
Parallelization of Termination Checker of Term
Rewriting Systems

Rui Ding, Haruhiko Sato, and Masahito Kurihara,

Abstract—Inductive theorem proving plays an important role
in the field of formal verification of systems. The rewriting in-
duction(RI) is a method for inductive theorem proving proposed
by Reddy. And the multi-context rewriting induction(MRI)
proposed by Sato based on the idea of Kurihara has improved
the power of RI significantly. However a large amount of ter-
mination check of term rewriting systems should be performed
in the MRIt, which is becoming the efficiency bottleneck of
MRI. In this paper, we propose a method of parallelizing the
termination checker used in MRI based on the lexicographic
path order method to improve its efficiency. And then we will
discuss its efficiency based on the experiments with the system
implemented in a parallel functional programming language
named Erlang.

Index Terms—Parallelization, Term rewriting system, Ter-
mination checker, Multi-context rewriting induction, Lexico-
graphic path order, Erlang

I. INTRODUCTION

A term rewriting system, which is used in the field
of automated theorem proving, is a set of rewrite

rules that rewrite a term to another. A software tool which
checks its termination is called a termination checker. In
the field of formal verification of information systems, in-
ductive theorem proving plays an important role. A lot of
research has been done to automate the proof discovery,
such us the ewritinginductionwithterminationchecker
developed by Aoto [8] , which enables researchers to improve
the efficiency of the system by customizing the termination
checkers. Recently, multi − context rewriting (MRIt for
short) developed by Sato [3] has improved the theorem
proving techniques. However, a large amount of rapid check
of termination is necessary in the MRIt. This causes the
standard termination checker based on the dependency pair
method proposed by Arts and Giesl [9], to take the most of
time of calculation. This is becoming the obstacle of further
improvement of its efficiency.

In order to automate and accelerate the MRIt, we propose
parallelizing the lexicographic path order method, which
is a traditional termination check method, by using multi-
core CPU. In this paper we discuss the problem from two
viewpoints. One is the exploration of lexicographic path
orders, and the other is the large amount of term rewriting
systems to be checked. For the implementation, a functional
programming language named Erlang has been adopted.
The paper is organized as follows. First we review the
basic definitions of term rewriting systems and the MRIt.
Then we describe our parallelization method and discuss its

Manuscript received December 30, 2011. This work was supported in
part by the JSPS KAKENHI No. 22500022.

R. Ding, H. Sato, and M. Kurihara are with the Graduate School of
Information Science and Technology, Hokkaido University, Sapporo, Japan
060-0814. E-mail: ray, haru, kurihara@complex.ist.hokudai.ac.jp

performance with the experiment. And finally we will come
to the conclusion and future work.

II. PRELIMINARIES

A. Term Rewriting System

We recall the basic notion of term rewriting system briefly.
A signature Σ is a set of function symbols, where each
f ∈ Σ is associated with a non-negative integer, which is the
arity of f . For any f ∈ Σ, we call f a constant symbol
if the arity of f is 0. Let X be a set of variables that is
disjoint from Σ. The set T (Σ, X) of all Σ− terms over X
is inductively defined as follows.
• X ⊆ T (Σ, X) (i.e. every variable is a term)
• for t1, t2, ..., tn ∈ T (Σ, X) and f ∈ Σ, then
f(t1, t2, ...tn) ∈ T (Σ, X) where n is the arity of f (i.e.
application of function symbols to terms yields terms).

For example, for the signature Σ = {f, g}, f(x, g(x, y)) is
a Σ-term that contains the variable x and y. We write s ≡ t
if term s is identical with t. A term s is a subterm of t if
s ≡ t or t = f(t1, t2, ..., tn) and s is a subterm of some ti.
We denote the set of all variables contained in s by V (s).
A substitution is a function σ : V → T (Σ, X) such that
σ(x) 6= x for only finitely many xs. Every substitution σ can
be extended to a mapping σ : T (Σ, X)→ T (Σ, X) by defin-
ing σ(f(s1, s2, ..., sn)) = f(σ(s1), σ(s2), ..., σ(sn)). For
example, let a substitution σ = {x 7→ f(x), y 7→ g(y)} and
a term s = f(f(x), g(y)), then σ(s) = f(f(f(x)), g(g(y))).
We also denote σ(s) by sσ, and we say that t is an instance
of s if there exist a σ such that t = sσ.

A rewrite rule l → r is an ordered pair of terms such
that l is not a variable and every variables contained in s
are also in l. A term rewriting system (TRS for short)
is a set of rewrite rules. A context, denoted by C, is a
term t ∈ T (Σ, V ∪ {2}) with exactly one occurrence of
2. C[s] denotes the term obtained by replacing 2 in C by
s. For any term s, t ∈ T (Σ, X) and a TRS R , if there
exists a rule l → r ∈ R and substitution σ that s ≡ C[lσ]
and t ≡ C[rσ], we denote it by s →R t and we call →R

reduction relation. A term s is reducible if s →R t for
some t; otherwise, s is a normal form. For any term s0
and TRS R, if infinite rewrite sequence s0 →R s1 →R . . .
does not exist, then R terminates. A relation R on T (Σ, V)
is closedundersubstitution if s R t impliles sσ R tσ for
any substitution σ. A relation R on T (Σ, V) is closed under
context if s R t implies C[s] R C[t] for any context C. A
reductionorder � is a well-founded strict partial order on
T (Σ, V) that is closed under substitution and context. For a
term s ≡ f(t1, t2, . . . tn) where n is the arity of f , we call
the symbol f the root symbol of s and denote it by root(s).
The set of root symbols of all the rules in a TRS R is called
the defined symbols of R.

DELETE 〈E ⊎ {s = s},H〉 ⊢ 〈E ,H〉

SIMPLIFY 〈E ⊎ {s = t},H ⊢ 〈E ∪ {s′ = t},H〉
if s →R∪H s′

EXPAND 〈E ⊎ {s = t},H〉 ⊢
〈E ∪ Expdu(s, t),H ∪ {s → t}〉
if u → B(s) and s ≻ t

Fig. 1. Inference Rules of RI

B. Rewriting Induction

The rewriting induction (RI) proposed by Reddy [6], is a
principle for proving inductive theorems in equational logic.
We will review the basic notion of it briefly.

Given a set R of rewrite rules representing equational
axioms, RI is an inference system defined in Fig.1, working
on a pair of set of equations E and a set of rewrite rules
H. Intuitively, E represents conjectures to be proved and H
represents inductive hypotheses applicable to E .

In Fig.1, Expd denotes the function defined as

Expdu(s, t) = {C[r]σ = tσ|s ≡ C[u], l→ r ∈ R,
σ = mgu(u, l), l : basic}

where, if necessary, the variables used in l → r should be
renamed in a one-to-one manner so that V (l, r) ∩ V (s, t) =
Ø. Let s = t be an equation such that it can be oriented
from s to t to form a rewrite rule s → t, Given such an
equation s = t and a basic subterm u of s, Expdu(s, t)
overlaps u with the basic left-hand sides l of a rewrite rule
l → r of R. The resultant equations are collected in a set
and returned by Expd. Those equations will be used as new
conjectures in the EXPAND inference rule for a case analysis
to cover the original conjecture s = t, ifR is quasi-reducible.
In the succeeding inference steps, the rewrite rule s → t
can be used as an inductive hypothesis. And the DELETE
rule removes the trivial equations while the SIMPLIFY rule
reduces an equation using a rule of R and H.

We write 〈E ,H〉 `RI 〈E ′,H′〉 if the latter may be obtained
from the former by one application of a rule of RI. Given
a set of equations E0, a quasi-reducible terminating TRS R
and a reduction order � containing R, if we have a derivation
sequence 〈E0,H0〉 `RI 〈E1,H1〉 · · · `RI 〈En,Hn〉 where
H0 = En = Ø, then all equations in E0 are inductive
theorems of R. Quasi-reducibility is decidable and there is
an algorithm for it, so the possible derivation occurs in the
choice of the reduction order �. This means the choice of
the reduction order determines the efficiency of inductive
theorem proving with RI. However, the choice of reduction
order is undecidable. It means that if the procedure faces
the choice for a reduction order, it can not tell which one
will lead to the success or failure in the whole procedure.
Futhermore, if we simply traversal all the choices, some of
the choice might lead to very long sequences of inference or
even infinite loops, which causes inefficiency.

III. MULTI-CONTEXT REWRITING INDUCTION

A. Multi-Context Rewriting Induction

In this section, we describe the multi-context rewriting
induction with termination checkers (MRIt) proposed by

1

DELETE : N ∪ {〈s : s,H1, H2, E〉} ` N

EXPAND : N ∪ {〈s : t,H1, H2, E] E′〉} `
N ∪ {〈s : t,H1 ∪ E′, H2, E〉}∪
{〈s′ : t′,Ø,Ø, E′〉 |s′ = t′ ∈ Expdu(s, t)}
if E′ 6= Ø, u ∈ B(s) and H[N, i] ∪R∪
{s→ t} terminates for all i ∈ E′

SIMPLIFY − R : N ∪ {〈s : t,H1, H2, E〉} `
N ∪

{
〈s : t,H1, H2,Ø〉
〈s′ : t,Ø,Ø, E〉

}

if E 6= Ø and s→R s′

SIMPLIFY −H : N ∪ {〈s : t,H1, H2, E〉} `
N ∪

{
〈s : t,H1, H2, E \H〉
〈s′ : t,Ø,Ø, E ∩H〉

}

if E ∩H 6= Ø and 〈l : r,H, . . . , . . . 〉 ∈ N
s→l→r s

′

FORK : N ` ψP (N)
for some fork function ψand a set P of
processes in N

GC : N ∪ {〈s : t,Ø,Ø,Ø〉} ` N

SUBSUME : N ∪
{
〈s : t,H0, H1, E〉
〈s′ : t′, H ′

0, H
′
1, E

′〉

}
`

N ∪ {〈s : t,H0 ∪H ′
0, H1 ∪H ′

1, E
′′〉}

if s : t and s′ : t′ are variants and
E′′ = (E \ (H ′

0 ∪H ′
1)) ∪ (E′ \ (H0 ∪H1))

SUBSUME− P : N ` sub(N,L)p ∈ L,∃p′ ∈ I(N) \ L :
(E [N, p],H[N, p]) = (E [N, p′],H[N, p′])

Fig. 2. Inference Rules of MRIt

Sato, which improves the rewriting induction significantly.
MRIt is based on the framework of MKB procedure, which
simulates the inferences made in all the choices in one
process.

MRIt is represented by an inference system working on a
set of nodes. A node is a 4-tuple 〈s : t,H1, H2, E〉 consists
of an ordered pair of term s : t, three sets of indexes of
processes H1,H2,E, where each of them is a sequence of
natural numbers. In MRIt, the procedure starts with one root
process and in the course of the execution, adds new process
created by forking existing processes if necessary, when we
have nondeterministic choices in applying inference rules. In
the node, E represents all processes containing s = t as a
conjecture to be proved, and H1 (resp. H2) represents all
processes containing s → t (resp. t → s) as an inductive
hypothesis. Integrating all the inferences the divergence into
node operation, MRIt defines inference rules as shown in
Fig.2. In the inference rules, I(N) denotes the set of all pro-
cesses that appear in a label of a node in N and sub(N,L) =
{〈s : t,H1 \ L,H2 \ L,E \ L〉 | 〈s : t,H1, H2, E〉 ∈ N}.

Let us set our focus on the EXPAND and SIMPLIFY-
R rules. The EXPAND rule operates on a node n =
〈s : t,H1, H2, E] E′〉 ∈ N , and applies the EXPAND rule
of RI in all processes of E′ that can orient the equation s = t
from left to right. The set E′ is moved from the third label to
the first in n since in each process in E′ the conjecture s = t
is removed and the new hypothesis s→ t is added after the
expansion. In addition, for each new conjecture s′ = t′ in
EXPDu(s, t), a new node 〈s′ : t′,Ø,Ø, E′〉 ∈ N} is created
in order to store the conjecture in the processes of E′. And
the DELETE simulates its counterpart of RI, while GC, SUB-
SUME, and SUBSUME-P are optional rules for efficiency.
Especially the third optional rule stops redundant processes,
which have the same state as other existing processes. The
SIMPLIFY-H rule is almost the same as SIMPLIFY-R. The

TABLE I
COMPUTATION TIME OF MRIT

Problem Total Term Simplify

109 0.347 0.281 0.043
301 0.305 0.244 0.044
115 0.042 0.026 0.010
1018 0.028 0.014 0.009
216 0.014 0.003 0.010

total 0.876 0.627 0.169

difference is that SIMPLIFY-R applies a rule of R, which
is common to all processes, while SIMPLIFY-H applies an
inductive hypothesis of H, which may exist only in some
distinguished processes. Finally the FORK is an rule that
enables us to produce new copies of existing processes to
make nondeterministic choices in parallel.

Let N and N ′ be two sets of nodes. We write N ` N ′ if
the latter is obtained from the former by one application of
an inference rule of MRIt. Given a set E0 of equations and
a quasi-reducible terminating TRS R, MRIt starts from the
initial set of nodes N0 = {〈s : t,Ø,Ø, {ε}〉 |s = t ∈ E0},
since MRIt starts with the root simulated process denoted
by the empty sequence ε. MRIt generates a sequence N0 `
N1 ` · · · .

B. Efficiency Issue

In this section, we will discuss the efficiency of MRIt
through some experiments. In the procedure of MRIt, the
most frequently used rules are EXPAND, SIMPLIFY and
FORK, which determine the efficiency of the MRIt. The
FORK simply creates new indexes of processes so its compu-
tation time will not be too long to affect the whole procedure.
The situation is similar in SIMPLIFY (both R and H), where
only reduction relations should be verified during or before
the application of them. However, we need to check whether
H[N, i] ∪ R ∪ {s → t} terminates for all i ∈ E′ and make
a nondeterministic choice according to the result. Since the
number of indexes of processes in E′ rapidly increases in
procedure, the number of TRSs necessary to be checked
increases at the same time.

To see how much computation time accounts for the
termination verification cost, we can see the experiments of
MRIt with the Dream Corpus examples, which are standard
examples for inductive theorem proving. In those examples,
there were 69 unconditional equational problems suitable for
the input to the MRIt. The result is shown in Table 1, in
which the column Term and Simplify represent the compu-
tation time of termination verification and the application
of SIMPLIFY respectively. In the table we only show the
problems that required computation time more than 0.01
seconds, and the last row of it indicates the total computation
time of all 35 solved problems. Although the computation
time isn not very long according to the table, we can see the
termination verification takes the most computation time of
MRIt. Since the termination checker in MRIt is independent
of the whole procedure, if its efficiency was improved, we
can say that the efficiency of MRIt will be more improved.
The termination checker receives TRSs from SIMPLIFY rule
and verify them sequentially, so the coming TRSs must
wait until the last verification is completed, which could

cause inefficiency. To relieve this bottleneck and improve the
efficiency of MRIt, We consider parallelizing this termination
check component in both macro and micro viewpoints in
terms of multi-core CPU, which can carry out the tasks
separately in each core and cut down the waiting time.

IV. PARALLELIZATION

A. Programming Language Erlang

To implement the termination checker efficiently in a
multi-core CPU, we have adopted a programming lan-
guage named Erlang. Erlang is a general-purpose concurrent,
garbage-collected programming language run on an efficient
runtime system. The sequential subset of Erlang is a func-
tional language, with strict evaluation, single assignment, and
dynamic typing. For concurrency it follows the Actor model.
It was designed by Ericsson to support distributed, fault-
tolerant, soft-real-time, non-stop applications. It supports hot
swapping, so that code can be changed without stopping
a system. We have selected this language because of the
following three characteristics.

1) Pattern Matching: A term of TRS always contains
function symbols and arguments associated with them. If
we want to store them in memory or files, we must treat
them separately because they are not necessarily the same
data type and combine them together when necessary. In
Erlang, there is a distinguished definition of the symbol =
called pattern matching. When we have Lv = Rv, it means
matching the value of Rv with the pattern of Lv. If they
match well, Lv will get the value of Rv, otherwise there will
be an error. For example, if we run the following command
in the shell of Erlang

X = 1 + 2
Y = X + 3
Y = 7
X = Y

we will easily get X = 3 and Y = 6 from the first three
command. However, the last of them will throw an badmatch
error because X is not equal to Y . Pattern matching in Erlang
sounds trivial, but when the left side of the equation has a
complex structures, it becomes very convenient to valuate all
the variables in it. There are two data structure in Erlang we’d
like to mention. A tuple is a structure like {x1, x2, . . . , xn}
with a fixed number of data, while a list is a structure like
[x1, x2, . . .] with a variable number of data and they can
be created recursively. If you want to get values from a
complex tuple like {a, [b, c, {d, e, [f, g]}]}, you only need to
do a pattern matching

{A, [B,C, {D,E, [F,G]}]} = {a, [b, c, {d, e, [f, g]}]}

and the uppercase letters will be valuated with the lowercase
letters (or an error for bad matching). Such characteristics
makes it convenient to deal with TRS, which will be de-
scribed later.

2) Parallelization Orient: There is an amazing thing to
the users of Erlang that the program will run n time faster
in a n core CPU without any modification. But to achieve
this, one must make sure that the program is constructed
with processes and there are no interference and sequential
bottleneck between them. To avoid the sequential bottleneck

in the implementation, we use the feature named the process
link in Erlang. After creating a process Pb, we can link it
with an existing process Pa for message transfer. A process
will send a signal to the linked processes once its task has
been completed (or exit with error), and the process which
has received the termination signal also terminates if it is
not a system process. A system process can be set at the
beginning of the process. This link mechanism is a great
help in relieving the sequential bottleneck in the implement.

3) Extendability: When we need data or functions from
other applications or programs, Erlang can create a port for
data transfer instead of running the external program, which
makes it extendable with various features.

B. Lexicographic Path Order

To verify the termination, we use the lexicographic path
order method, which is a standard method of termination
check. First we show the theorem of termination verification
and the definition of lexicographic path order.

Theorem 1: A term rewriting system R terminates iff
there exists a reduction order > that satisfies l > r for all
l→ r ∈ R.

Definition 1: Let Σ be a finite signature and > be a strict
order on Σ. The lexicographic path order >lpo on T (Σ, V)
induced by > is defined as follows: s >lpo t iff
(LPO1) t ∈ V (s) and s 6= t, or
(LPO2) s = f(s1, ..., sm), t = g(t1, ..., tn), and
nnnn(LPO2a) there exist i, 1 6 i 6 m, with si >lpo t, or
nnnn(LPO2b) f > g and s >lpo tj for all j, 1 6 j 6 n or
nnnn(LPO2c) f = g, s >lpo tj for all j,1 6 i 6 n, and
nnnnnnnnnnn there exists i, 1 6 i 6 m such that
nnnnnnnnnnn s1 = t1, . . . , si−1 = ti−1 and si >lpo ti.

The definition of the lexicographic path order is recursive
since in (LPO2a), (LPO2b) and (LPO2c) it refers to the
relation >lpo to be defined. Nevertheless, >lpo is defined
since the definition of s >lpo t only refers to the relation
>lpo applied to pairs of terms that are smaller than the pairs
s, t. It is proved that the >lpo is stricter than the reduction
order, so the termination of TRS R with the signature Σ is
proved if we can find out a partial order over Σ.

C. Data Structure

Now we are ready to present the data structure for paral-
lelizing the termination checker. Since only terms and rewrite
rules should be constructed by the data structure, we can
define representations using the Erlang data type called the
tuple as follows:
• r is represented by a tuple {Left, Right} if r =
Left→ Right is a rewrite rule of TRS.

• t is represented by a tuple {Fun, [Arg1,Arg2,. . .]}
if t is a term with the function symbol Fun and
Arg1, Arg2, . . . as its arguments.

• t is represented by a tuple {t, []} if t is a constant.
• v is represented by a tuple {v} if v is a variable.

This definition is based on the recursive definition of term,
and we can store any TRS with Erlang easily. For example,
we can store the TRS in Fig.3 in a TRS file like Fig.4 above.

Although the TRS file is difficult for us to read, Erlang
can read it easily by pattern matching. For example, we only

not(not(x)) → x
not(or(x, y)) → and(not(x), not(y))
not(and(x, y)) → or(not(x), not(y))
and(x, or(y, z)) → or(and(x, y), and(x, z))
and(or(y, z), x) → or(and(x, y), and(x, z))
or(or(x, y), z) → or(x, or(y, z))

Fig. 3. An Example of TRS

{{not, [{not, [{x}]}]},
{x}}

{{not, [{or, [{x}, {y}]}]},
{and, [{not, [{x}]}, {not, [{y}]}]}}

{{not, [{and, [{x}, {y}]}]},
{or, [{not, [{x}]}, {not, [{y}]}]}}

{{not, [{and, [{x}, {y}]}]},
{or, [{not, [{x}]}, {not, [{y}]}]}}

{{and, [{x}, {or, [{y, {z}]}]},
{or, [{and, [{x}, {y}]}, {and, [{x}, {z}]}]}}

{{and, [{or, [{y}, {z}]}, {x}]},
{or, [{and, [{x}, {y}]}, {and, [{x}, {z}]}]}}

{{or, [{or, [{x}, {y}]}, {z}]},
{or, [{x}, {or, [{y}, {z}]}]}}

Fig. 4. A TRS File

need to match a component with { } (” ” means any type)
to find whether it’s variable.

Besides the definition of TRS, we define a partial order
between function symbols by the list of binary tuple of them.
Since there is no partial order when the termination check
procedure starts, we initiate it as I = []. When there is a
new order element f > g to be added, we put {f, g} into I
if it causes no conflict the the partial orders in I .

D. Parallelization Algorithm

In this section we describe the parallelization algorithm
of termination verification. First the termination verification
of a single rule is shown in Fig.5. If the TRS is empty,
the algorithm terminates; otherwise we compute the list of
partial orders that make the left-hand side of the first rule
greater than its right-hand side in >lpo, which can be easily
obtained by the definition of lexicographic path order and
the data structure of Erlang. For each partial order obtained,
we compute the list of partial orders that make the left-hand
side of the second rule greater than its right-hand side in
>lpo. We continue this operation until we find one partial
order that makes the left-hand side of the last rule greater
than its right-hand side in >lpo or we find that there is no
such partial order in any branches. In the process, a single
[] means there is no proper partial order, while [[]] means
there is a proper partial order with no constraint. At each
choice point in the procedure, we create a process for each
partial order just obtained. This leads to our algorithm as
follow:

1) If the TRS is empty, return terminate.
2) Create a supervisor process to monitor the set of created

processes by the link feature of Erlang. If there is no created
process of termination verification, return non-terminate.

2) Initiate a partial order as p = [], do step 3 with the
first rule of TRS and p.

[]

rule 1

rule 2

rule n

Order2,[Order1, Order3]

[Order1.1, Order1.2,...] [Order1.1, Order1.2,...] []

...

[Order,...]

Fig. 5. Procedure of Lexicographic Path Order Method

Input port

lpo lpo lpoOuter program

Output port

...

Fig. 6. Macrolevel Parallelization

3) Based on p, compute Plist = {p1, p2, . . . }, which is
the list of all the possible partial orders of given rewrite
rule. Then we see if L is empty:
• do step 4, if Plist is not empty.
• terminate this process, if L is empty.
4) For each pi ∈ Plist, create a process for it and do step

3 in the process.

One may notice the synchronization problem in the algo-
rithm : if the supervisor process starts before any other chil-
dren processes, it will return non-terminate even before the
termination verification. So we lock the supervisor process
until all the possible partial orders are obtained and sent to
children processes. Besides this, there is also another small
synchronization problem, but it can be solved by the link and
message transfer features of Erlang.

In the macrolevel viewpoint as shown in Fig.6, the ter-
mination checker should take a stream of TRSs and their
identifiers as input. In Erlang, we set an input port, which
receives data from other applications or programs. Then
each received TRS is assigned to a new process, and its
termination will be checked using the algorithm described
above. When the verification is over, the result is sent to the
output port for sending it to the external program. In Erlang,
each process is computed on its independent memory, so
there is no any interference between the processes in the
macrolevel parallelization.

V. EXPERIMENT

In this section, we discuss the result of the experiment. To
test the efficiency of the proposed method, we have used
100 TRSs in http://www.termination-portal.org/wiki/TPDB
which is the database of TRSs. The implementation and
experiments are have been conducted on a workstation with
two AMD Opteron 2.3GHz CPUs which have 12 cores each.
This means we have 24 cores in the workstation. Because the

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

6.5
7

7.5
8

8.5
9

9.5
10

10.5
11

11.5

1 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

parallel

sequential

Fig. 7. Experiment Result

number of TRSs which could be proved terminating with
the lexicographic path order was moderate, we have simply
conducted the termination verification of 100 examples as
many as 100 times instead of verifying distinct 10000
examples. Nevertheless, those set of examples is sufficient
to measure the efficiency of the proposed method. We have
also written a sequential termination checker to compare with
our method.

From the result shown in Fig.7, in which the green line
represents the computation time of the proposed method
while the red line represents that of the sequential program,
we can see the proposed method is much efficient than the
sequential program especially when the number of TRSs is
large. However, when the number of TRSs goes near 10000,
the efficiency of the proposed method begins to be slowly
getting down. We think this is due to the constraint of the
number of cores and processes allowed in the CPU.

VI. CONCLUSION

In this paper, we have presented a parallelized implemen-
tation of termination checker of term rewriting systems, and
discussed its efficiency based on the experiments. As a future
work, we are planning to implement the dependency pair
method, which is complicated but can be more powerful
than the lexicographic path orders. Finally we will use our
termination checker to improve the efficiency of MRIt.

REFERENCES

[1] F. Baader and T. Nipkow, Term Rewriting and All That. Cambridge,
England: Cambridge University Press, 1999.

[2] J. Armstrong, Programming Erlang:Software for a Concurrent World.
Pragmatic Bookshelf, 2007.

[3] H. Sato and M. Kurihara, “Muti-Context Rewrting Induction with Ter-
mination checkers,” IEICE Transactions on Information and Systems,
vol. E93-D, no. 5, pp. 942-952, May. 2010.

[4] M. Kurihara and H. Kondo, “Completion for Multiple Reduction
Orderings,” Journal of Automated Reasoning, vol. 23, no. 1, pp. 25-
42, 1999.

[5] N. Hirokawa and A. Middeldorp, “Tyrolean Termination Tool: Tech-
niques and Features,” Information and Computation, vol. 205, no. 4,
pp. 474-511, 2007.

[6] U. Reddy, “Term Rewriting Induction,” 10th International Conference
on Automated Deduction, vol.814 of Lecture Notes in Computer Science,
pp. 162-177.

[7] N. Hirokawa and A. Middeldorp, “Automating the Dependency Pair
Method,” Information and Computation, vol. 199, no. 1-2, pp. 172-199,
2005.

[8] T. Aoto, “Rewriting Induction Using Termination Checker,” JSSST 24th
Annual Conference, 3C-3, 2007.

[9] T. Arts and J. Giesl, “Termination of Term Rewriting Using Dependency
Pairs,” Theoretical Computer Science, vol. 236, no. 1-2, 2007.

