
W. Assawinchaichote

Abstract—This paper considers the problem of designing robust H_{∞} controllers for HIV/AIDS infection system. The Takagi-Sugeno (TS) fuzzy model is adopted for fuzzy modelling of the HIV infection dynamic systems. A sufficient condition of the controller for this system is given in term of Linear Matrix Inequalities (LMIs). The effectiveness of the proposed controller design methodology is finally demonstrated through simulation results. It has been shown that the anti-HIV vaccines are critically important in reducing the infected cells.

Index Terms—H_{∞} Fuzzy control; Robust control; Takagi-Sugeno (TS) fuzzy model; Linear Matrix Inequalities (LMIs); HIV/AIDS infection system.

I. INTRODUCTION

The problems of HIV/AIDS are very important in present world. Basically, AIDS is a kind of a disease that can be treated by using expedient drugs. From the present research, the complete cure mechanism has not yet been found. Presently, some antiretroviral therapies use reverse transcriptase inhibitors for fight against an enzyme from infected cells that called viral protease. All of anti-HIV drugs aim at preventing the virus, but they cannot kill virus particles or infected cells [1]. The dynamic HIV/AIDS studies have been shown by many researchers such as J. Guedj et al. [2], R.A. Filter et al. proposed [3], and R. Motta J. et al. [4]. HIV is a retrovirus that primarily infects vital organs of the human immune system such as CD4+T cells (a subset of T cells), macrophages and dendritic cells. It directly and indirectly destroys CD4+T cells. Once HIV has killed so many CD4+T cells such that there are fewer than 200 of these cells per micro liter (μL) of blood then cellular immunity is lost. In the absence of antiretroviral therapy, the average time of progression from HIV infection to AIDS is about nine to ten years, and the average survival time after developing AIDS is only 9.2 months [1]. However, the rate of treated disease progression is varied between individuals, from two weeks up to 20 years. Figure 1 shows the natural history of HIV infections dynamics as currently accepted [1], [2], [3], [4]. When a body has been received HIV virus in primary infection, a number of HIV virus will dramatically increase in first 30 days (resulting CD4+T cells reduction). After the primary infection period, a body builds HIV antibodies for agent virus so that, the infection still stabilizes an approximate steady state. In the last period, the antibody of healthy CD4+T cells will be drastically reduced. Finally, the patient develops to be an AIDS person.

Over the past few decades, the nonlinear H_{∞}-control theory has been extensively studied by many researchers; see [9], [10], [11]. The nonlinear H_{∞}-control problem can be stated as follows: given a dynamic system with the exogenous input noise and the measured output, find a controller such that the L_2-gain of the mapping from the exogenous input noise to the regulated output is less than or equal to a prescribed value. Presently, there are two commonly used approaches for providing solutions to the nonlinear H_{∞}-control problems. The first approach is based on the dissipativity theory and theory of differential games; see [9], [13]. The second approach is based on the nonlinear version of classical Bounded Real Lemma; see [10], [11], [12]. Both approaches show that the solution of the nonlinear H_{∞}-control problem is in fact related to the solvability of Hamilton-Jacobi inequalities (HJIs).

Fig. 1. The natural history of HIV infections dynamics as currently accepted [1], [2], [3], [4].

Over the past two decades, there has been rapidly growing interest in application of fuzzy logic to control problem. Researches have been focused on its application to industrial processes and a number of successful results have been reported in the literature. In spite of these successes, there are many basic issues remain to be addressed. One of them is how to achieve a systematic design that guarantees closed-loop stability and performance. Recently, a great amount of effort has been devoted to describing a nonlinear system using a Takagi-Sugeno fuzzy model; see [15]–[24]. The Takagi-Sugeno fuzzy model represents a nonlinear system by a family of local linear models which smoothly blended together through fuzzy membership functions. Unlike conventional modelling techniques which use a single model to describe
the global behavior of a nonlinear system, fuzzy modelling is essentially a multi-model approach in which simple sub-models (typically linear models) are fuzzily combined to described the global behavior of a nonlinear system. Based on this fuzzy model, a number of systematic model-based fuzzy control design methodologies have been developed.

What we intend to do in this paper is to design a fuzzy H_{∞} controller for HIV/AIDS infection system with dual drug dosages which can be represented by a Takagi-Sugeno (TS) fuzzy model. Based on an LMI approach, we develop a state-feedback controller for HIV/AIDS infection system with dual drug dosages such that the L_2-gain of the mapping from the exogenous input noise to the regulated output is less than a prescribed value. This paper is organized as follows. In Section II, system descriptions and definition are presented. In Section III, based on an LMI approach we develop a technique for designing a fuzzy H_{∞} controller for HIV/AIDS infection system with dual drug dosages that guarantees the L_2-gain of the mapping from the exogenous input noise to the regulated output is less than a prescribed value. The validity of this approach is finally demonstrated through simulation results in Section IV. Finally in Section V, the conclusion is given.

II. SYSTEM DESCRIPTIONS AND DEFINITION

A. HIV dynamic model

In most cases, HIV virus affects the level of CD4+T cells which these cells are important in helping a body fighting to infection. Free virus means the HIV virus found in blood plasma. The healthy CD4+T cells are produced from a source, such as the thymus represented by constant rate s and died at rate d. The coefficient β is the infection rate. The infected cells result from the infection of healthy CD4+T cells and die at a rate μ. A free-virus particle is known as virions, so called viral load, and cleared at a rate c (death rate of virus). The variable k is a rate of virions product per infection CD4+T cell.

The infection described previously can be summarized by differential equations [1].

$$\dot{x}_1(t) = s - dx_1(t) + \beta x_1(t)x_3(t)$$
$$\dot{x}_2(t) = \beta x_1(t)x_3(t) - \mu x_2(t)$$
$$\dot{x}_3(t) = k x_2(t) - c x_3(t)$$

where $x_1(t)$ is concentration of healthy cells or T cells, $x_2(t)$ is concentration of infected cells, $x_3(t)$ is concentration of virions (free virus particles), s is the constant rate to produced the healthy CD4+T cells, d is the death rate of the healthy CD4+T cells, β is the coefficient of the infection rate, μ is death rate of the infected cells, k is a rate of virions product per infection CD4+T cell, and c is death rate of virus.

Current treatment for HIV infection consists of highly active antiretroviral therapy, or HAART. The HAART treatment used drug in the group of protease inhibitor. The doctors will assess the viral load, CD4+T counts, rapidity of CD4+T decline, and patient readiness. While deciding, the doctors recommend initiating treatment to the patient [6]. The parameters and typical values are listed in Table 1 [5]. The information of HIV model parameters obtain from [5] which the initial conditions correspond to a healthy person infected with a virus given by Table 1. In 2007, M. Barao and J.M. Lemos proposed the nonlinear dynamic model to describe HIV with treatment as follows [5]:

$$\dot{x}_1(t) = s - dx_1(t) + \beta x_1(t)x_3(t)$$
$$\dot{x}_2(t) = \beta x_1(t)x_3(t) - \mu x_2(t) - px_2(t)u(t)$$
$$\dot{x}_3(t) = k x_2(t) - cx_3(t)$$
$$\dot{u}(t) = qx_2(t)u(t) - ru(t)$$

where the controller input $u(t)$ is the magnitude of the antibodies CTLs (cytotoxic T lymphocyte) or so called a controlled input. The healthy CD4+T cells are produced from a source, such as the thymus represented by constant rate s and died at rate d. The coefficient β is the infection rate. The death rate of virus is described by c. Growth rate of CTLs in response to antigen is represented by $q x_2(t)u(t)$. CTLs decay at rate $ru(t)$ and infected cells are killed by CTLs at rate $px_2(t)u(t)$.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Typical Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>0.02</td>
<td>Days</td>
</tr>
<tr>
<td>d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>k</td>
<td>100</td>
<td>Count Cell4</td>
</tr>
<tr>
<td>β</td>
<td>2.4 x 10$^{-5}$</td>
<td>mm3</td>
</tr>
<tr>
<td>c</td>
<td>2.4</td>
<td>Per Day</td>
</tr>
<tr>
<td>μ</td>
<td>0.24</td>
<td>Per Day</td>
</tr>
<tr>
<td>p</td>
<td>0.03</td>
<td>Per Day</td>
</tr>
<tr>
<td>q</td>
<td>0.01</td>
<td>Per Day</td>
</tr>
<tr>
<td>r</td>
<td>0.01</td>
<td>Per Day</td>
</tr>
</tbody>
</table>

The model includes antiretroviral treatment and factors such as adhesion and medication potency. The concepts of our proposes are joined with fuzzy set theory and exogenous input noise with biological variable values such as person factor, mental state etc.

Mostly, HIV virus dynamics are modeled using a nonlinear represented by cell. Each cell represents an uninfected cell, an infected cell of the type T lymphocyte of CD4+, a free virus particle, or specific antibodies such as CTL (Cytotoxic T Lymphocyte). Due to the inherent uncertainties of HIV, the antiretroviral treatment is modeled using a fuzzy rule-based system whose output depends on the medication potency and the rate of adhesion to the treatment. The fuzzy rule-based system consists of input processor, fuzzy rule-based (a collection of fuzzy rules), fuzzy inference machine, and output processor. Inputs processors are encoded into fuzzy sets on the respective universes of the input variables. While the rule-based is a component of fuzzy rule-based systems, which is a collection of fuzzy conditional propositions in the form of if-then rules. Fuzzy rules are an effective mean to encode expert knowledge expressed through linguistic statements. In general, if-then rules describe relationships between linguistic variables. Fuzzy machine performs an approximate reasoning use the compositional rule of inference. Finally, in fuzzy rule-based systems, the inferred output is a fuzzy set. Often, especially in biological systems model, we require a real-valued output.

B. Nonlinear fuzzy model

In this subsection, we generalize the TS fuzzy system to represent a TS fuzzy system with parametric uncertainties.
In this paper, we examine a TS fuzzy system with parametric uncertainties as follows:

\[
\begin{align*}
\dot{x}(t) &= \sum_{i=1}^{r} \mu_i(v(t)) \left[A_i + \Delta A_i \right] x(t) + B_1 + \Delta B_1 w(t) + B_2 + \Delta B_2 \tilde{u}(t), \quad x(0) = 0 \\
z(t) &= \sum_{i=1}^{r} \mu_i(v(t)) \left[C_1 + \Delta C_1 \right] x(t) + D_{12} + \Delta D_{12} \tilde{u}(t) \\
y(t) &= \sum_{i=1}^{r} \mu_i(v(t)) \left[C_2 + \Delta C_2 \right] x(t) + D_{21} + \Delta D_{21} \tilde{w}(t)
\end{align*}
\]

where \(v(t) = [\nu_1(t) \cdots \nu_\ell(t)] \) is the premise variable vector that may depend on states in many cases, \(\mu_i(v(t)) \) denotes the normalized time-varying fuzzy weighting functions for each rule (i.e., \(\mu_i(v(t)) \geq 0 \) and \(\sum_{i=1}^{\ell} \mu_i(v(t)) = 1 \)), \(\ell \) is the number of fuzzy sets, \(x(t) \in \mathbb{R}^n \) is the state vector, \(u(t) \in \mathbb{R}^m \) is the input, \(w(t) \in \mathbb{R}^p \) is the disturbance which belongs to \(L_2[0, \infty) \), \(y(t) \in \mathbb{R}^q \) is the measurement, \(z(t) \in \mathbb{R}^r \) is the controlled output, the matrices \(A_i, B_1, B_2, C_1, C_2, D_{12}, \) and \(D_{21} \) are of appropriate dimensions, and \(r \) is the number of IF-THEN rules. The matrices \(\Delta A_i, \Delta B_1, \Delta B_2, \Delta C_1, \Delta C_2, \Delta D_{12}, \) and \(\Delta D_{21} \), represent the uncertainties in the system and satisfy the following assumption.

Assumption 1:

\[
\begin{align*}
\Delta A_i &= F(x(t), t)H_1, \\
\Delta B_1 &= F(x(t), t)H_2, \quad \Delta B_2 = F(x(t), t)H_3, \\
\Delta C_1 &= F(x(t), t)H_4, \quad \Delta C_2 = F(x(t), t)H_5, \\
\Delta D_{12} &= F(x(t), t)H_6, \quad \text{and} \quad \Delta D_{21} = F(x(t), t)H_7,
\end{align*}
\]

where \(H_{ji}, j = 1, 2, \cdots, 7 \) are known matrix functions which characterize the structure of the uncertainties. Furthermore, the following inequality holds:

\[
\|F(x(t), t)\| \leq \rho \tag{4}
\]

for any known positive constant \(\rho \).

Next, let us recall the following definition.

Definition 2.1: Suppose \(\gamma \) is a given positive number. A system (3) is said to have an \(L_2 \)-gain less than or equal to \(\gamma \) if

\[
\int_0^{T_f} z^T(t)z(t)dt \leq \gamma^2 \int_0^{T_f} w^T(t)w(t)dt, \quad x(0) = 0 \tag{5}
\]

for all \(T_f \geq 0 \) and \(w(t) \in \mathcal{L}_2[0, T_f] \). Note that for the symmetric block matrices, we use \((*)\) as an ellipsis for terms that are induced by symmetry.

III. Robust \(H_\infty \) Fuzzy State-Feedback Controller for HIV/AIDS Infection System

The aim of this section is to design a robust \(H_\infty \) fuzzy state-feedback controller of the form

\[
u(t) = \sum_{j=1}^{r} \mu_j K_j x(t)\tag{6}
\]

where \(K_j \) is the controller gain, such that the inequality (5) holds. The state space form of the fuzzy system model (3) with the controller (6) is given by

\[
\begin{align*}
\dot{x}(t) &\quad = \sum_{i=1}^{r} \sum_{j=1}^{r} \mu_i \nu_j \left[\left(A_i + B_2 K_j \right) + \left(\Delta A_i + \Delta B_2 \right) \right] x(t) + \left[B_1 + \Delta B_1 \right] \tilde{w}(t) \\
&\quad + \left(\Delta A_i + \Delta B_2 \right) \tilde{u}(t)
\end{align*}
\]

where \(x(0) = 0 \). The following theorem provides sufficient conditions for the existence of a robust \(H_\infty \) fuzzy state-feedback controller. These sufficient conditions can be derived by the Lyapunov approach.

Theorem 1: Consider the system (3). Given a prescribed \(H_\infty \) performance \(\gamma > 0 \) and a positive constant \(\delta \), if there exist a matrix \(P = P^T \) and matrices \(Y_j, j = 1, 2, \cdots, r \), satisfying the following linear matrix inequalities:

\[
\begin{align*}
P &\quad > 0 \\
\Omega_{ii} &\quad < 0, \quad i = 1, 2, \cdots, r \\
\Omega_{ij} + \Omega_{ji} &\quad < 0, \quad i < j \leq r
\end{align*}
\]

where

\[
\begin{pmatrix}
\lambda \tilde{P} + \tilde{P} \lambda^T + \delta I & \delta I & \delta I & B_1^T \\
\delta I & \tilde{B}_1^T & \tilde{Y}_j & \tilde{Y}_j^T \\
\delta I & \tilde{B}_1^T & \tilde{Y}_j & \tilde{Y}_j^T \\
\delta I & \tilde{B}_1^T & \tilde{Y}_j & \tilde{Y}_j^T
\end{pmatrix}
\]

(\(*)^T (\gamma I \quad (\gamma I)^T \))

with

\[
\begin{align*}
\tilde{B}_1 &= \left[\begin{array}{cccc}
\delta I & I & I & B_1
\end{array} \right], \\
\tilde{C}_1 &= \left[\begin{array}{cccc}
\frac{\rho}{2} H_4^T & 0 & \sqrt{2} \lambda \rho H_5^T & \sqrt{2} \lambda \rho C_1^T
\end{array} \right]^T, \\
\tilde{D}_{12} &= \left[\begin{array}{cccc}
0 & \frac{\rho}{2} H_4^T & \sqrt{2} \lambda \rho H_6^T & \sqrt{2} \lambda D_{12}^T
\end{array} \right]^T, \\
\lambda &= \left(1 + \rho^2 \sum_{j=1}^{r} \sum_{i=1}^{r} \| H_{ji}^T H_{ji} \| \right)^{\frac{1}{2}}
\end{align*}
\]

then the inequality (5) holds. Furthermore, a suitable choice of the fuzzy controller is

\[
u(t) = \sum_{j=1}^{r} \mu_j K_j x(t)\tag{7}
\]

where

\[
K_j = Y_j P^{-1}.\tag{8}
\]

Proof: The detail of the proof is omitted for brevity. \(\blacksquare \)
IV. SIMULATION RESULTS

A simulation result is given in this section to illustrate the procedure of designing a fuzzy controller. Let us recall (2) included with noise term. The parameters and typical values are listed in Table 1.

\[
\begin{align*}
\dot{x}_1(t) &= s - dx_1(t) + \beta x_1(t)x_3(t) + w_1(t) \\
\dot{x}_2(t) &= \beta x_1(t)x_3(t) - \mu x_2(t) - px_2(t)u(t) + w_2(t) \\
\dot{x}_3(t) &= kx_2(t) - cx_3(t) + w_3(t) \\
\tilde{u}(t) &= qx_2(t)u(t) - ru(t)
\end{align*}
\]

where \(w_1(t), w_2(t) \) and \(w_3(t) \) are the disturbance factor from the patients and the controlled output is

\[
z(t) = [x_1(t) \ x_2(t) \ u(t)]^T.
\]

The nonlinear system plant can be approximated by TS fuzzy rules. Let us choose the membership functions of the fuzzy sets as shown in Figure 2, i.e., the healthy cell of CD4+T, \(x_1(t) \) and the infected cells, \(x_2(t) \).

The TS fuzzy plant model can be obtained as:

Plant Rule i:

IF \(x_1(t) \) is \(M_i \) and \(x_2(t) \) is \(N_j \)

THEN

\[
\begin{align*}
\dot{x}(t) &= [A_i + \Delta A_i]x(t) + B_i u(t) + B_w w(t), \\
z(t) &= Cx(t) + Du(t)
\end{align*}
\]

where \(i, j = 1, \ldots, 3 \)

\[
A_i = \begin{bmatrix} -\beta x_1(t) & 0 & 0 \\ 0 & -\mu & 0 \\ 0 & k & -c \end{bmatrix}, \quad B_w = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix},
\]

\[
B_i = \begin{bmatrix} 0 & -px_2(t) & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad D = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}.
\]

\[
\Delta A_i = F(x(t), t)H_{i1},
\]

\[
x(t) = [x^T(t) \ x^T_2(t) \ x^T_3(t)]^T
\]

and \(w(t) = [w^T_1(t) \ w^T_2(t) \ w^T_3(t)]^T \).

Now by assuming that in (2), \(||F(x(t), t)|| \leq \rho = 1 \) and since the value of \(\mu, d, k, \) and \(c \) are uncertain but bounded within 10% of their nominal value in (14), we have

\[
H_{i1} = \begin{bmatrix} -0.1d & 0 & 0 \\ 0 & -0.1\mu & 0 \\ 0 & 0.1k & -0.1c \end{bmatrix}.
\]

Using the LMI optimization algorithm and following Theorem 1 with set as \(\gamma = 0.1 \), we obtain the results given in Figure 3 - 5.

Remark 1: The simulation results given in Figure 3 - 5 can be explained as follows: healthy cell in Figure 3: if CD4+T cells are more than 0.5 cells ml\(^{-1}\), the patients will develop the disease of HIV at low risk; free virus in Figure 4: if CD4+T cells are lower than the lymphocyte CD4+ in the organism, they cannot prevent the HIV virus in destroying the cells; and virus specific CTL in Figure 5: Cytotoxic T lymphocytes are lymphocytes that kill virus-infected cells.

![Fig. 2. The simulation result of drug dosages for healthy cell, \(x_1(t) \).](image)

![Fig. 3. The simulation result of drug dosages for healthy cell, \(x_1(t) \).](image)

V. CONCLUSION

This paper has presented a robust \(H_\infty \) fuzzy state-feedback control design for nonlinear positive HIV infection dynamic model. This paper has developed a fuzzy controller for applying in HIV nonlinear dynamic model to solve with antiretroviral therapy by using a fuzzy rule-based system with two inputs, the medication potency and the treatment adhesion rate. The effective of controller can prevent infection. The progression is the key to success of fighting against AIDS.
AKNOWLEDGMENT

This work was supported by the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission. The author also would like to acknowledge to the Department of Electronic and Telecommunication Engineering, King Mongkut’s University of Technology Thonburi for their supports in this research work.

REFERENCES