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Abstract—This paper considers the problem of designing
robust H∞ controllers for for HIV/AIDS infection system. The
Takagi-Sugeno (TS) fuzzy model is adopted for fuzzy modelling
of the HIV infection dynamic systems. A sufficient condition
of the controller for this system is given in term of Linear
Matrix Inequalities (LMIs). The effectiveness of the proposed
controller design methodology is finally demonstrated through
simulation results. It has been shown that the anti-HIV vaccines
are critically important in reducing the infected cells.

Index Terms—H∞ Fuzzy control; Robust control; Takagi-
Sugeno (TS) fuzzy model; Linear Matrix Inequalities (LMIs);
HIV/AIDS infection system.

I. I NTRODUCTION

T HE problems of HIV/AIDS are very important in
present world. Basically, AIDS is a kind of a disease

that can be treated by using expedient drugs. From the
present research, the complete cure mechanism has not
yet been found. Presently, some antiretroviral therapies use
reverse transcriptase inhibitors for fight against an enzyme
from infected cells that called viral protease. All of anti-
HIV drugs aim at preventing the virus, but they cannot kill
virus particles or infected cells [1]. The dynamic HIV/AIDS
studies have been shown by many researchers such as J.
Guedj et al. [2], R.A. Filter et al. proposed [3], and R. Motta
J. et al. [4]. HIV is a retrovirus that primarily infects vital
organs of the human immune system such as CD4+T cells
(a subset of T cells), macrophages and dendritic cells. It
directly and indirectly destroys CD4+T cells. Once HIV has
killed so many CD4+T cells such that there are fewer than
200 of these cells per micro liter (µL) of blood then cellular
immunity is lost. In the absence of antiretroviral therapy, the
average time of progression from HIV infection to AIDS
is about nine to ten years, and the average survival time
after developing AIDS is only 9.2 months [1]. However,
the rate of treated disease progression is varied between
individuals, from two weeks up to 20 years. Figure 1 shows
the natural history of HIV infections dynamics as currently
accepted [1], [2], [3], [4]. When a body has been received
HIV virus in primary infection, a number of HIV virus will
dramatically increase in first 30 days (resulting CD4+T cells
reduction). After the primary infection period, a body builds
HIV antibodies for agent virus so that, the infection still
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stabilizes an approximate steady state. In the last period, the
antibody of healthy CD4+T cells will be drastically reduced.
Finally, the patient develops to be an AIDS person.

Over the past few decades, the nonlinearH∞-control
theory has been extensively studied by many researchers;
see [9], [10], [11]. The nonlinearH∞-control problem can
be stated as follows: given a dynamic system with the
exogenous input noise and the measured output, find a
controller such that theL2-gain of the mapping from the
exogenous input noise to the regulated output is less than
or equal to a prescribed value. Presently, there are two
commonly used approaches for providing solutions to the
nonlinearH∞-control problems. The first approach is based
on the dissipativity theory and theory of differential games;
see [9], [13]. The second approach is based on the nonlinear
version of classical Bounded Real Lemma; see [10], [11],
[12]. Both approaches show that the solution of the nonlinear
H∞-control problem is in fact related to the solvability of
Hamilton-Jacobi inequalities (HJIs).

Fig. 1. The natural history of HIV infections dynamics as currently
accepted [1], [2], [3], [4].

Over the past two decades, there has been rapidly growing
interest in application of fuzzy logic to control problem.
Researches have been focused on its application to industrial
processes and a number of successful results have been
reported in the literature. In spite of these successes, there
are many basic issues remain to be addressed. One of them
is how to achieve a systematic design that guarantees closed-
loop stability and performance. Recently, a great amount of
effort has been devoted to describing a nonlinear system us-
ing a Takagi-Sugeno fuzzy model; see [15]–[24]. The Takagi-
sugeno fuzzy model represents a nonlinear system by a fam-
ily of local linear models which smoothly blended together
through fuzzy membership functions. Unlike conventional
modelling techniques which use a single model to describe



the global behavior of a nonlinear system, fuzzy modelling
is essentially a multi-model approach in which simple sub-
models (typically linear models) are fuzzily combined to
described the global behavior of a nonlinear system. Based
on this fuzzy model, a number of systematic model-based
fuzzy control design methodologies have been developed.

What we intend to do in this paper is to design a fuzzy
H∞ controller for HIV/AIDS infection system with dual
drug dosages which can be represented by a Takagi-Sugeno
(TS) fuzzy model. Based on an LMI approach, we develop
a state-feedback controller for HIV/AIDS infection system
with dual drug dosages such that theL2-gain of the mapping
from the exogenous input noise to the regulated output is
less than a prescribed value. This paper is organized as
follows. In Section II, system descriptions and definition are
presented. In Section III, based on an LMI approach we
develop a technique for designing a fuzzyH∞ controller
for HIV/AIDS infection system with dual drug dosages that
guarantees theL2-gain of the mapping from the exogenous
input noise to the regulated output is less than a prescribed
value. The validity of this approach is finally demonstrated
through simulation results in Section IV. Finally in Section
V, the conclusion is given.

II. SYSTEM DESCRIPTIONS ANDDEFINITION

A. HIV dynamic model

In most cases, HIV virus affects the level of CD4+T
cells which these cells are important in helping a body
fighting to infection. Free virus means the HIV virus found in
blood plasma. The healthy CD4+T cells are produced from
a source, such as the thymus represented by constant rate
s and died at rated. The coefficientβ is the infection rate.
The infected cells result from the infection of healthy CD4+T
cells and die at a rateµ. A free-virus particle is known as
virions, so called viral load, and cleared at a ratec (death
rate of virus). The variablek is a rate of virions product per
infection CD4+T cell.

The infection described previously can be summarized by
differential equations [1].

ẋ1(t) = s− dx1(t) + βx1(t)x3(t)
ẋ2(t) = βx1(t)x3(t)− µx2(t)
ẋ3(t) = kx2(t)− cx3(t)

(1)

where x1(t) is concentration of healthy cells or T cells,
x2(t) is concentration of infected cells,x3(t) is concentration
of virions (free virus particles),s is the constant rate to
produced the healthy CD4+T cells,d is the death rate of
the healthy CD4+T cells,β is the coefficient of the infection
rate,µ is death rate of the infected cells,k is a rate of virions
product per infection CD4+T cell, andc is death rate of virus.

Current treatment for HIV infection consists of highly
active antiretroviral therapy, or HAART. The HAART treat-
ment used drug in the group of protease inhibitor. The
doctors will assess the viral load, CD4+T counts, rapidity
of CD4+T decline, and patient readiness. While deciding,
the doctors recommend initiating treatment to the patient [6].
The parameters and typical values are listed in Table 1 [5].
The information of HIV model parameters obtain from [5]
which the initial conditions correspond to a healthy person
infected with a virus given by Table I. In 2007, M. Barao

and J.M. Lemos proposed the nonlinear dynamic model to
describe HIV with treatment as follows [5]:

ẋ1(t) = s− dx1(t) + βx1(t)x3(t)
ẋ2(t) = βx1(t)x3(t)− µx2(t)− px2(t)u(t)
ẋ3(t) = kx2(t)− cx3(t)
u̇(t) = qx2(t)u(t)− ru(t)

(2)

where the controller inputu(t) is the magnitude of the
antibodies CTLs (cytotoxic T lymphocyte) or so called a
controlled input. The healthy CD4+T cells are produced from
a source, such as the thymus represented by constant rates
and died at rated. The coefficientβ is the infection rate. The
death rate of virus is described byc. Growth rate of CTLs
in response to antigen is represented byqx2(t)u(t). CTLs
decay at rateru(t) and infected cells are killed by CTLs at
ratepx2(t)u(t).

TABLE I
HIV MODEL PARAMETERS [4],[5]

Parameter Typical Value Unit

t - Days
d 0.02 Per Day
k 100 Count Cell−1

s 100 mm3 Per Day
β 2.4 x 10−5 mm3 Per Day
c 2.4 Per Day
µ 0.24 Per Day
p 0.03 Per Day
q 0.01 Per Day
r 0.01 Per Day

The model includes antiretroviral treatment and factors
such as adhesion and medication potency. The concepts of
our proposes are joined with fuzzy set theory and exogenous
input noise with biological variable values such as person
factor, mental state etc.

Mostly, HIV virus dynamics are modeled using a nonlinear
represented by cell. Each cell represents an uninfected cell,
an infected cell of the type T lymphocyte of CD4+, a free
virus particle, or specific antibodies such as CTL (Cytotoxic
T Lymphocyte). Due to the inherent uncertainties of HIV, the
antiretroviral treatment is modeled using a fuzzy rule-based
system whose output depends on the medication potency
and the rate of adhesion to the treatment. The fuzzy rule-
based system consists of input processor, fuzzy rule-based
(a collection of fuzzy rules), fuzzy inference machine, and
output processor. Inputs processors are encoded into fuzzy
sets on the respective universes of the input variables. While
the rule-based is a component of fuzzy rule-based systems,
which is a collection of fuzzy conditional propositions in
the form of if-then rules. Fuzzy rules are an effective mean
to encode expert knowledge expressed through linguistic
statements. In general, if-then rules describe relationships
between linguistic variables. Fuzzy machine performs an ap-
proximate reasoning use the compositional rule of inference.
Finally, in fuzzy rule-based systems, the inferred output is a
fuzzy set. Often, especially in biological systems model, we
require a real-valued output.

B. Nonlinear fuzzy model

In this subsection, we generalize the TS fuzzy system to
represent a TS fuzzy system with parametric uncertainties.



In this paper, we examine a TS fuzzy system with parametric
uncertainties as follows:

ẋ(t) =
∑r

i=1 µi(ν(t))
[
[Ai + ∆Ai]x(t)

+[B1i
+ ∆B1i

]w(t)
+[B2i

+ ∆B2i
]u(t)

]
, x(0) = 0

z(t) =
∑r

i=1 µi(ν(t))
[
[C1i + ∆C1i ]x(t)

+[D12i
+ ∆D12i

]u(t)
]

y(t) =
∑r

i=1 µi(ν(t))
[
[C2i + ∆C2i ]x(t)

+[D21i
+ ∆D21i

]w(t)
]

(3)

where ν(t) = [ν1(t) · · · νϑ(t)] is the premise variable
vector that may depend on states in many cases,µi(ν(t))
denotes the normalized time-varying fuzzy weighting func-
tions for each rule (i.e.,µi(ν(t)) ≥ 0 and

∑r
i=1 µi(ν(t)) =

1), ϑ is the number of fuzzy sets,x(t) ∈ <n is the
state vector,u(t) ∈ <m is the input, w(t) ∈ <p is
the disturbance which belongs toL2[0,∞), y(t) ∈ <`

is the measurement,z(t) ∈ <s is the controlled output,
the matricesAi, B1i , B2i , C1i , C2i , D12i and D21i are of
appropriate dimensions, andr is the number of IF-THEN
rules. The matrices∆Ai, ∆B1i , ∆B2i ,∆C1i ,∆C2i , ∆D12i

and ∆D21i represent the uncertainties in the system and
satisfy the following assumption.

Assumption 1:

∆Ai = F (x(t), t)H1i ,

∆B1i = F (x(t), t)H2i , ∆B2i = F (x(t), t)H3i ,

∆C1i = F (x(t), t)H4i , ∆C2i = F (x(t), t)H5i ,

∆D12i = F (x(t), t)H6i and ∆D21i = F (x(t), t)H7i

whereHji , j = 1, 2, · · · , 7 are known matrix functions which
characterize the structure of the uncertainties. Furthermore,
the following inequality holds:

‖F (x(t), t)‖ ≤ ρ (4)

for any known positive constantρ.

Next, let us recall the following definition.

Definition 2.1: Supposeγ is a given positive number. A
system (3) is said to have anL2-gain less than or equal to
γ if

∫ Tf

0

zT (t)z(t)dt ≤ γ2

[∫ Tf

0

wT (t)w(t)dt

]
, x(0) = 0 (5)

for all Tf ≥ 0 and w(t) ∈ L2[0, Tf ].

Note that for the symmetric block matrices, we use(∗) as
an ellipsis for terms that are induced by symmetry.

III. ROBUST H∞ FUZZY STATE-FEEDBACK CONTROLLER

FOR HIV/AIDS INFECTION SYSTEM

The aim of this section is to design a robustH∞ fuzzy
state-feedback controller of the form

u(t) =
r∑

j=1

µjKjx(t) (6)

whereKj is the controller gain, such that the inequality (5)
holds. The state space form of the fuzzy system model (3)
with the controller (6) is given by

ẋ(t) =
∑r

i=1

∑r
j=1 µiµj

[
[(Ai + B2i

Kj)

+(∆Ai + ∆B2iKj)]x(t) + [B1i + ∆B1i ]w(t)
]

(7)
wherex(0) = 0. The following theorem provides sufficient
conditions for the existence of a robustH∞ fuzzy state-
feedback controller. These sufficient conditions can be
derived by the Lyapunov approach.

Theorem 1:Consider the system (3). Given a prescribed
H∞ performanceγ > 0 and a positive constantδ, if there
exist a matrixP = PT and matricesYj , j = 1, 2, · · · , r,
satisfying the following linear matrix inequalities:

P > 0 (8)

Ωii < 0, i = 1, 2, · · · , r (9)

Ωij + Ωji < 0, i < j ≤ r (10)

where

Ωij =




(
AiP + PAT

i

+B2iYj + Y T
j BT

2i

)
(∗)T (∗)T

B̃T
1i

−γI (∗)T

C̃1iP + D̃12iYj 0 −γI


 (11)

with

B̃1i =
[

δI I δI B1i

]
,

C̃1i =
[

γρ
δ HT

1i
0

√
2λρHT

4i

√
2λCT

1i

]T
,

D̃12i =
[

0 γρ
δ HT

3i

√
2λρHT

6i

√
2λDT

12i

]T
,

λ =


1 + ρ2

r∑

i=1

r∑

j=1

[
‖HT

2i
H2j‖

]



1
2

,

then the inequality (5) holds. Furthermore, a suitable choice
of the fuzzy controller is

u(t) =
r∑

j=1

µjKjx(t) (12)

where

Kj = YjP
−1. (13)

Proof: The detail of the proof is omitted for brevity.



IV. SIMULATION RESULTS

A simulation result is given in this section to illustrate the
procedure of designing a fuzzy controller. Let us recall (2)
included with noise term. The parameters and typical values
are listed in Table 1.

ẋ1(t) = s− dx1(t) + βx1(t)x3(t) + w1(t)
ẋ2(t) = βx1(t)x3(t)− µx2(t)− px2(t)u(t) + w2(t)
ẋ3(t) = kx2(t)− cx3(t) + w3(t)
u̇(t) = qx2(t)u(t)− ru(t)

(14)
wherew1(t), w2(t) andw3(t)are the disturbance factor from
the patients and the controlled output is

z(t) = [x1(t) x2(t) u(t)]T . (15)

The nonlinear system plant can be approximated by TS
fuzzy rules. Let us choose the membership functions of the
fuzzy sets as shown in Figure 2, i.e., the healthy cell of
CD4+T, x1(t) and the infected cells,x2(t).
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Fig. 2. The simulation result of drug dosages for healthy cell,x1(t).

The TS fuzzy plant model can be obtained as:
Plant Rule i:

IF x1(t) is Mi andx2(t) is Nj

THEN

ẋ(t) = [Ai + ∆Ai]x(t) + Biu(t) + Bww(t),
z(t) = Cx(t) + Du(t)

wherei, j = 1, · · ·, 3

Ai =



−d 0 −βx1(t)
0 −µ βx1(t)
0 k −c


, Bw =




1 0 0
0 1 0
0 0 1


,

Bi =




0
−px2(t)

0


, D =




0
0
1


, C =




1 0 0
0 1 0
0 0 0


,

∆Ai = F (x(t), t)H1i
,

x(t) = [xT
1 (t) xT

2 (t) xT
3 (t)]T

and w(t) = [wT
1 (t) wT

2 (t) wT
3 (t)]T .

Now by assuming that in (2),‖F (x(t), t)‖ ≤ ρ = 1 and
since the value ofµ, d, k and c are uncertain but bounded
within 10% of their nominal value in (14), we have

H1i
=



−0.1d 0 0

0 −0.1µ 0
0 0.1k −0.1c


 .

Using the LMI optimization algorithm and following The-
orem 1 with set asγ = 0.1, we obtain the results given in
Figure 3 - 5.

Remark 1:The simulation results given in Figure 3 - 5 can
be explained as follows: healthy cell in Figure 3: if CD4+T
are more than 0.5 cellsml−1, the patients will develop the
disease of HIV at low risk; free virus in Figure 4: if CD4+T
cells are lower than the lymphocyte CD4+ in the organism,
they cannot prevent the HIV virus in destroying the cells; and
virus specific CTL in Figure 5: Cytotoxic T lymphocytes are
lymphocytes that kill virus-infected cells.
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Fig. 3. The simulation result of drug dosages for healthy cell,x1(t).

V. CONCLUSION

This paper has presented a robustH∞ fuzzy state-
feedback control design for nonlinear positive HIV infection
dynamic model. This paper has developed a fuzzy controller
for applying in HIV nonlinear dynamic model to solve with
antiretroviral therapy by using a fuzzy rule-based system with
two inputs, the medication potency and the treatment adhe-
sion rate. The effective of controller can prevent infection.
The progression is the key to success of fighting against
AIDS.
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Fig. 4. The simulation result of drug dosages for free virus,x2(t).
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Fig. 5. The simulation result of drug dosages for virus specific CTLs,
u(t).
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