guarantee the 
reliability of the storage service even when a 
checkpoint server fails. Failure can be any of the 
following types: 

 A checkpoint server in a cluster may be disconnected 
due to link failure. 

 A cluster may be disconnected from rest of the grid 
due to failure of the front-end machine of the cluster. 

 Simultaneous failure of all the components of the 
cluster could occur. 

 

Figure 5.  Parity grouping of local checkpoints 

 
 

Figure 6.  Intra-checkpoint  distribution 

 

     Further assumptions regarding failure are as follows: 
 A group failure will occur only if any connection to 

the checkpoint server is lost, for example, a front-end 
machine failure due to crash. 

 The system will crash only if K-1 clusters get 
disconnected. 

 In the case of a cluster disconnected or group failure, 
the processes that were being executed in this cluster 
will be restarted in another one. 

 There will be no more than x-1 checkpoint-server 
failures in a cluster, where ‘x’ is total number of 
checkpoint servers in that cluster. 
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IV. RELIABLE CHECKPOINT STORAGE STRATEGY 
 

Our protocol works in two steps, in storage phase the 
checkpoints are stored to checkpoint servers. The recovery 
phase is executed when any of calculation nodes fail and 
the last valid checkpoint images are downloaded. 

A. The Storage Phase 

In this phase, all the compute nodes send their chunks to 
the checkpoint servers in a distributed manner i.e., in round 
robin fashion. The server receiving the chunk from the 
compute node becomes the primary server for that chunk and 
is responsible for replicating it on all the servers in the same 
cluster as well as on other clusters in the Grid. The intra-
cluster replication is done in a hierarchical way according to 
the following formula: 

{s, s +20 mod [m], s +21 mod [m], ··· , s +2 n−1 mod [m]}       
(1) 

where 

s is the checkpoint server, 

m is the No. of checkpoint server, and  

n is the bit identifier of the checkpoint server (e.g. for 7 
checkpoint servers 3 bits are used as their identifiers). 

Each checkpoint server receiving the image from another 
checkpoint server sends back an ACK after properly storing 
that chunk. Meanwhile the checkpoint server also sends its 
chunk to checkpoint servers in other clusters; this replication 
is also done in a hierarchical manner according to the 
following formula: 

{c, c +20 mod [m], c +21 mod [m], ··· ,c +2n−1 mod [m]}        
(2) 

where 

c is the cluster number, 

m is the total number of clusters, and 

n is the bit identifier of cluster. 

The server that receives the checkpoint becomes pseudo-
primary for that chunk. To shorten the checkpoint wave 
completion time the pseudo-primary server saves the chunk 
and sends back a partial ACK to the primary server so that 
the primary server can acknowledge the client for that chunk 
and the client may proceed with processing. Then the 
checkpoint server ensures that all the clients of the same 
application have recorded their checkpoints correctly and 
validates the checkpoint wave locally. Concurrently the 
pseudo-primary servers replicate their respective chunks on 
all other checkpoint servers and on getting ACKs from each 
of them, the pseudo-primary servers send back a full ACK to 
the primary server. 

B. The Recovery Phase 
            At the start of the recovery phase, different 
checkpoint servers conduct an agreement for the last valid 
checkpoint wave. In this agreement process all checkpoint 
servers send their last valid checkpoint wave number and the 
greatest number agreed by the majority of the servers 
becomes the result and then processing starts from that point 
onward. For this process, model B, also used by F. 
Bouabache in [2] is used. The model has the following 
properties 
 After some time ‘x’ all correct processes will realize a 

process that was failed. 

 After some time ‘y’ most of the processes will realize a 
process that is correct. 

For each checkpoint server the technique defined in [1] is 
used to keep the list of failed checkpoints and to ensure that 
the agreement for last valid checkpoint wave is conducted by 
some correct process. After a failure a client first asks for a 
valid checkpoint wave number and checks it locally or it 
sends a request to the checkpoint servers of the same cluster 
for the chunks. The recovery is also done in a distributed 
fashion. All the checkpoint servers send the chunks to the 
requesting client for which these servers are primary. On 
receiving the chunks the image is reconstructed and the client 
is restarted.  

 
V. EXPERIMENTAL RESULTS 

The experiments were conducted in a GridSim simulator. 
For each cluster it was assumed that all the checkpoint 
servers are connected in a complete graph and all the intra-
cluster links are faster than all the inter- cluster links 

 

 
Figure 7.  Impact of replication with respect to different numbers of 

Checkpoint Servers. 

 
Initially, to compare the performance of three strategies 

i.e. Simple Hierarchical Replication, Greedy Hierarchical 
Replication and Reliable Checkpoint Storage Strategies, the 
clients’ number was set to 200, the cluster number was set to 
1, the checkpoint size per client to 1 Megabytes and the 
checkpoint server numbers are varied. Figure 7 presents the 
simulation results. Figure 7 represents the impact of 
replication within a cluster with respect to different numbers 
of checkpoint servers. It can be seen from the figure that the 
Reliable Checkpoint   Storage Strategy replicates 
checkpoints to all of the servers in the group much faster the 
than other two strategies. The reason is that in Simple 
Hierarchical Replication the primary checkpoint server 
replicates the chunk over all other checkpoint servers and 
waits for the acknowledgement from them, and then it 
acknowledges the client to proceed with its processing. 

In Greedy Hierarchical Replication, although the 
checkpoint servers are arranged in tree to replicate 
checkpoints but the servers exchange request and reply 
messages to inquire about the arrival of chunk and then act 
accordingly which results in long checkpoint wave 
completion time. While our strategy do not exchange control 
messages among checkpoint server to inquire about chunk 
arrival rather each checkpoint server sends the chunk to its 
peers with sequence number. If the receiver has already 
received the chunk with the same sequence number, it 
discards the received chunk; otherwise the receiver saves it. 
This clearly decreases the checkpoint wave execution time 
which is evident from figure 7. The Simple Hierarchical 
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Replication was not considered for further experiments as it 
proved to be the slowest in accomplishing the task. 

In figure 8, to investigate the scalability of clients’ 
numbers within a cluster, the cluster and checkpoint server 
number were fixed at 1 and 6, respectively. It was observed 
during experiments that the checkpoint wave completion 
time depends on the number of clients; since, more the 
number of clients, greater is the data to be stored. To identify 
the step (client communication time and replication time) 
that affects the checkpoint wave completion time the most 
the two steps are isolated in the following figures. 

 

 
Figure 8.  Checkpoint wave completion time with respect to different 

numbers of clients. 

 
 Figure 9 shows the effect of client communication 
time (the time it takes the client to send its chunks to 
checkpoint servers in a round robin fashion). When the 
number of clients were greater than 400 dual role nodes 
were used to store their own checkpoints locally which 
reduced the clients’ communication time significantly. (For 
number of clients greater than 500, some stable nodes store 
their own checkpoints locally, and for number of clients’ 
grater then 600 some checkpoint servers perform processing 
too). 

 
Figure 9.  Impact of storage with respect to different numbers of clients. 

 
Figure 10 shows the time it takes to replicate the chunks 

in the system with respect to increasing number of clients. 
The graph clearly depicts that replication time influences the 
checkpoint wave completion time the most. As compared to 
GHRS, RCSS performs well because of two reasons:  

 There is no use of control packets.  

 Dual role nodes are used for checkpoint storage, which 
decreases the overall checkpoint wave execution time. 

 

Figure 10.   Impact of replication with respect to different numbers of 
clients. 

Figure 11 depicts that by using tree topology RCSS 
outperforms the GHRS which replicates the chunks in all 
clusters in a flat order (primary checkpoint server in a cluster 
sends its chunks to all the clusters in the grid). For this 
experiment the number of clients ‘c’ was set to 100, number 
of checkpoint servers ‘cs’ was set to 30 and the number of 
clusters ‘k’ was varied. So there were c/k clients and cs/k 
checkpoint servers per cluster. The initial increase in 
checkpoint wave completion time is due to the increase in 
inter-cluster communication links which, as discussed earlier, 
are slower than intra-cluster communication links. But after 
20-22 clusters, RCSS gave stable results because of 
topology. To make the graph easy to understand, client 
communication time and replication time are shown in two 
separate graphs as follows. 

 

Figure 11.  Impact of topology. 

Figure 12.  Impact of topology on client communication step. 
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Figure 12 represents that as the number of cluster 
increases the number of clients per cluster decreases; and 
hence, the client communication time decreases too. In this 
graph the communication time of both RCSS and GHRS is 
same because the number of clients per cluster is less and so 
RCSS do not use the checkpoint servers for job execution. 

 

Figure 13.  Impact of topology on replication step. 

      Figure 13 shows the impact of topology on the 
replication step with decreasing number of clients and 
checkpoint servers per cluster. It is evident from the figure 
that RCSS performs better than GHRS. The reason is that 
checkpoint servers in RCSS do not exchange requests and 
reply messages for chunks and secondly, when the cluster 
number increases, the topology used in RCSS overcomes the 
drawback of slower inter-cluster communication links. For 
this experiment clients number per cluster was set at 100 
and checkpoint servers’ number per cluster at 20. RCSS in 
figure 14 outperforms GHRS because of its intra-cluster and 
inter-cluster replication strategy that has been discussed in 
earlier section. 

 
Figure 14.  Impact of topology with fixed number of clients and checkpoint 

servers. 

VI. SUMMARY 

Fault tolerance is an important characteristic of High 
Performance Computing (Grid, Cluster). To make the system 
fault tolerant rollback recovery is a most commonly used 
technique which relies on availability of checkpoints at the 
time of recovery. Most often special devices are dedicated to 
store checkpoints and it is assumed that these devices can 
never fail but the reality contradicts this assumption. In Grid 
or Cluster environment any device can fail at any time. 
Furthermore dedication of powerful resources for checkpoint 
storage only results in wastage of these resources when they 
are needed the most. 

We propose a protocol that ensures the availability of 
checkpoints in the case of checkpoint server failure or even 
in the case of cluster failure. Also our protocol utilizes the 
CPU cycles of some of dedicated checkpoint servers for 
computation when the load on network will be high. During 
practical measurement, in order to provide reliability the 
increase in network traffic was neglected. Placement of the 
jobs to resources was done in a random manner; the 
performance of this strategy can be improved with the help 
of a new and robust scheduling scheme. 
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