


Abstract—Recently, there has been a growing need for

research to manage the knowledge of an organization effectively
using ontology. To increase the effect of knowledge
management, the development of a well-defined ontology using
various concepts about the knowledge of an organization is
needed. There are two approaches in the current methodology
for ontology development. One approach is to develop ontology
from database information, the other approach is to construct
ontology using domain terms according to a top-down method
or bottom-up method, and so on. In this paper, we propose a
Mixed Ontology Building Methodology (MOBM) which
combines the characteristics of both approaches to more
effectively represent organizational knowledge on ontology. The
proposed method first creates kernel ontology as the core, using
various types of database information, including database
schema, and then completes the additional ontology by applying
the top-down method and the bottom-up method, respectively.

Index Terms—ontology, ontology building methodology,
kernel ontology, database schema

I. INTRODUCTION

Ontologies are formal and consensual specifications of
conceptualizations that provide shared understanding of a
domain [1]. Ontology has been utilized in knowledge
management, natural languages processing, information
retrieval and database integration, but recently it has been
suggested as a promising method for the management of
Internet resources in the new generation web environment
called semantic web. Consequently, the number of ontologies
is increasing rapidly. The development of ontology is
becoming a crucial part of semantic web and knowledge
management, and importance of ontology is increasing
continuously. In order to develop a well-focused ontology
that can manage an organization’s knowledge and
information effectively, the various concepts necessary for
good knowledge management should be defined clearly in
the ontology used.

The process of developing ontology suitable for an
organization’s knowledge management requires a lot of time
and considerable cost [2]. Accordingly, it is important to
reuse already pre-developed ontologies. In general, however,
it is hard for an organization to find a pre-developed ontology
that expresses that organization’s information appropriately,
so therefore, it is necessary to develop ontology that is

Manuscript received November 29, 2011; revised January 12, 2012.
This research was supported by ADD (Agency for Defense Development).

Contract Number UD110058MD.
Minyoung Ra, Donghee Yoo, Sungchun No, Jinhee Shin and Changhee

Han are with the Faculty of Electronics Engineering & Information Science,
Korea Military Academy, Seoul, Republic of Korea (e-mail: {myra, dhyoo,
is695, suhacci, chhan}@kma.ac.kr).

customized to the specific organization. The core of ontology
development is to define the key concepts necessary for the
clear expression of an organization’s knowledge and reduce
the cost of development by simplifying that development
process. One method is to utilize database information
actually used in the organization to the fullest. A database is a
depository of information, and in relational databases, the
data are stored as tables. Such a database contains a large
volume of information that is very important to the
corresponding application domains. Thus, the utilization of
well-organized information in a relational database will allow
for quicker and more accurate collection of the core concepts
required for the development of a precise ontology for each
task.

Existing ontology development methodologies are largely
divided into two groups. One lies in the direction of
conceptualizing ontology and includes the bottom-up method
[3,4], top-down method [5], middle-out method [6] and
hybrid method [7]. The other methodology creates the
ontology from an existing database schema [8, 9, 10, 11, 12].
However, there are many restrictions in terms of building
ontology that accurately expresses an organization’s
knowledge and information when using just one method.
That is, the methods in the former group do not deal with
database information that expresses an organization’s
knowledge and information. In the latter method, the
ontology expresses only the concepts in the database and
therefore, only those limited terms necessary for knowledge
expression are included in the ontology.

Thus, this paper proposes a Mixed Ontology Building
Methodology (MOBM) that combines the characteristics of
both approaches to more effectively represent an
organization’s knowledge as ontology. The proposed method
first creates a kernel ontology as much as possible, which
then becomes the core, using various types of database
information, including database schema. The method
completes the additional parts of the ontology by applying the
top-down method and the bottom-up method respectively.
This paper describes the process for the staged application of
the proposed methodology based on a scenario for the virtual
database company and evaluates that methodology.
The paper is structured as follows. In Chapter II, we review
related works. In Chapter III, we present the overview of
MOBM proposed in this paper and describe the details of
each step of this approach. In Chapter IV, we introduce an
exemplary scenario, using the MOBM, and in Chapter V we
analyze lessons learned from this process. Lastly, in Chapter
VI we draw conclusions and suggest future research.

II. RELATED WORKS

Much work has been done on the issue of ontology
building methodology. The related work can be divided into

The Mixed Ontology Building Methodology
Using Database Information

Minyoung Ra, Donghee Yoo, Sungchun No, Jinhee Shin, and Changhee Han

Fig. 1. Overview of the MOBM

two categories. The first category collects terminology, then
builds the ontology by first analyzing concepts, then forming
a hierarchy for the concepts, and defining the relations
between the concepts and the rules for acquiring domain
knowledge. According to the refinement process assigned to
this task, the ontology is then completed. Several methods
have been reported for this task. The bottom-up method
starts from the most specific classes and then groups them
into more general concepts [3, 4]. The top-down method
starts with the definition of the most general concepts and
then divides these into subsequent sub-concepts in detail [5].
The middle-out method starts with the certain middle level
concepts and then applies the bottom-up method or the
top-down method appropriately as needed [6]. The hybrid
method merges ontologies developed from the bottom-up
method and top-down method, respectively, into one
ontology [7].

The second category of ontology building is to develop an
ontology from database schemas. This work is studied by
taking three directions: (1) Extract the ER model first from
the database schema using reengineering, then from that
model extract the ontology [8]; (2) Given the database
schema and ontology, for semantic web applications,
mapping rules between them are extracted [9, 10]; and (3)
Generate the ontology structure itself from the relational
database schema [11, 12].

In this paper, a mixed methodology is presented, which
first generates a kernel ontology using database information
as much as possible and then completes the ontology by
applying the bottom-up method and the top-down method,
respectively, to build additional parts of the ontology.

III. THE MIXED ONTOLOGY BUILDING AS METHODOLOGY

A. Overview of the MOBM

Fig. 1 depicts the overview of the MOBM. In this

methodology, mapping rules are defined to extract the main
concepts and main relations of certain domain ontology
from the target database schema. This kind of domain
ontology is called kernel ontology. Kernel ontology is
enhanced by adding upper-level terms and lower-level terms,

which are collected from domain knowledge or instances of
the target database because they may have new concepts or
new relations which did not exist in the target database
schema. Based on the top-down method, the upper-level
terms are conceptualized into upper concepts. In the same
way, the lower-level terms are conceptualized into lower
concepts using the bottom-up method. Once the upper
concepts and lower concepts are developed, they are then
linked to the kernel ontology.

The MOBM has eight steps for building domain
ontologies as follows:
● Step 1. Extraction of kernel ontology from database

schema
● Step 2. Making class hierarchies from upper concepts
● Step 3. Making class hierarchies from lower concepts
● Step 4. Connecting of these class hierarchies into a kernel

ontology
● Step 5. Enhancing the semantics between inter-terms
● Step 6. Enhancing any restrictions
● Step 7. Enhancing additional axioms and rules
● Step 8. Completion of the ontology

Fig. 2 illustrates the building sequence for each step. In

Fig. 2, some steps do not occur sequentially. For example,
Step 2 and Step 3 can be executed in parallel terms,
regardless of their sequence, and in the same way as Step 5
to Step 7 are.

Fig. 2. Building Steps for the MOBM

Upper Concepts

Kernel
Ontology

Lower Concepts

Top-down
Approach

Bottom-up
Approach

Mapping
Rules

Mixed Ontology

Business
Documents

Interview with
System

Operators

Domain Knowledge

TermsTerms

Upper-level
Terms

Lower-level
Terms

Relational Database System

Database Schema
Information

Database Instances

Instance-centric
Classification

Upper Concepts

Kernel
Ontology

Lower Concepts

Top-down
Approach

Bottom-up
Approach

Mapping
Rules

Mixed Ontology

Business
Documents

Interview with
System

Operators

Domain Knowledge

TermsTerms

Upper-level
Terms

Lower-level
Terms

Relational Database System

Database Schema
Information

Database Instances

Instance-centric
Classification

Step 1:
Extraction of kernel ontology

Step 2: Class hierarchies of
upper concepts

Step 3: Class hierarchies of
lower concepts

Step 4: Connection of
these hierarchies into kernel ontology

Step 5: Semantics
between inter-terms

Step 6: Restrictions Step 7: Axioms / Rules

Step 8:
Ontology completion

Step 1:
Extraction of kernel ontology

Step 2: Class hierarchies of
upper concepts

Step 3: Class hierarchies of
lower concepts

Step 4: Connection of
these hierarchies into kernel ontology

Step 5: Semantics
between inter-terms

Step 6: Restrictions Step 7: Axioms / Rules

Step 8:
Ontology completion

B. Extraction of kernel ontology from database schemas

Until now, many algorithms have been developed to
extract a domain ontology from database information [8, 9,
10]. Among this database information, database schema is
the most frequently used because it includes core concepts
and relations for building a domain ontology properly. In
this step, we present a set of fundamental mapping rules to
extract components of the kernel ontology from the database
schema. Fig. 3 lists the core database schema information
used in the mapping rules.

Database names, Relation names, Attribute names, Primary keys,
Foreign keys, Attribute data types, M:N relationship constraints,

Integrity constraints, Multi-valued attributes

Fig. 3. Core Information found in the Database Schema

In this paper, kernel ontology is represented in OWL

(Web Ontology Language). Thus, the mapping rules should
include how to transfer the core information of the database
schema into the components of OWL, such as Class, Object
property, and Datatype property. For this purpose, we use
the following notations:

Suppose that the database schema (DS) has N tables.
Then,

● T୧: the i-th table in DS where i = 1, 2, …, N
● Att୧,୨: the j-th attribute in T୧ where j = 1, 2, …, N୧
● PK୧: the set of the primary keys of T୧
● FK୧: the set of the foreign keys of T୧
● CK: the set of composite keys

Then, we have the following equations formed from the

definition.

DS ൌ ራ T୧

N

୧ୀଵ

, T୧ ൌ ራ Att୧,୨

N౟

୨ୀଵ

 for all i

Extracting the kernel ontology from DS, we have
● C୩: the k-th class in the kernel ontology where k = 1, 2,

…, M ≤ N
● C: the set of classes in the kernel ontology, where

C ൌ ራ C୩

M

୩ୀଵ

Based on the notations developed above, the mapping

rules are compiled as shown in Fig. 4.

Rule 1: Find T୶ for all x = 1, 2,…, N such that T୶ ב C.
This rule has the following two cases.
(1) T୶ such that PK୶⊂CK and T୶–PK୶=FK୶: This case

corresponds to the M:N relationship.
(2) T୶ such that PK୶⊂CK, ∃FK୶, FK୶⊂PK୶ and T୶–

PK୶=Ø: This case treats the multi-valued attribute.
Rule 2: Map all other tables onto the ontology classes
except the tables corresponding to Rule 1 above.
Rule 3: Specify the properties between the classes. For
some y = 1, 2,…, N,
(1) if ∃FK୷ and FK୷=PK୷, then set up the subclass-

relation between those two classes.
(2) if ∃FK୷ and FK୷≠PK୷, then establish the referential

integrity constraint between those two classes.

(3) PK୷⊂CK, ∃FK୷, FK୷⊂PK୷ and T୷–PK୷≠Ø (case
of weak entity), then set up the is-part-of Object
property between those two classes.

Rule 4: If the M:N relationship exists, set up the inverse
Object property between those two classes.
Rule 5: For the case of the table, which treats the
multi-valued attribute, T୸ where z = 1, 2,…, N,
PK୸(≠FK୸) is identified as the Datatype property of the
referencing class, and the maximum cardinality of the
property has to be considered.
Rule 6: Specify the Datatype property for the remaining
columns that are non-FK attributes of the table.

Fig. 4. Mapping Rules for Extracting Kernel Ontology

C. Making class hierarchies from upper concepts

In this step, the upper concepts of the kernel ontology are
conceptualized based on domain knowledge, such as an
interview with the system operator and business documents.
To this end, we first selected new terms that did not exist in
the target database schema from the domain knowledge.
Among these selected terms, we identified upper-level terms
that can be defined in the upper concepts of the kernel
ontology. These upper-level terms are conceptualized into
upper concepts using the top-down method.

D. Making class hierarchies from lower concepts

This step specifies the lower concepts of the kernel
ontology. The lower-level terms are collected from the
instances of the target database and the domain knowledge.
Then, the bottom-up method is adopted to build the lower
concepts. To do this task, first the lower-level terms are
identified as the most specific individuals, and then we
generalize them into more abstract concepts. Therefore,
some instances of the database can be defined in a concept.

E. Connection of these class hierarchies into a kernel
ontology

In this step, the upper concepts in section C of Chapter III
and the lower concepts in section D of Chapter III are
connected to the kernel ontology to integrate them into a
single ontology. This ontology is called a mixed ontology.
The connection methods are dynamically decided based on
whether some concepts have the same name or do not. The
former case is automatically recognized in that it has the
same concepts, and the latter case is semi-automatically
recognized using machine learning methods, such as lexical
checking and semantic checking.

F. Enhancing the semantics between inter-terms

The semantics between inter-terms can be obtained from
the database schema or from domain knowledge. As earlier
mentioned in section B of Chapter III, some semantics are
identified when the kernel ontology is extracted from the
database information. Thus, this step defines the enhanced
semantics between inter-terms that are not included in the
database information. There are two types of enhanced
semantics; one is related to class hierarchies, and the other is
related to the relationships between classes. In the former
case, additional semantics for class hierarchies will be

defined not only as subClassOf but also as equivalentClass,
disjointWith, intersectionOf, and so on. In the latter case,
new relations will be specified between the upper concepts,
lower concepts, and concepts of kernel ontology when the
mixed ontology is generated. In addition, additional
semantics, such as inverseOf, symmetric, transitive, can be
defined in the mixed ontology when new semantics are
discovered from the database information or the domain
knowledge.

G. Enhancing any restrictions

If some restrictions are identified from the domain
knowledge in this step, mixed ontology will allow
restrictions to be placed depending on how properties can be
used by instances of a class. For example, we would say that
a person has exactly one ID number, and that a seminar is
presented by at least one presenter. Based on the restrictions,
the logical errors in the facts and their relations using the
mixed ontology will be verified.

H. Enhancing additional axioms and rules

Either additional axioms or domain rules will be
identified from the domain knowledge. In order to define
formal concepts that are always true, a set of axioms (e.g.,
subClassOf, equivalentClass, sameAs, differentFrom,
TransitiveProperty) are used in the mixed ontology. A new
class of mixed ontology can be built from the existing
components (class, properties, and individual) by fitting
them together into the definitions. In the case of domain
rules, they are represented in the form of an ‘If-Then’
structure. Domain experts can define various domain rules
depending on the types of domains. These additional axioms
or domain rules are then utilized to check logical correctness
and infer additional knowledge by reasoning.

I. Completion of the Ontology

The final step is to build a domain ontology in an ontology
language, such as OWL. To do this task we use Protégé,
which is an ontology building tool that implements the
conceptual models designed in the previous steps into OWL
auto- matically.

IV. EXAMPLE SCENARIO FOR MOBM

In this section, we explain the process of constructing an
ontology in an imaginary scenario through applying MOBM.
The example company in our scenario is drawn up based on
the well-known COMPANY database schema in the
Elmasri/ Navathe Book [13]. Fig 5 shows the relational
database schema that would be extracted into the kernel
ontology.

Step 1: The following sub-steps summarize the process of
extraction of the kernel ontology from the database schema
information in Fig. 5 (this step corresponds to the mapping
rules in Fig. 4).

(1) Recognize the tables in the database schema that
cannot be a class.
1.1 Recognize WORKS_ON which represents the

M:N relationship.
1.2 Recognize DEPT_LOCATIONS which treats a

multi-valued attribute.

Fig. 5. The Relational Database Schema Diagram [13]

(2) Map the other 7 tables, EMPLOYEE,

DEPARTMENT, PROJECT, DEPENDENT,
SECRETARY, TECHNI CIAN and ENGINEER on
to each ontology class.

(3) Set up the properties between the recognized classes as
follows:
3.1 Set up the subclass-relations.

- EMPLOYEE-SECRETARY
- EMPLOYEE-TECHNICIAN
- EMPLOYEE-ENGINEER

3.2 Set up the referential integrity Object properties
and identify their domains and ranges for the
ontology.
- Super_ssn, Dno for EMPLOYEE
- Mgrssn for DEPARTMENT
- Dnum for PROJECT, DEssn for DEPENDENT
For example, Object property Dno has
EMPLOYEE as its domain and DEPARTMENT
as its range.

3.3 Set up the is_part_of the Object property between
EMPLOYEE and DEPENDENT
where DEPENDENT represents the weak entity.

(4) Set up the inverse Object property between
EMPLOYEE and PROJECT that represents the M:N
relationship.

(5) Identify Dlocation, which is not the FK of DEPT_
LOCATION, as the Datatype property of DEPART
MENT.

(6) Identify the other non-FK attributes in each class as
the Datatype properties of the ontology.
- Ssn, Fname, Lname, Bdate, Address, Sex, Salary of

EMPLOYEE
- Dnumber, Dname, Mgr_start_date of

DEPARTMENT
- Pnumber, Pname, Plocation of PROJECT
- Dependent_name, Sex, Bdate, Relationship of
DEPENDENT

- Typingspeed of SECRETARY
- Tgrade of TECHNICIAN
- Eng_type of ENGINEER

Fig. 6 describes the extracted kernel ontology based on

the mapping rules.

Essn Pno

WORK_ON

Fname Lname Bdate Ssn Address Sex Salary Super_ssn Dno

EMPLOYEE

Dnumber Dname Mgr_ssn Mgr_start_date

DEPARTMENT

DEPT_LOCATIONS

Dnumber Dlocation

DEssn Dependent_name Sex Bdate Relationship

DEPENDENT

SECRETARY

Ssn Typingspeed

TECHNICIAN

Ssn Tgrade

ENGINEER

Ssn Eng_type

Pnumber Pname Plocation Dnum

PROJECT

Primary Key
Foreign Key

Fig. 6. The Kernel Ontology

Step 2: The terms that can be defined as the upper
concepts of the kernel ontology are extracted from the
domain knowledge. They are Company Entity, Task, People,
Product, Owner, Project Member, and so forth. It is then
verified that Company Entity includes the other terms from
the extracted upper concepts. Hence, they are defined as the
subclasses of Company Entity. As we can see from Part a) in
Fig. 7, People is the subclass of Company Entity. In addition,
Employee and Dependent in the kernel ontology, and the
extracted terms, Owner and Project Member are defined as
the subclasses of People. The subclasses of People are in a
sibling relationship.

Step 3: After collecting the terms, defined as the lower

concepts of the kernel ontology, from the domain knowledge
and the instances of the database, we select only the terms
that can be defined as a class. As you can see from Part b) in
Fig. 7, Headquarters, Research, and Administration which
are the attribute values of Department become a single class,
respectively. This is because accounting, marketing, finance
and human_resource, which were collected from domain
knowledge, are identified as the individuals of
Administration.

Step 4: In this step, we construct a mixed ontology by

linking the classes developed in Step 2 and Step 3. Fig. 7

shows the parts of the mixed ontology built by connecting
the upper ontology and the lower ontology to the kernel
ontology.

Step 5: Department, People, Product, and Task which are
the subclasses of Company Entity, are set up to be
disjoint-relation as the semantics of the class hierarchy. We
also indicate that the individuals in each class cannot be the
same because the individuals might be instances of all the
classes owing to Open World Assumption. The next
semantics, additional relations, such as Participate-relation
between class Project Member and class Project, are then
added.

Step 6: The restrictions collected from the domain

knowledge are added to the ontology. For example, the
restriction saying that ‘Department has only and at least one
Mgrssn-relation to Employee’ can be expressed as follows.

Department ≡ ∀ Mgrssn Employee ∩ ∃ Mgrssn Employee

Step 7: Additional axioms and rules for the mixed

ontology are defined in this step. For instance, the axiom
representing ‘Project Member is People and has at least one
Pno-relation to Project’ can be expressed as follows.

Project Member ≡ People ∩ ∃ Pno Project

After defining axioms like this one, we are able to infer a

new class hierarchy using the reasoner. In other words,
Project Member can be inferred as a subclass of Employee,
because Employee is defined as the domain of Pno.

Step 8: We use Protégé to realize the mixed ontology

defined by MOBM in the OWL form. Using Protégé, we can
easily define Class, Object property, Datatype property,
Restriction, Axiom, and so on. We can also see the ontology
information in a variety of forms through the plug-ins
offered by Protégé. Fig. 8 shows the mixed ontology
hierarchy using a plug-in called OntoGraf.

Fig. 7. The Mixed Ontology

Dnumber
Employee

Engineer Secretary Technician

subClassOf

Department

Dependent

Dno

Dnum
Essn

Mgr_ssn

Project

Pno

Super_ssn

xsd:int

Dependent_name,
Sex, Bdate, Relationship

Fname, Lname, Bdate,
Address, Sex

xsd:string

Ssn, Salary

Pnumberxsd:string
Pname,
Plocation

Tgrade

Typingspeed

Eng_type

xsd:int

Dname, Dlocation,
Mgr_start_date

subClassOf
subClassOf

DEssn,
Is_part_of

Dnumber
Employee

Engineer Secretary Technician

subClassOf

Department

Dependent

Dno

Dnum
Essn

Mgr_ssn

Project

Pno

Super_ssn

xsd:int

Dependent_name,
Sex, Bdate, Relationship

Fname, Lname, Bdate,
Address, Sex

xsd:string

Ssn, Salary

Pnumberxsd:string
Pname,
Plocation

Tgrade

Typingspeed

Eng_type

xsd:int

Dname, Dlocation,
Mgr_start_date

subClassOf
subClassOf

DEssn,
Is_part_of

Employee

Engineer Secretary Technician

subClassOf

Department

Dependent

Dno

Dnum
Essn

Mgr_ssn

Project

Pno

Super_ssn

xsd:int

Dependent_name,
Sex, Bdate, Relationship

Fname, Lname, Bdate,
Address, Sex

xsd:string

Ssn, Salary

Pnumberxsd:string
Pname,
Plocation

Tgrade

Typingspeed

Eng_type

Dname, Dlocation,
Mgr_start_date

subClassOf
subClassOf

Owner

People

Project_
Member

subClassOf

subClassOf

subClassOf

subClassOf

DEssn,
Is_part_of

Company_
Entity

subClassOf

xsd:int
Dnumber

Research

Head
quarters

subClassOf

subClassOf
subClassOf

accounting

marketing finance

human_
resource

Administration

type

type
type

type

a) Class hierarchies of upper concepts

b) Class hierarchies of lower concepts
and their individuals

Employee

Engineer Secretary Technician

subClassOf

Department

Dependent

Dno

Dnum
Essn

Mgr_ssn

Project

Pno

Super_ssn

xsd:int

Dependent_name,
Sex, Bdate, Relationship

Fname, Lname, Bdate,
Address, Sex

xsd:string

Ssn, Salary

Pnumberxsd:string
Pname,
Plocation

Tgrade

Typingspeed

Eng_type

Dname, Dlocation,
Mgr_start_date

subClassOf
subClassOf

Owner

People

Project_
Member

subClassOf

subClassOf

subClassOf

subClassOf

DEssn,
Is_part_of

Company_
Entity

subClassOf

xsd:int
Dnumber

Research

Head
quarters

subClassOf

subClassOf
subClassOf

accounting

marketing finance

human_
resource

Administration

type

type
type

type

a) Class hierarchies of upper concepts

b) Class hierarchies of lower concepts
and their individuals

Fig. 8. Completion of Mixed Ontology using Protégé

V. LESSONS LEARNED

So far, we have applied the MOBM to the scenario for
building an ontology, and the following advantages were
analyzed.

• Core classes needed to build an ontology can be clearly
extracted.

• Object properties that are the relation between classes can
be easily defined by using the table relationship in
database schema.

• Datatype properties also can be easily defined by using
the attribute information of tables in the database
schema.

• The method makes possible the gathering of information
quickly on the core concepts and relations that ontologies
consist of, so the time that takes to build the entire
ontology can be reduced.

• In contrast to the ontology built with only database
information, it is possible to build an ontology with
richer semantics since the information collected from the
domain knowledge is added to the kernel ontology.

However, MOBM has certain weaknesses still to improve,

and they can be summarized as follows:
• If there is a domain that has a small number of tables in
the database schema, the number of classes that the kernel
ontology can have is limited. In this case, the
effectiveness to be attained through building the initial
ontology may be reduced. In MOBM, the greater number
of the tables there are in the database produces more
effectiveness.

VI. CONCLUSION

In this paper we proposed the MOBM, which first extracts
the kernel ontology by using database information as much
as possible. It then completes the additional parts of the
ontology by applying the top-down method and the
bottom-up method respectively. In order to show the
application possibilities, we applied this methodology to the
example company database and explained the process for
building ontology. From this application, we analyzed the
advantages of the proposed methodology and identified the
considerations for further application.

Future work will be continued in the direction of applying
the proposed methodology to real world domains. We will
develop a military ontology using MOBM and apply it to the

Defense Information System, and investigate and conclude
the degree to which this ontology is useful.

REFERENCES
[1] T. Gruber, “A Translation Approach to Portable Ontology

Specifications,” Knowledge Acquisition, Vol. 5, No. 2, 1993, pp.
199-220.

[2] D. Gašević, D. Djurić, V. Devedžić, “Model Driven Engineering and
Ontology Development,” Second Edition, Springer, Berlin, 2009.

[3] M. Grüninger, M. S. Fox, “Methodology for the design and evaluation
of ontologies,” In Proceedings of the Workshop on Basic Ontological
Issues in Knowledge Sharing held in conjunction with IJCAI-95,
Montreal, Canada, 1995.

[4] P. E. van der Vet, N. J. I. Mars, “Bottom-Up Construction of
Ontologies,” IEEE Transactions on Knowledge and Data
Engineering, Vol. 10, No. 4, 1998, pp. 513-526.

[5] G. Schreiber, B. Wielinga, W. Jansweijer, “The KACTUS view on the
‘O’ Word,” In IJCAI Workshop on Basic Ontological Issues in
Knowledge Sharing, Montreal, Canada, 1995, pp. 159-168.

[6] O. Corcho, M. Fernández-López, A. Gómez-Pérez, A. López-Cima,
“Building legal ontologies with METHONTOLOGY and WebODE,”
In Proceedings of Law and the Semantic Web, 2003, pp. 142-157.

[7] F. J. Lopez-Pellicer, L. M. Vilches-Blázquez, J. Nogueras-Iso, O.
Corcho, M. A. Bernabé, A. F. Rodríguez, “Using a hybrid approach
for the development of an ontology in the hydrographical domain,” In
Proceedings of 2nd Workshop Ontologies for Urban Development:
Conceptual Models for Practitioners, 2007.

[8] J. Trinkunas, O. Vasilecas, “Building Ontologies from Relatinoal
Databases Using Reverse Engineering Methods,” In Proceedings of
International Conference on Computer Systems and Technologies,
2007.

[9] Z. Xu, S. Zhang, Y. Dong, “Mapping between Relational Database
Schema and OWL Ontology for Deep Annotation,” In Proceedings of
the 2006 IEEE/WIC/ACM International Conference on Web
Intelligence, 2006, pp. 548-552.

[10] N. Konstantinou, D. E. Spanos, N. Mitrou, “Ontology and Database
Mapping: A Survey of Current Implementations and Future
Directions,” Journal of Web Engineering, Vol. 7, No. 1, 2008, pp.
1-24.

[11] N. Cullot, R. Ghawi, K. Yétongnon, “DB2OWL: A Tool for
Automatic Database-to-Ontology Mapping,” In Proceedings of the
15th Italian Symposium on Advanced Database Systems (SEBD 2007),
Italy, pp. 491-494.

[12] S. S. Sane, A. Shirke, “Generating OWL Ontologies from a Relational
Databases for the Semantic Web,” In Proceedings of International
Conference on Advances in Computing, Communication and Control,
2009, pp. 143-148.

[13] R. Elmasri, S. B. Navathe, “Fundamentals of Database Systems,”
Sixth Edition, Addison Wesley, 2010.

