

Abstract— Today's digital world is made up of a diverse

collection of electronic devices like mobiles, net books, PDA's,
digital cameras, navigation systems etc for varied uses like
information retrieval, entertainment and so on. A typical smart
environment is heterogeneous in nature where the various
devices assist the user(s) seamlessly with their services. For
such an intelligent environment, one of the major research
challenge is interoperability among the services discovered and
composed. In this paper, I present an architecture using web
services (SOAP and/or REST based) as an effective way of
addressing the interoperability issue. The proposed solution
could be integrated into any smart environment framework
that may cater for other requirements as well such as context-
awareness, user preferences and more. A case study on a
typical smart conference room is done to depict the process.

Index Terms— Interoperability, Smart Environments, Web
service, Middleware, SOAP

 I. INTRODUCTION

A smart environment is a context sensitive system based on
ubiquitous computing, in which the environment interacts
with its inhabitants through embedded dedicated devices.
And the number of these devices are growing steadily. They
range from television sets and other appliances to mobile
handsets like tablets PCs, PDAs and phones. One of the
compelling goal of any smart environment is
interoperability among the services provided by these
heterogeneous devices, in a seamless fashion. The
interoperability factor is due to differences in operating
systems, programming language and hardware for the sub-
systems. While device interoperability in one issue, this
paper focuses on syntactic interoperability. The ability to
inter-operate with other services will permit a smart
environment to automatically adapt/compose services to
satisfy user preferences, or resolve conflicts when two or
more users share information or services. The system will
thus be able to provide the user automatically with what
they wanted, in a way they wanted and at times they wanted.
This paper proposes an architecture for an efficient
interoperable mechanism for any smart environment. More
specifically, in section 2, some related work is examined. In
section 3, a brief case of a smart conference room that aims
to highlight the interoperability scenario is described.
Section 4 describes the middleware solutions for
interoperability. Section 5 elaborates on the architectural
proposal, ISE. Section 6 proposes a hypothetical

Manuscript received Jan 11, 2012; revised Jan 22, 2012.
R. Vinob chander is with SSN College of Enginering, Chennai, INDIA

(phone: 918754488284; e-mail: vinobchanderr@ssn.edu.in).

environment to implement ISE. Finally, section 7 draws the
conclusion of the paper.

II. RELATED WORK

WHYRE [1] is a hands-free, sensory augmented, wearable
computer designed to turn museums and archaeological sites
into communicating machines. It offers a unified interface to
multiple format contents, including interactive 3D, sensors
driven QTVRs, and streamed animations. It is based on an
IA32 mobile platform with a 3D graphics accelerator. Its
operating system is Windows XP Embedded. Its high-level
architecture is shown in Figure 1. WHYRE uses a
Centralized multimedia content that are shared and
distributed though the network. The architecture is for a
specific use case. Context is only managed at the
application. It is not shared and does not have any impact on
the environment. (interoperability is thus reduced).

 Figure 1. WHYRE architecture

Service-Oriented Context-Aware Middleware (SOCAM) [2]
is an architecture for the building and rapid prototyping of
context-aware services. It makes use of a context model
based on OWL. SOCAM uses a centralized architecture and
has no privacy protection. Another work,
CoCA(Collaborative Context-aware) [3] platform for
pervasive computing uses an efficient distributed
architecture and an ontology model. However there is no
privacy protection with CoCa. CoBrA [4] is a context
broker architecture based on software agent system. The
broker manages contextual information described by OWL
and RDF/RDFS. Though it also allows users to define
privacy policy, the architecture of CoBrA is a centralized
one. ISE makes use of an approach where the problems with
the above frameworks could be overcome.

 Novel Ubiquitous Interoperable Context-aware
Smart Environments through Web Services

R. Vinob chander

III. CASE STUDY: SMART CONFERENCE ROOM

A typical conference room (Fig. 2) will have a door, a
projector, microphone, chairs, lights and more . Say each of
the following devices has built in sensors/embedded devices
equipped with a framework that makes use of a centralized
architecture or a distributed one. Also outside the meeting
rooms door is a bulb that glows whenever a meeting is on.
With such a setup if the services are not able to interoperate
in a timely, and efficient fashion, the bulb will not glow
even if the meeting is on. At a higher lever success will be
basically on the following condition (Fig. 3).

Figure 2. A smart conference room

Figure 3. Success criteria in a smart conference room

IV. MIDDLEWARE SOLUTIONS FOR INTEROPERABILITY

There are several middleware technologies and
languages that address interoperability issues in a smart
environment. These middleware technologies are built to
cater the interoperability tiers suiting the smart environment
requirements. The common selected approaches that drive
interoperability in any smart environment are Common
Object Request Broker Architecture (CORBA), Microsoft
Component Object Model (COM), .NET Framework, Sun’s
Java 2 Enterprise Edition (J2EE) and World Wide Web
Consortium’s (W3C) extensible Markup Language (XML)
based Web Services. In the following section, we evaluate
the interoperability approach using mentioned technologies
and selected SOAP/REST based Web Services as our
interoperability solution for a smart environment.

A. Common Object Request Broker Architecture (CORBA)

Common Object Request Broker Architecture (CORBA)
is an architectural framework established by The Object
Management Group (OMG) [5] as part of standard in Object
Management Architecture (OMA). The OMA set of
standards consists of Object Services, Object Request

Broker (ORB) function, common facilities, application
objects and domain interfaces. CORBA is structured to
allow integration of wide range of object systems and
provides mechanisms to find object implementation for a
request, to prepare implementation to receive request and
finally communicate with the data that making up the
request. CORBA provides a mechanism to define interfaces
between components, and specifies standard services such
as persistent object services, directory and naming services
and transaction services which describes the interoperability
feature for CORBA compliant applications. Researchers
from University of Texas at Arlington developed a smart
home architecture called MavHome [6]. MavHome
architecture was built using CORBA interface catering
software components and power line control for managing
systems in smart home environment. Although CORBA
interface could resolve interoperability by providing
interoperation feature for managing disparate systems, it
also has some drawbacks which may not be ideal for
implementation in a smart environment. Modification is
needed to enable joint execution of tasks among
heterogeneous sub-systems, especially if the systems are not
in compliant with CORBA specifications. Any modification
of legacy systems in smart home environment could be
costly and time consuming. Therefore a framework that will
enable interoperability in managing heterogeneous systems
without requiring modification to the existing systems is
highly needed.

B. Component Object Model (COM)

Component Object Model or widely known as COM was
introduced by Microsoft which enables applications built
from binary components defined by software vendors.
COM’s successors are Distributed COM (DCOM) and
COM+. These technologies are aimed to provide generic
mechanism in integrating the components on Windows
based platforms. In terms of interoperability, Component
Object Model (COM) technologies provide similar features
as CORBA. The difference is that COM address
interoperability among binary software components while
CORBA tackles at the source code level. However, the
drawback of COM in providing interoperability is that it
requires information of the remote systems before
functioning and eventually leads into modifying the legacy
systems that are not complied with COM standards. Similar
to CORBA, modification of legacy systems in a smart
environment is not desirable

C. Dot NET Framework

.NET Framework was developed by Microsoft to provide
a set of standard components and languages which is
compliant to ECMA-335 Common Language Infrastructure
(CLI) standard. Common Language Infrastructure (CLI)
enables code reusability in single or multiple operating
system platforms. The main advantage of the .NET
Framework is the Common Language Runtime (CLR)
mechanism that allows objects used in one language can be
used in another language. CLR depends on Microsoft
Intermediate Language (MSIL) in producing managed code.
All language development tools could produce the same
MSIL regardless of the language used to write particular
codes. The MSIL code produced by language development
tools are then compiled by a Just-in-time (JIT) compiler to

produce the actual machine code that executes for specific
applications. .NET Framework supports interoperability by
providing cross-language platform where classes and
objects are interchangeable and reusable without using a
specialized Interface Definition Language (IDL). .NET also
enables integration of .NET programs and legacy codes.
Interfacing legacy codes is supported by enabling
applications that are part of managed code environment
generated by CLR to access unmanaged Dynamic Link
Library (DLL) functions.
Legacy codes support are one of the contributing factor in
promoting interoperability for smart home environment.
.NET Framework could become an ideal solution for smart
environment technologies especially with its language and
platform independence features for application
development. In addition, recent development of Mono
Framework, enable porting the .NET features into broad
broad-based interoperability solution by supporting open
source based operating systems [7].

D. Java Middleware Technologies

Java Middleware technologies support interoperability by
providing distributed protocols and APIs that can be used to
create an interoperable system. In Java based platform,
remote invocation or messaging is the key to achieve
interoperability. Java middleware offers Remote Method
Invocation (RMI) mechanism that is similar to CORBA-like
object oriented middleware layer as distribution protocol.
RMI enables objects to be called remotely from other
applications in a heterogeneous environment. This feature
also extends for interoperation execution between systems
and information exchange. One of the implementation of
Java Middleware in a smart environment is the OSGi
framework [8]. The OSGi Alliance introduced the Open
Service Gateway Initiative (OSGI) specification defines a
standardized, component oriented, computing environment
for networked services. Work by Diaz Redondo et.al [9]
focused on service composition using OSGi framework for
home environment. Another solution proposed by A.R Al-
Ali et.al [10] demonstrated the potential of Java Server
Pages in managing home appliances over heterogeneous
environment. However, all the proposed design requires
installation of Java Virtual Machine (JVM) in the remote
systems. Java Middleware presents a competing approach to
heterogeneous systems management similar to the one
offered by CORBA and COM family. The core advantage
of using Java Middleware technologies include its support
for interoperability in terms of interoperation execution and
information exchange, and full support for modification of
existing systems. However, Java Middleware can only be
implemented with the presence and requirement of Java
Virtual Machine (JVM) in remote and local component of
the system involved.

E. Web Services

Web Services are collected set of XML based protocols
that provides fundamental blocks for creating distributed
applications [11]. The functionality of Web Services are
based on publish, discover and invoke that describes
standardized concept of function invocation relying on web
protocols, independent of any platform (operating system,
application server, programming language, database and
component model). Web Services consist of three entities

[12]: a) Service Provider – Create Web Services and publish
to the external environment by registering through Service
Registry b) Service Registry- Registers and categorizes
published services
c) Service Requester - uses Service Registry to find a
needed service and bind them accordingly to Service
Provider. Figure 4 below shows the three entities of Web
Services.

Figure 4. The core entities of web service

These entities of Web Services are founded upon three

major standard technologies: Simple Object Access Protocol
SOAP), Web Services Description Language (WDSL) and
Universal Description Discovery Integration (UDDI). All
these standards are based on XML as defined mechanism
for data definition, initiated by the World Wide Web
Consortium (W3C). Web Services Description Language
(WDSL) provides a model along with XML based format in
describing the Web services. A WSDL description is done
with two levels of stages. One is the abstract stages consist
the messages that it sends and receives. On the concrete
stage, a binding determines the transport and wire format
details for one or more interfaces. Ports or known as
EndPoint combine the interface bindings information with a
network address. Finally a service groups all the Endpoints
that implement a common interface. Universal Description
Discovery and Integration (UDDI) is the last element
needed in providing Web Services implementation. The
main goal of UDDI is the specification of a framework for
describing and discovering Web Services. UDDI defines
data structures and APIs for publishing service descriptions
in the registry and querying the registry to look for
published descriptions. UDDI is expected to be a service
repository of business organization near future towards
extending their business information and value added
service for smart home environment. In a smart environment
context, Web Services are identified as potential solution for
solving interoperability dimension in managing disparate
systems. It is also worth highlighting about organization like
Open Building Information Exchange Group (OBIX),
working towards developing comprehensive standards using
XML and Web Services to cater information exchanges
between heterogeneous systems in home and buildings [13].

F. The Simple Object Access Protocol (SOAP)

Simple Object Access Protocol (SOAP) is an inter-
application communication mechanism targeted for
exchanging structured information in a distributed
environment. SOAP exchanges information using messages.
In the specification developed by World Wide Web

Consortium (W3C), it is also included a method for
encapsulating Remote Procedure Calls (RPCs) within SOAP
messages. Ideally, SOAP is created to support loosely-
coupled application that could exchange one-way
asynchronous messages. SOAP comprises the following
elements: an envelope describing the content of the message
and the way to process it, a set of encoding rules to express
instances, application defined data types and a convention
for the representation of remote procedure calls and
responses. Figure 5 shows the structure of a SOAP message.

Figure 5. Structure of a SOAP message

Each envelope consists of a header and a body. The
information intended to be transported will reside in the
body of the message. Any additional information or value
added services will be included in the header. SOAP
protocol can be used in two different style called document-
style and RPC-style. In document style, interaction happens
between two applications agreeing upon the structure of
documents exchanged among them. While in RPC-style, a
SOAP message encapsulate request while another message
encapsulate the response. In this paper, we will demonstrate
the ability of SOAP in providing generic interoperability
mechanism.

V. ISE (INTEROPERABLE SMART ENVIRONMENT)

ARCHITECTURE

Sub-systems in a smart environment comprise a number of
tasks that are associated with the sequential use of different
systems and applications. The need for interoperability in
managing these sub-systems has led towards a transition of
vendor independence and open systems, taking into account
of middleware and Internet technologies. In this section we
propose an architecture that builds upon the general trend
towards interoperability for a smart environment taking an
example of a smart conference room. Figure 6 shows the
proposed system architecture.

Figure 6. ISE architecture

The architectural diagram is shown with respect to a smart
conference room. Each of the devices expose their services
to a universal service repository(SR). The devices can
exchange information among themselves through an
application gateway called as an service orchestrator(SO).
The actual servant could be written in any language and
resides with the individual devices. The devices then expose
the services by registering themselves in a public service
repository. The service is identified by their corresponding
WSDL(Web service definition language) files, if SOAP
based or with their uri's, if REST based. The message
exchange is then XML-SOAP based or HTTP- based.
Depending on the kind of smart environment we can opt for
either SOAP based implementation or REST based one.
Although the service, if implemented as a SOAP based one
is heavy, it comes with features such as security, scalability
and all others that are part of the container upon which they
are deployed. So, with this proposed style interoperability
issues could be solved.

VI. PROTOTYPE IMPLEMENTATION

Considering the interoperability, privacy and scalability
features of Java EE Container, Java language together with
SOAP service classes are used to operate, manage and
control the system operation of sub-systems in a smart
conference environment. The Container used for the
implementation is GlassFish Server V 3.1.1. The engine
which manages the flow and orchestration of services using
SOAP, is written in java and is a modified version of the
BPEL engine, that is specific to a conference room. The
engine is additionally modified so that it could be plugged
in to NetBeans7.1. This is because NetBeans 7.1 does not
out of the box have support for BPEL.

 The XML SOAP web services is developed using Java
Programming language in NetBeans 7.1 Integrated
Development Environment. The sub-element details are
stored in Java DB database and retrieved as JPA(Java
Persistence API) entities. The sub-systems in smart
conference room must be secure in terms of interoperation
and reliability while changing states between multiple
applications. Realizing the importance of security,
GlassFish provides these features out of the box and the
security level required with a service could be defined using
a declarative approach. Services were developed for the
elements projector, access control microphones and chairs

and were deployed into the Glassfish Container. These
services were tested in a laptop within a virtual room
environment created using VRML. These services
communicated effectively by discovering each other
through the registry and finally switched on the virtual bulb.
In future with sufficient funds available this will be tested
on sensor devices with embedded CPUs deployed with the
implemented ISA.

VII. CONCLUSIONS AND FUTURE WORK

The work presented in this paper deploys the
interoperability requirement for a smart conference room
namely, the Simple Object Access Protocol (SOAP) with
Web Services ability in providing interoperation and
scalability for managing sub-systems. In implementing
interoperability among sub-systems, data representation
must be independent regardless of operating platform. Our
work indicates that SOAP protocol maximizes the
interoperability and performance of sub-systems. Future
research holds a lot of promises especially in extending the
interoperability dimension towards semantic and business
tiers. Also device's physical level and network level
interoperability is of concern. As an extension to this work,
efficient context-awareness and user preferences algorithms
could be built and deployed on to ISA to truly make a self
improving smart environment

REFERENCES
[1] Tullio Salmon Cinotti, Raviprakash Nagaraj, Giuseppe Mincolelli,

Giuseppe Raffa, Luca Roffia, Fabio Sforza, "WHYRE: A Context-
Aware Wearable Computer for Museums and Archaeological Sites,"
Eighth IEEE International Symposium on Wearable Computers
(ISWC'04), 2004, pp.174-175.

[2] Tao Gua,b, Hung Keng Punga, Da Qing Zhangb, "A service-oriented
middleware for building context-aware services," Journal of Network
and Computer Applications 28 (2005),pp. 1–18 .

[3] Simon schubiger-Banz, Beat Hirsbrunner, "A model for software
configuration in ubiquitous computing environments," first
international Conference, Pervasive 2002, Springer, pp. 181-194.

[4] Akio Sashima, Noriaki Izumi, Koichi kurumatani, "Agents that
coordinate web services in ubiquitous computing," Ubiquitous
computing systems,Second International Sysmposium, UCS 2004,
Springer, pp. 131-145

[5] Michi Henning and Steve Vinoski, Advanced CORBA Programming
with C++, Addison-Wesley, 1999

[6] D. J. Cook, M. Youngblood, E. O. Heierman, III, K. Gopalratnam, S.
Rao, A. Litvin, and F. Khawaja, "MavHome: an agent-based smart
home," in Pervasive Computing and Communications, 2003,(PerCom
2003), Proceedings of the First IEEE International Conference on,
2003, pp. 521-524.

[7] Mono-Project, http://www.mono-project.com/Main_Page

[8] OSGi Alliance, http://www.osgi.org

[9] R. P. Diaz Redondo, A. F. Vilas, M. R. Cabrer, J. J. Pazos Arias, and
L. Marta Rey, "Enhancing Residential Gateways: OSGi Service
Composition," Consumer Electronics, IEEE Transactions, vol. 53,
University Science, 1989, pp. 87-95

[10] A. R. Al-Ali and M. Al-Rousan, "Java-based home automation
system,"

 Consumer Electronics, IEEE Transactions, vol. 50, 2004, pp. 498-504
[11] T. Perumal, A. R. Ramli, and C. Y. Leong, "Design and

implementation
 of SOAP-based residential management for smart home systems,"
 Consumer Electronics, IEEE Transactions on, vol. 54, 2008, pp. 453-

459
[12] Gisutavo Alonso, Fabio Casati, Harumi Kuno and Vijay Machiraju,
 Web Services: Concepts, Architectures and Applications, Springer-
 Verlag Berlin Heidelberg, 2004.
[13] oBIX (Open Building Information Xchange), http://www.obix.org

