

Abstract—As the software system becomes large and

complex, the UML use case diagram which is widely used to

capture their requirements is consequently difficult and

complicated. According to the huge numbers of UML elements

found in the initial use case diagram, the subsystem grouping

could be used to alleviate the complexity.

 In this paper, an automatic subsystem grouping scheme is

proposed. The use case dependency graph is introduced as an

alternative technique to identify the structural cohesion of the

use cases and their relations. In our approach, the prerequisite

preparation of the initial use case diagram is needed to ensure

the well-formedness style and proper naming convention

beforehand.

Moreover, the refinement of the subsystem grouping is also

proposed using the use case naming convention approach. The

final version of the result use case diagram with the relevant

subsystems has been reviewed to ensure the improvement of

the readability and understandability.

Index Terms—UML Use Case Diagram, Large Complex

System, Complexity, Use Case Dependency Graph

I. INTRODUCTION

URRENTLY, the UML Use Case diagram is one of the

popular and standard tools for object-oriented modeling

[1], [2], [3], [4]. It is a visual modeling language that can be

used to capture the high level views of the behavioral

requirements of the system [5]. A system analyst usually

draws a use case diagram accordingly to represent the first

draft of the expected target system’s behavior.

Unfortunately the current software system becomes larger

and more complex system and the result huge complex

figure of use case diagram seems to be difficult for reading

and understanding.

Information hiding technique and subsystem design are

focused as the key issues in this paper. They help the system

analyst organize and simplify the huge numbers of the UML

elements within the use case diagram [6], [7]. However, the

competency on how to specify a relevant subsystem is still

not common for the analyst. It should be helpful if the there

is a guideline regarding that capability. In this paper, we

Manuscript received December 23, 2011; revised January 09, 2012.

Nanchaya Khrueahong is with Department of Computer Engineering,

Faculty of Engineering, Chulalongkorn University, Bangkok Thailand (e-

mail: nanchaya.k@student.chula.ac.th).

Wiwat Vatanawood is with Department of Computer Engineering,

Faculty of Engineering, Chulalongkorn University, Bangkok Thailand (e-

mail: wiwat@chula.ac.th).

propose an automatic subsystem grouping scheme, using

use case dependency graph, to ease the drawing of the very

first draft of a total use case diagram. The boundary of the

subsystems would be recommended by the proposed scheme

to increase the readability and understandability of the use

case diagram. The paper is organized as follows. Section 2

reviews related works. Section 3 describes our proposed

automatic subsystem grouping scheme. In section 4, we

demonstrate the case study. Finally, section 5 concludes the

paper.

II. RELATED WORKS

To manage the complexity of requirements captured by

the UML use case diagrams for large complex system is not

well addressed in general.

However, several best practices on how to draw the

quality UML use case effectively are concerned to alleviate

the complexity. At the beginning, some templates and well-

formedness rules [8] were formally defined, using set theory

and logic, to ensure the syntactical constraints among use

case elements and some guidelines are proposed to be

followed. Moreover, the visualization and Aesthetics of the

layout of use case diagram apparently increases the

readability and understandability, [9] proposed the

deterministic layout algorithm to support drawing use case

diagram nicely. Whilst, [5] also suggested how to do the

use case naming convention in order to communicate the

proper semantic of the target system.

The graphics will stay in the “second” column, but you

can drag them to the first column. Make the graphic wider

to push out any text that may try to fill in next to the

graphic.

For the large complex system, some best practices on the

top-down approach are still the effective way to

compromise with the complexity and the information

coverage needed in the modeling. Some examples in [10],

[11] show the evidences of how to use a hierarchical

framework for use case diagram of large complex embedded

systems.

III. OUR PROPOSED AUTOMATIC SUBSYSTEM

GROUPING SCHEME

A. Preparation of The Initial Input Use Case Diagram

In our approach, a raw input use case diagram, probably

An Automatic Subsystem Grouping Scheme

using Use Case Dependency Graph for Large

Complex Systems

Nanchaya Khrueahong and Wiwat Vatanawood

C

with a huge number of elements, should be initially

prepared to conform to the well-formedness rules (WFR) of

use case diagram [8] in order to ensure the syntactical

consistence and completeness of the relations and their

constraints among elements in the use case diagram. The

WFR includes the techniques how to draw Actor, Use Case,

Association, Generalization, <<include>> and <<extend>>

relationship, etc.

In addition, we expect that all use cases should be named

according to the recommendation in [5], in which an

alternative the best practices of use case naming convention

has been defined. In practice, a use case name is comprised

of “active verb” and immediately followed by “direct

object”. For example, a use case named “View Customer

Information” has an active verb - “View”, followed by a

direct object - “Customer Information”.

With the given raw input as mentioned above, we would

be ready to perform the subsystem grouping in two passes:

(Pass I) The subsystem grouping scheme using use case

dependency graphs and (Pass II) The refinement of the

subsystem grouping using use case naming convention.

B. Well-Formedness Rules [8] Revisited

According to [8], well-formedness rules are a set of

syntactical constraints of UML elements and their relations,

especially for the UML use case diagram. The following

sentences show some examples of the WFRs written in the

natural language:

An actor must have a name and must be associated with

at least one use case. Actors are not allowed to interact

with other actors. A use case must have a name and every

use case is involved with at least one actor. The

<<include>> relationship links the source use case to the

destination use case. The rest of the WFRs are described in

[8].

C. Part I: The Subsystem Grouping Scheme using Use

Case Dependency Graphs

The raw input use case diagram, which is prepared

according to section 3A, will be transformed into a set of

use case dependency graphs and the first version of the

result subsystems is then identified using Algorithm 1. The

definitions and algorithm are shown as follow:

Definition 1: Use Case Dependency Graph, DG. A use

case dependency graph is tuple DG = (N, E). We define N =

ACTOR ∪ USECASE and E = ASSOC ∪ REL ∪GEN.

ACTOR is a set of actors and USECASE is a set of use cases

in the diagram. ASSOC is a set of edges on ACTOR x

USECASE, REL is a set of edges on USECASE x USECASE,

and GEN is a set of edges on USECASE x USECASE.

We also define REL = {REL-INC} ∪ {REL-EXT} and

GEN = {REL-GEN} to cope with the type of relationships

and generalization.

Definition 2: <<include>> relationship, REL-INC. An

<<include>> relationship is 2-tuple REL-INC = (baseUC,

incUC), where baseUC is a set of the base use cases, and

incUC is a set of the included use cases.

Definition 3: <<extend>> relationship, REL-EXT. An

<<extend>> relationship is 2-tuple REL-EXT = (baseUC,

extUC), where baseUC is a set of the base use cases, and

extUC is a set of the extending use cases. For <<extend>>

relationship, we intentionally define the direction of the

edge starting from the base use case to the extending use

case.

Definition 4: Generalization relationship, REL-GEN.

A generalization relationship is 2-tuple GEN = (superUC,

subUC), where superUC is a set of the parent use cases,

and subUC is a set of the child or subordinate use cases.

For generalization relationship, we intentionally define the

direction of the edge starting from the parent use case to the

child use case.

Algorithm 1: Subsystem Grouping

Input: A set of dependency graphs TDG = {DG}

generated by definition 1-4

a) Dropout the DGi which has number of nodes less

than 3

For each DGi ,

If NumberOfNode(DGi) < 3 then delete DGi

from TDG

b) Repeatedly find the subsystems

Do while TDG ≠ {}

{

 Find the DGi that has the maximum number of

nodes and call it MaxDG

 For each DGi

 {

If the set of nodes of MaxDG the set of

nodes of DGi ≠ {} then

o The new MaxDG equals MaxDG DGi

o Delete DGi

}

 Define MaxDG as a subsystem.

}

D. Pass I: The Subsystem Grouping Scheme using Use

Case Dependency Graphs

As we mentioned earlier, the raw input use case diagram

should be prepared using both in the well-formedness styles

and properly naming convention.

The intention of the refinement is to reconsider the

dropout use cases during step a) in the algorithm 1

(Subsystem Grouping) and include them into the relevant

subsystems. We propose that the use cases with the same

“direct object” should be in the same subsystem.

 Fig. 1. PLIS use case diagram [12]

Fig. 2. Use Case Dependency graph

Fig. 3. PLIS use case diagram obtained Use Case Dependency Graph

Fig. 4. PLIS Four subsystem of grouping PLIS use case diagram

IV. THE CASE STUDY

This section demonstrates the automatic subsystem

grouping scheme by using a case study called “The personal

language instruction scheduler (PLIS)”. The raw input use

case diagram of the PLIS is shown in fig. 1. We follow the

preparation steps in section 3A so that the use case is now in

the well-formedness styles and the proper naming

convention is also ensured.

With the raw input use case diagram, the set of

dependency graphs are defined and shown in fig. 2. We

found that 19 dependency graphs are generated. The graph

number 10, 17, 12 and 18 are respectively selected as a

MaxDG in step b) to form each subsystem. The graph

number 5, 6, 8, 9, 15 and 19 have been dropout and will be

reconsidered in the refinement processing.

As the result, four subsystems are identified and shown in

fig. 3. Each subsystem shows the appropriate use cases and

their relationship. However, the refinement of the

subsystems has been conducted and some of the dropout use

cases in the prior step are included as shown in fig. 4.

The final use case diagram with the relevant subsystems

has been reviewed and successfully accepted.

V. CONCLUSION

To read and understand the use case diagram for large

complex system is a hard work for system analyst. The

automatic subsystem grouping scheme using use case

dependency graph is proposed. We found that the initial use

case diagram should be prepared in the systematic way. The

well-formedness rules and the proper naming convention

mentioned earlier are still recommended in the stage of

preparation of the initial use case diagram. The refinement

of the subsystem grouping is needed to ensure the

completeness of the final result.

Practically, the metadata of the UML use case diagram

would be represented in .XMI file format and the file could

be automatically processed using our proposed scheme.

REFERENCES

[1] B. Dobing and E. Parson, "Dimensions of UML Diagram Use: A

Survey of Practitioners," Journal of Database Management 19(1),

2008, pp. 1-18.

[2] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling

Langueage User Guide. USA: Addison-Wesley, 2001.

[3] M. N. Alanazi, “Basic Rules to Build Correct UML Diagram,”

Proceeding of International Conference on New Trends in

Information and Service Science (NISS’09), 2009, pp. 72-76.

[4] Y. Labiche, “The UML Is More Than Boxes and Lines,” Chaudron,

M.R.V. (ed) Models in Software Engineering, Springer-Verlag Berlin

Heidelberg. LNCS, Vol. 5421, pp. 375-386, 2009.

[5] A. Cockburn, Writing Effective Use Cases. Addison-Wesley, 2001.

[6] G.A. Kohring, “Complex Dependency in large Software Systems,”

Journal of Advances in Complex Systems, 2009, Vol. 12, No. 6, pp.

565-581.

[7] C. R. Myers, “Software Systems as Complex Network: structure,

function, and evolvability of software collaboration graphs,” Phys.

Rev. E 68, 046116, 2003.

[8] N. Ibrahim, R. Ibrahim, M.Z. Saringat, D. Mansor, and T. Herawan,

“On Well-Formedness Rules for UML Use Case Diagram,”

Proceedings of the International Conference on Web Information

System and Mining (WISM’10), Springer-Verlag Berlin Heidelberg,

2010, pp. 432-439.

[9] H. Eichelberger, “Automatic Layout of UML Use Case Diagrams,”

Proceeding of the 4th ACM symposium on Software visualization

(SoftVis’08), 2008.

[10] K. S. Lew, T. S. Dillon, and K. E. Forward, “Software Complexity

and Its Impact on Software Reliability,” IEEE Transaction on

Software Engineering, Vol. 14, No. 11, November 1988.

[11] E. Nasr, J. McDermin, and G. Bernat, “A Technique for managing

Complexity of Use Cases for Large Complex Embedded Systems,”

Proceedings of the Fifth IEEE International Symposium on Object-

Oriented Real-Time Distributed Computing (ISOEC’02), 2002, pp.

225-232.

[12] Farid. (2007, Nov 25). An On-Line Software System for Allocating

Personnel Instruction Sessions [Online], Available:

http://www.getacoder.com/projects/uml_class_seqence_diagram_634

47_shortlist.html?ord=biddate.

Nanchaya Khrueahong

 She is a graduate student of

Computer Engineering at Faculty

of Engineering, Chulalongkorn

University. Her research interest is

Software Engineering.

Wiwat Vatanawood

 He is currently an associate

professor of Computer Engineering

at Faculty of Engineering,

Chulalongkorn University. His

research interests include formal

specification methods, software

architecture.

http://www.getacoder.com/projects/uml_class_seqence_diagram_63447_shortlist.html?ord=biddate
http://www.getacoder.com/projects/uml_class_seqence_diagram_63447_shortlist.html?ord=biddate

