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Abstract- Optimal image representation techniques addressing 
image processing problems are of growing interest in current 
research, such techniques are often referred to as multiresolution 
analysis (MRA). This paper puts together such MRA techniques 
and briefly discusses their applications. It is more aimed at 
engineers than mathematicians therefore no proofs to 
mathematical equations, however reference to where such proofs 
can be found are provided, over 60 current references are cited. 
It is hoped that this paper will be informative to engineers. 

 
Index terms- multiresolution analysis; wavelet transform; 

Fourier transform; Short-time Fourier transform, (non) 
separable transform. 

I. INTRODUCTION 

Optimal image representation techniques to address image 
processing problems like enhancement, compression, pattern 
recognition, edge and feature extraction, are of growing 
interest in current research [1, 2], such techniques are often 
referred to as multiresolution analysis (MRA), an idea 
originated by Burt and Adelson [3-7]. MRA provides simple 
means to analyze an image at different resolution levels 
forming a hierarchical framework [6, 8] aimed at solving two 
difficulties namely; obtaining global minima of a 
minimization function with many local minima and high 
computation cost [4]. MRA also allows scale-invariant 
interpretation of an image so that our interpretation of the 
scene is not altered when the image scale is changed [9]. 

History of MRA begins with Joseph Fourier’s theories of 
frequency (Fourier synthesis) in 1807 [10-12] that have led to 
the development of many functions to transform signals from 
spatial domain into phase-space representations that are more 
suitable for analysis [13].   

MRA can be achieved in two ways, namely; (1) the 
traditional also known as separable and (2) non-separable 
approach, the former extends one dimension (1D) signal 
processing algorithms to two dimensions (2D) by equally 
applying 1D filtering and subsumpling operations in both 
horizontal and then vertical directions at each scale [2,14] or 
by use of four matrix convolutions, one for each lowpass/ 
highpass, horizontal/vertical combination.  
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The approach avoids geometrical and topological 
complexity introduced by the second dimension thus making 
numerical algorithms simple and faster; an example of such a 
complexity is the causality concept which is not well defined 
in 2D [3]. The latter approach works different to achieves the 
same results [15,16], it involves 2D filters and 2D down 
sampling matrices which are non-factorizable into 1D 
filters/sampling pairs [16], MRA in this case is computed 
based on a 2D signal input sample convolved with a single 
matrix [15] resulting in images more compatible with 
mammalian vision [17], fewer operations are required and 
each basis function has square support [18, 19]; geometrical 
images can best be analyzed with this approach [20] which is a 
basis for many current applications involving geometric 
domain and space measurements [21]. However, it is 
expensive computationally and the associated 2D filterbank 
design is a challenge [14]. Current research also includes 
blending of the two approaches [16, 22, 23].  

In standard interpretation of MRA, projecting a function 

f on spaces iV is viewed as successive approximations 

to f with finer and finer resolution as i decreases [44]. A 

sequence of closed subspaces{ }i iV   defined in 2 ( )L  is a 

MRA if the following properties are satisfied [3, 24-26], 

a) 2
1 0 1{0} ... ... ( ),V V V L      

b)  2
i iV L    

c) {0}i iV   

d)    0 01f x V f x V     

e)     12i if x V f x V     

Where and denote a set of integers and real numbers 
respectively. Mathematical proofs found in [3, 27]. 

This paper puts together 2D MRA techniques and briefly 
discusses their application; its aimed at engineers rather than 
mathematicians hence no proofs to mathematical statements in 
the text, however, references have been provided where such 
proofs are found. There has not been a publication in current 
literature to bring such current MRA techniques together as 
documented herein. Over 60 current references have been 
cited. It is hoped that this paper will be informative to 2D 
signal engineers. This paper is organized as follows; Section II 
is on Fourier transform (FT), section III describes Short-time 
Fourier transform (STFT), section IV is dedicated to wavelet 
transform, section V presents Multiresolution Fourier 
Transform (MFT), section VI is application while section VII 
is a discussion.   



 

 

II. FOURIER TRANSFORMS FOR MRA. 

Named after a French mathematician Joseph Fourier (1768-
1830), the Fourier transform (FT) is the traditional analytical 
tool for continuous and discrete-time signal [10, 28]. It is a 
linear combination of sine and cosine waveforms of finite (or 
infinite) number of frequencies which provide local 
representation of any signal; such a signal is transformed from 
time domain to frequency domain. The FT is very useful for 
many signal application where time resolution is not required, 
that is to say, the exact time a particular sinusoidal wave 
occurs in the signal cannot be determined under FT because 
each of its component (coefficients) depends on the global 
behavior of the signal even when the function tends to 
infinity[28,29]. 

If   : h  g is a square integrable function, that 

is
2 2

2
( ) ( ) | ( ) ( )hd x x x 





    g g g g , where 

2h  for 2D signals, the FT ( )G x of  g is given by 

2( ) ( ) | ( ) ,
T Tjx h xG x e d Q    






  g g  

where ,x  and superscript T is conjugate of the first 

vector and 2 jQ e  . The inverse FT for a sufficiently 
smoothg is given by 

 2( ) ( ) | ,
T Tjx h xG x e d x Q G x  






 g   

The scalar product in the exponent of the kernel T x makes 
the FT kernel separable [30]. In discrete case, the 2D FT maps 
complex valued MxN matrix onto complex valued 
MxN matrix and it can be expressed as below;  
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and its inverse,  
1 1
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 

 
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The coexistence of FT and its inverse indicates that under 
certain conditions, any function can be uniquely represented 
by FT [31], properties and proof can be found in [30,32].  

Although two classes of multiresolution representation are 
recognized [13], namely; Short-time Fourier transform (STFT) 
(section III)and wavelet transform, current literature [10,28,33] 
suggest FT for MRA in which the FT has representation 
different from STFT concept. Wave-like transform with 
cosine analyzing function of one period are used in [33] to 
represent the integral FT while [10] describes direct means to 
perform time-frequency MRA of signals. The FT is also 
represented by A-wavelet transform in [28]. All these new 
representation involve a fully scalable modulated window 
although not all shifts are possible. Just like the traditional FT, 

these modifications have no time resolution hence the 
adoption of techniques described in next sections.  

III. SHORT-TME FOURIER TRANSFROM (STFT). 

Introduced by Gabor in 1946 [3,13], STFT also known as 
time-varying FT [34] or windowed FT is a variation of FT for 
MRA of non-stationary signals [12]. A signal to be analyzed is 
split into pieces (frequency components) by a usually compact 
supported single window function which is translated by a 
chosen step size to cover the entire time domain while each 
piece is FT independently [28].  
Consider a real and symmetric window ( ) ( )t t g g  

translated by k and modulated by the frequency  such that: 

, ( ) ( ) j t
k t t k e 
  g g  

Normalizing this translation so that , 1k  g for all 

2( , )k   results in the STFT of  2f L  given by: 

     ,, , j t
kk f f t t k e dt







  g g  

The discrete form with period N is given as: 

 
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,
0

2
, , [ ] [ ]exp

N

k l
t

jlt
k l f f t t k
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


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Where 0 ,k N  0 l N  ,  ,k l is calculated with a 

discrete FT of [ ] [ ]f t t kg [3].   
The transform depends on the window width in time and 
frequency, its name is derived from multiplication by 

 t kg which localizes the Fourier integral in the 

neighborhood of t k [3]. Sufficient accuracy can be attained 
if proper parameter values are chosen [34], however, the 
transform lacks decent resolution for both high and low 
frequencies. Major issues with STFT are computational 
efficiency and selection of the moving window size [28].  

IV. WAVELET TRANSFORM FOR MRA. 

MRA can be achieved by Wavelet transform as a best trade-
off between time and frequency resolution proposed by Jean 
Morlet in 1982 [11], and later amended by the work of Meyer 
[26], Mallat [9][15] and Daubechies [35]. MRA is also known 
as multiscale approximation (MSA), time-scale analysis, 
pyramid algorithms or wavelet transforms [1]. Current 
researchers consider the wavelet transform a standard tool for 
MRA [11] because of its ability to provide signal information 
in both frequency and temporal domains. Wavelet transform 
offers an alternative to classical Fourier- or Gabor-transform 
[36,37]. It is a transform in which the signal energy is locally 
concentrated in selected subbands [11,38] while the noise 
component is spread out through all subbands making the 
noise easy to eliminate whereas signal energy is relatively 
preserved [37,39-41], this subband energy decreases as scale 
is decreased at each level of decomposition of wavelet  
transform, the lower the scale the higher the resolution and on 
average wavelet coefficients in higher subbands are of smaller 



 

 

scale than those in the lower subbands [42], such coefficients 
are stacked on top of each other forming a basic signal 
decomposition scheme known as pyramid which gives a 
hierarchical structure [43,66]. 

The traditional 2D wavelet transform is a separable 
transform [16], it involves obtaining a general signal 
representation in terms of simpler, fixed building blocks at 
different scales and position by convolving the input with a 
shift (translation in time) and scale (dilations or contractions) 

of the analyzing wavelet also called “mother” wavelety.  
It is difficult to define “wavelet” and equally difficult to 

write a comprehensive review incorporating all its different 
properties due to the widely varying classes of wavelet basis 
functions [37,59], different wavelet families make different 
trade-offs between how compactly the basis functions are 
localized in space and smoothness [12], a fully modulated and 
scalable, sliding window of width dependent on the central 
scale is used for scale localization in wavelet analysis 
[11,28,38], a wavelet transform is obtained for every location 
of this window such that a short window is used at high 
frequencies while long one is for low frequencies [12,28], the 
resulting wavelet transform is a collection of time-scaling 
representations of the signal with varying resolutions [33]. 
Temporal analysis is accomplished with high frequency 
wavelet prototype while low frequency version of the same 
wavelet is for frequency analysis [1,11,12,28,64]. MRA 
represents a signal in terms of wavelet expansion enabling 
data operations using only the corresponding wavelet 
coefficients [12]. Multiresolution with wavelet transform can 
be viewed as a process of taking one channel’s output signal 
and putting it through another (or more) pair of analysis filters 
[15], Wavelet packets require an additional filter pair on each 
channel [15] for a reason that both approximation and detail 
coefficients are decomposed at each decomposition level [29]. 
Multiresolution decomposition is achieved with wavelet 
transform by taking an input signal ( )x n and splitting it into 

two versions of lower resolution with respect to the input: a 
lowpass (average) coarser resolution version and a highpass 
(difference) detailed resolution version. The coarser resolution 
signal is taken to be input and further split into two as before 
in a process which can continue for as many levels as 
desirable only limited by the length of the input signal (image 
size) [6,15], this process leads to improved hierarchy of 
resolutions on successive levels of the signal representation 
[62].   

 
 
 
 
 
 
 
 
 
 

Figure 1, shows a two level decomposition structure in 
wavelet transform, while figure 2 shows the same as applied to 
Barbara’s image. Multiresolution with wavelet transform 
conforms to human perception of hearing and vision [6, 4]. 
The continuous wavelet transform (CWT) is given as: 

( , ) ( ) ( )fW a b f t at b dt  y  

where ( )f t is the analyzed function, ( )ty is the wavelet while 

( )at by is its shifted and scaled version at time b and 
scale a .  

The CWT is not practical for MRA due to the time 
consuming and complex inverse transform, instead, a discrete 
version of the wavelet transform is considered for 
multiresolution representation [65] the DWT of a 
signal [ ]x n can be given by: 

11 1
[ , ] [ ]

aL b

f
n b

n
W a b x n

aa

 



   
 

 g  

In the discrete case, the wavelet is replaced with a 
function g as a result of sampling the continuous wavelet 

function, L is the support size of the basic waveletg.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Wavelet transforms are implemented using filter banks 
whose relation to wavelets is the recursive convolution of the 
input vector after shifting and scaling, so the scaling 

function ( )t is determined through recursive application of 

filter coefficients. The coefficients of scaling function and 
wavelet function posses all the information about the scaling 
and wavelet functions respectively [28].  
The scaling function is defined by: 

( ) 2 [ ] (2 )
k

t h k t k     

and the wavelet function is defined by: 

( ) 2 [ ] (2 )
k

t k t k y g   
Figure  1.  Two level decomposition with traditional wavelet

transform, L=Lowpass, H=Highpass filter  

Figure  2. Two level multiresolution representation of Barbara, energy

decreases as scale is decreased at each level of decomposition in wavelet
transform, the lower the scale the higher the resolution. 



 

 

[ ]h k is a finite set of coefficients which if found, then the 
lowpass filter can be designed and consequently the highpass 
filter coefficients are easily found.  

Although the Discrete Wavelet Transform (DWT) is applied 
in literature for signal analysis, its application to 2D and 
higher dimension signals analysis has shortcomings which 
include: (1) shift sensitivity, a small shift in input signal could 
causes major variations in energy distribution within 
coefficients at different scales, such sensitivity is evident in 
resultant images as Gibbs like artifacts, the DWT followed by 
its inverse (IDWT) is only shift invariant when all the 
coefficients are used for IDWT but not if some are left out or 
quantized[50, 63],  (2) poor directional selectivity for diagonal 
features due to the use of one diagonal subband for multiple 
frequencies with different orientation [16, 2,37], this mostly 
affects the optimal representation of natural images which 
contain a number of smooth regions and edges with random 
orientations, (3) Redundancy.  

Modifications of the traditional wavelet transform have 
been made to resolve some of these issues, such as, the 
wavelet transform with no sub-sampling commonly known as 
algorithme á trouse [50] otherwise known as the redundant 
discrete wavelet transform or undecimated wavelet transform, 
and the use of complex wavelet transforms as in the case of 
Dual Tree complex wavelet transform [37], Duabechies’ 
complex wavelet transform [63,55]. Also more advanced 
wavelet transforms have been proposed for MRA, such as 
directionlets [2,14], wedgeprints[53], bandlets [51,52], 
ridgelets [54], curvelets [47], these are categorized under 
nonseparable approaches of MRA [19] while TODFBs [16], 
contourlet [22] and its critically sampled improvement CRISP-
contourlet [23] are combinations of both separable and 
nonseparable filter banks, these advanced wavelet transforms 
are hindered by the high computation cost due to critical 
sampling and sometimes bandwidth limitations.  

V. MULTIRESOLUTION FOURIER TRANSFORM 
(MFT). 

MFT is a superset of wavelet transform (section IV) and 
STFT (section II) combined into a single transform [13,57]. It 
is a linear transform with an underlying theory that, given an 
appropriate choice of analysis window and sampling intervals, 
it is possible to obtain a signal’s Fourier representation which 
can be computed efficiently without the limitations involved 
when using fixed scale of window. MFT is able to represent 
arbitrary compact supported signals in an interference free 
manner as well as the ability to analyze signals/images over a 
range of levels with kernels /windowing function of various 
size in a computationally efficient style compared to other 
transforms [57].  

A coefficient of MFT at level k is a function of three 

parameters namely; spatial coordinate ( )k


, frequency co-

ordinate ( )k and scale ( )k , and is presented by 

[ ( ) ( )]

ˆ ( ( ), ( ), ( ))

( ( ) ( )) ( ( )) j k k
n

f k k k

k k f k e  

  

      
 

 
    

Where ( ( ) ( ))n k k  
 

is a Finite Prolate Spheroidal 

Sequence operating as a windowing function with maximum 
energy concentration in both spatial and frequency domain 
[57]. The general structure of MFT is in such that at the lowest 
level, the entire N N original image represented 

as ( ( ))f k 


is covered by a single block in the spatial domain 

and therefore MFT is a discrete FT of the original image at 

this level while at the highest level, each of the N N blocks 
covers a single point in the spatial domain so the MFT is the 
original image itself. Intermediate levels of the MFT are 
STFTs with windowing functions of different size [57].  
Advantages of MFT include; 
(1) MFT is a hierarchical structure of STFT which is linear in 
nature and therefore MFT inherits linear properties which are 
important for signal/image filtering and response prediction 
operation. (2) Operations in each domain are performed 
locally at each level of the MFT. (3) MFT also inherits 
invertibility properties from the STFT hence errors during 
transformation between domains are reduced. 

MFT has been used to segment images based on the 
analysis of local properties in spatial frequency domain [57]. 

A shortcoming of MFT is that in its application, the local 
spectra of MFT are obtained by discrete FT which introduces 
“wrap around” artifacts in some blocks [57]. MFT has 
successfully been applied in image analysis where it has 
proved to be effective and computationally inexpensive 
[13,45,46].   

VI. APPLICATION  

This section looks at application of 2D MRA. There are 
numerous reasons to opt for MRA;  first, at coarser resolution, 
the minimization problem is less ill-posed than at finer 
resolution and therefore solution obtained at coarser level is 
close to the true solution at that resolution, interpolating the 
obtained solution to the next resolution level provides good 
initial solution that is near the true solution at that level as well, 
successive repeat of this step to the finest resolution level 
leads to a solution more likely to be close to the true solution 
which is the global minimum[4]. Second, multiresolution 
enables confinement of estimation to a significantly smaller 
search range at the finest resolution, only the relevant details 
are processed for a particular task [3] thereby reducing the 
amount of searches, processing time and complexity. 

MRA is applicable to many areas including (1) multi sensor 
image fusion especially when fusing images at Pixel-level 
where the fused image must contain all the important 
information in the source images without fusion artifacts [48], 
the ability to spread information in various scales makes 
image fusion process simpler, the whole process is reduced to 
defining applicable rules among coefficients at each level [56]. 
(2) To classify and segment texture or edges, processes 



 

 

applicable industrially for example in FBI finger print project 
[37], biomedical imaging, remote-sensing, surface inspection 
and face recognition [64,49,60], multiresolution FT has been 
used for texture analysis in [45]. (3) Image compression 
standards such as the recent JPEG-2000 [33,41] and MPEG 
[11]. (4) Image enhancement is another area where MRA has 
been successfully employed [41]. (5) MRA is largely applied 
for digital image watermarking in which invisible and robust 
data hiding/ embedding can only occur in the spatial and 
frequency domains [11]. (6) MRA has also been extended to 
more general spaces like graphs, datasets, homogeneous type 
spaces and other general nonlinear structures where it provides 
fast computation of functions for efficient compression and 
denoising [58]. (7) Other areas are; astronomy, acoustics, 
radar, nuclear engineering, magnetic resonance imaging, 
human vision, optics, fractals, turbulence, earthquake-
prediction, and solving mathematical equations [11,12].  

MRA has a shortcoming that it requires much more 
processing power compared to filtering techniques [41]. 

VII. DISCUSSION 

This section is a brief discussion on techniques in the above 
sections. As shown above, both Fourier and wavelet transform 
can effectively be applied for MRA. It is important to note that, 
individual wavelet functions are localized in time while the 
basis sinusoidal functions of FT are non-local (and stretch out 
to infinity) [28]. Wavelet transforms do a better job in 
approximating single quick changes or sharp spikes in short 
term signal (unit impulse function) as compared to FT which 
requires an infinite number of terms as a sum of sinusoids 
[12,33]. Fourier and wavelet transforms are related in 
following ways; both transforms can operate on continuous or 
discrete signals, coefficients in both transforms are calculated 
by inner-product of the input signal/image and a set of 
orthonormal basis functions [11,12]. Another relation is that 
the inverse transform matrix of both the FT and wavelet 
transform is a transpose of the original signal, and therefore 
both transforms can be viewed as a rotation in function space 
to a different domain, this domain consists of sine and cosine 
basis functions for FT while wavelet transform constitutes 
more complicated basis functions called “wavelets”. Other 
differences between the two functions are the type of analysis 
they can accomplish. 
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