Proceedings of the International MultiConference of Engineers and Computer Scientists 2012 Vol I,

IMECS 2012, March 14 - 16, 2012, Hong Kong

LACTA: An Enhanced Automatic Software
Categorization on the Native Code of Android
Applications

Cheng-Zen Yang and Ming-Hsuan Tu

Abstract—Since Android has become a popular software
platform for mobile devices recently, many softwareepositories
collect and archive Android applications to faciliate the
dissemination of Android applications. As the numbe of new
Android applications tends to be rapidly increasedn the near
future, automatic software categorization will be n great
demand. Although there are many approaches proposetbr
automatic software categorization, they do not comger the
challenges specifically for Android applications. h this paper,
we propose an enhancement called LACTA based on LACT to
tackle this problem. LACTA extensively employs Androd
domain knowledge in the process and uses LDA to exsirt
meaningful software topics for classification. We &ve
conducted empirical experiments with 42 applicatios. The
experimental results show that LACTA has promising
improvements under the consideration of Android domain
knowledge.

Index Terms—automatic software categorization, latent
Dirichlet allocation, Android, information retrieva |

I. INTRODUCTION

S Android has become a popular software platform f

mobile devices recently, many software repositofie
Android applications like Android Market (marketdxoid.
com) are also populated accordingly. For ease afvsing
and searching for related software, they categotime
archived Android applications into groups as tiadl
software repositories for shareware and open-saafteare,
such as SourceForge.net, However, the classifitaiso
usually determined manually by users or adminigtsafor
most Android repositories. As the number of new v
applications tends to be rapidly increased in thar riuture,
automatic software categorization will be in gréamand for
management of Android application archives.

The research on automatic software categorizatias
been discussed for many years. However, most padies
mainly focus on the problem of classifying softwar
components to facilitate software reuse [1]-[3].akidition,

Manuscript received December 29, 2011; revisedalgriiz, 2012. This
work was supported in part by the National ScieBoancil, Taiwan under
Grant NSC100-2221-E-155-060.

Cheng-Zen Yang is with the Department of Computeier®e and
Engineering, Yuan Ze University, Taoyuan,
(phone:+886-3-4638800 ext 2361; e-mail: czyang@satzu.edu.tw)

Ming-Hsuan Tu is with the Department of ComputeieSce and
Engineering, Yuan Ze University, Taoyuan, 32003 wBai. (e-mail:
s973350@mail.yzu.edu.tw)

ISBN: 978-988-19251-1-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

Taiwan.

many proposed approaches for automatic software
categorization need text information from assodate
documents or comments in the source code [1]-[Bhogh
recently several approaches, such as MUDABIug[T§land
LACT [8], have been proposed to address the isdue o
automatically classifying software applicationdyfudased on
their source code, there are still challenges plyapg these
approaches to Android applications.

First, most disseminated Android applications are
distributed in the native Android application pag&ad APK)
from. Therefore, the APK files need to be first apiled to
obtain the Java source code for further classifioat
However, many meaningful identifiers in the orididava
source code will be converted to be meaninglesshin
decompilation process. Therefore, the mount of |abkd
useful textual information is much less in the dapded
Android source code than in other open-source soéw
projects. To the best of our knowledge, no previsask has
considered this difficulty in the classificationsign.

Second, there are many XML files describing accargzh
resources in Android applications. How to emplogsth

8<M|- files to enhance the classification performaneeds to

be specifically considered for Android applications

In this paper, we propose an enhancement baseteon t
LACT approach [8] to improve the automatic software
categorization performance for Android applicatiofifie
enhancement is thus called LACTA (LACT for Android)
which Latent Dirichlet Allocation (LDA) [9] is empled to
extract meaningful software topics by extensiveling
Android domain knowledge. Then the software catiegaran
be automatically determined from the extract tapics
Thereafter the applications can be classified itie
determined categories based on their identifiett$op

To evaluate the effectiveness of LACTA, we collecti

HAndroid applications from the Internet and conddcte

empirical experiments in which LACTA was compareithw

éhe original LACT. With the enhancement of Andrdimimain

knowledge, LACTA outperforms LACT in classification
performance. In addition, LACTA also extract more
meaningful topic words for category generation.

The rest of the paper is organized as followsSéntion2,
we briefly review precious research work on autaenat
software categorization. Section 3 describes te@daletails
of LACTA. Section 4 presents the experiments amayipies
discussion for the experimental results. In Sectiorwe
discuss the potential threats to the validity opemmental
results. Finally, Section 6 concludes the paperdestribes

IMECS 2012

Proceedings of the International MultiConference of Engineers and Computer Scientists 2012 Vol I,
IMECS 2012, March 14 - 16, 2012, Hong Kong

our future wok.

: 3
Android Android App Code Android
Il. RELATED WORK @_' Decompilation "| Preprocessing
Automatic software categorization obtains notificas T
when the information retrieval (IR) techniques applied to
the software engineering domain. In 1991, a cateagtion Con:pDLﬁation
tool called GURU was proposed to automatically sifss
software libraries by analyzing the associated deous and v
manuals with IR techniques [1]. In GURU, documents e Software | Topic
associated with software libraries, such as mapagés, are Clustering |~ Generation
indexed and classified into clusters using basitelfhniques App
like removing less significant features and sinitijar Clusters

calculation. However, the classification of GURUigg on Fig. 1. The processing flow in LACTA for automasicftware categorization
the manually determined categorical hierarchy. ddition, ~ ©"Android applications.
GURU does not consider the program code in its IF
processing. In addition, it focuses on clustering software agglons

In 1995, Merkl addressed the issue of organiziffpysme ~ according to the vocabulary, rather than classifyihem
components using Self-Organizing Neural NetworKs [@ according to the category meanings.
this approach, both the ART model and the selfiziiag In 2009, Tian, Revelle, and Poshyvanyk proposed TAC
map (SOM) are used to explore the semantic sii#ariAs [8] for software categorization using Latent Dilieh
GURU, this approach extracts keywords of softwardllocation (LDA) which is a more advanced topic redtion
components from manuals rather than the prograne.codechnique [9]. Although LACT can only achieve cargble
Therefore, this approach has the same shortcomasgs performance as MUDABIue, it can handle the diveogsrof
GURU. In addition, it only considers the classifioa at the different programming languages. However, the latk
component level, rather than the software levelsisiilar ~extensively employing domain knowledge of software
approach also using SOM is proposed in [3] by Chad platforms, its performance is limited for Androipmications
Spracklen. Without the assistance of manual inftionathis ~ as shown in our experiments.
approach analyzes the source code for the classific
However, it still only considers the component leve ll. LACTA DESIGN
classification. For automatic software categorization on Android

In 2002, a supervised machine learning approactesl wapplications, we enhance LACT by extensively iniigd
proposed to use support vector machine (SVM) dlassifor ~ Android platform domain knowledge in the classifioa
automatic software categorization [4], [5]. With eth process. Fig. 1 illustrates the processing floWACTA. The
prominent classification performance of SVM on texdetails of each step is elaborated in the restisfsection.
documents, this approach achieves an average agcofa i L .
43% in software categorization. However, in thigpraach A. Android Application Decompilation
text information of comments and README documents The objective of LACTA is to directly handle naticede
plays an important role. In addition, the categoree fixed ©Of Android applications. Since Android applicatioase
due to the characteristics of supervised learning. packed into Android application package (APK) filfes

In 2004, MUDABIue was proposed to tackle the sofava dissemination, LACTA performs decompilation to certv
categorization problem using an unsupervised approathese APK files into Java source code for the fuilig
based on Latent Semantic Analysis (LSA) [10] teghgi[6],
[7]. With the effectiveness of LSA in extractingtdat
semantics from source code, MUDABIue has three majimport android.app.NotificationManager;
advantages. First, the classification categoriesaffware import android.app.Pendingintent;
projects can be automatically consiructed. S_econpublic abstract class WeatherNotificationReceiwéereds BroadcastReceiver
MUDABIue analyzes source code only. It does nouneq
additional information of software manuals or comise public static final String ACTION_WEATHER_UPDATE;
Third, a software project may be classified intovesal ~ Public static final String EXTRA_ENABLE_NOTIFICADN;

. . . L. public static final String EXTRA_WEATHER;

categories rather than a single category as irirtittional
classification work. Using 41 C programs as theesit, protected static Pendingintent getMainActivityPiexghtent(Context
MUDABIue shows its promising performance [6], [7].paramContext)
H_O_Never’ a later St_Udy shows that some categonesare Intent locallntentl = new Intent(paramContd4ainActivity.class);
difficult to interpret in MUDABIue [8]. Intent localintent2 = localintentl.addFlags(836912);

In 2007, Kuhn, Ducasse, and Girba proposed a tqubni return Pendingintent.getActivity(paramContextlocallntentl, 0);
calledSoftware ClusteringSC) which also uses LSA to find }
software topics [11]. In SC, source code and contsnare
analyzed to extract linguistic information. Howevér is
mainly designed for software having the originalree code. Fig. 2. A decompilation results for an applicativeatherNotification 0.1.2.

package ru.gelin.android.weather.notification.skin;

ISBN: 978-988-19251-1-4 IMECS 2012
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2012 Vol I,
IMECS 2012, March 14 - 16, 2012, Hong Kong

processing. For decompilation, LACTA first usesdiex?jar each application can have multiple classificatiopids each
tool [12] to convert APK files into jar files, aridlen uses the of which consist of a collection of terms. These &inds of
JD-GUI Java decompiler [13] to obtain the Java source codmatrices are used for further topic generation swftivare
Fig. 2 is a decompilation example in which we dnet §ava clustering.

source code for an application weatherNotificaiioh.2. In Since the number of topics is an adjustable pammet
this step, LACTA also uses android-apktool [14]g&t the
XML resource files in the Android applications. Rrahe Word-Topic distibution
figure, we can also find that many local variablesch as Topcl: - Topicd:
. . . . photo 0. game 0.
locallntentl, lose their meanings after the decompilatio camera 0.09 score 0.10
Only identifiers declared as “public”, “private”, nd Java Code Corpus i‘"‘“f& N %api_méze
usic O.. music 0.
protepted or declared as class names have thejinal A"PZ ﬂﬁ;ﬂﬁiﬁ?ﬁi@?&?@rmpﬁ'fer.,. - Player 014 song 0.17
pp2: set musiC musiC music music ...
meanl ngS. App3: photo photo photo photo photo Computation Topic-Software distribution
Camera camera camera camera ... a
B. Source Code Preprocessin Appd: game game game game game : :
. provesshe | B gams ame o gene "oz 05 Top 099
In this step, traditional information retrieval (IR Topicd 04 Topic3 0.00
preprocessing techniques are applleq to the Qewmmya Torea 05 Topk3099
source code. A large amount of Android domain kreolgk is Topic2 0.4 Topicl 0.00

also applied in the preprocessing step to obtajh-fjuality Fig. 3. The LDA computations generate the wordetafistribution matrices
features for classification. First, the non-litechhracters and and the topic-software distribution matrices.

the reserved keywords are removed from the sourde,c
because these terms have little meaning for soétwakDA, different settings are evaluated in the expenits. Fig.
categorization. 3 shows an example in which there are four apjinatand

Then the identifiers in the source code are spligttract €ach application has a topic rank list for fouri¢sgextracted
terms for the classification work. For example,fggstart()” in LDA computations.
is split into “game” and “start”, and “music_playes split D. Topic Generation
into “music” and “player”. The splitting rules usgdLACTA
are similar to the rules in [15]. The charactéks linderscore
and hyphen are used as the delimiters.

There are two main reasons to perform split opanaton
identifiers. First, the decompiled Java code damscontain
comment information. Therefore, the split operatiaan
extract more meaningful terms from identifiers. &et; many et
identifiers may contain common terms such as “gat’ similarity (t;,t,) = —=—2 1)
“getActiveNetworkinfo()”. These common words appéar \tl\x ‘tZ‘
many applications and need to be eliminated to dwprithe Wwhere topic; is represented by the vector of extracted topic
discriminability of the following classification wk. terms in the word-topic matrices and sduislf the cosine
However, elimination of common terms influences theimilarity is large thanh, these two topics are merged.
classification performance because preserving smmmenon Another topict; will be merged into this cluster only fif is
terms may be contributive to the classificationumacy. For similar to all existing topics in the cluster. Théar each
example, the words “player” and “video” are repréative category there is a corresponding topic clustetainimg one
for multimedia applications. Therefore, a term wile or more topics.
removed only if it appears in more than one-half of Although this simple clustering process is effegfiv most
applications, and does not appear in the localgtiésource cases, &opic drifting problem may exist when a topic cluster
files, such as Strings.xml. has two topics that are not similar, i.e., onedapidrifted far

After term extraction, common IR techniques, sush esaway from another topic. To mitigate the topic tind
stopword removal and stemming, are applied to thesds. problem in our approach, we use= 0.9 in topic generation.
Then each Android application is represented bglleation E. Software Clustering

of preprocessed terms for LDA computation. In dadditthe) L .
In the final step, software applications are clessiinto

numbers of the terms appearing in both Java codetfa the topic clusters according to a predefined tepitware
string resource files are multiplied by a weightéagtor @ thresholdh,, which defines how many topic clusters will be

because these terms may have significant catejoréeaming.) o o
This weighting scheme is equivalentd tf;, wheretf; is the considered for an application. If an applicatiapp has a
" : topic t,, whose distribution value is large thay it will be

term frequency of term classified into the corresponding category.

C. LDA Computation

Latent Dirichlet Allocation (LDA) has been provenlie an
effective mechanism to mine the latent semanticcgofrom IV. CLASSIFICATION EVALUATION
documents [9]. In this step, we follow the desifhACT [8] To study the classification performance of LACTAe w
to extract the word-topic distribution matrices affie collected 42 Android applications from the Interr&ince we
topic-software distribution matrices using LDA. Telre, collected the applications from several sites athesite has

To automatically decide the classification categ®ri
topics of similar semantics will be clustered ista@ategory
from the word-topic matrices. In this step, topiandt, are
said to be semantically similar if the cosine samity of them
is large than a predefined threshbldThe cosine similarity is
computed as follows:

ISBN: 978-988-19251-1-4 IMECS 2012
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

TABLE |
THE COLLECTED42 ANDROID APPLICATIONS FOR CLASSIFICATION
STUDY.
Category Applications

Battery BatteryBar, BatteryChecker,
One_Touch_Battery Saver

Camera Camera_360_0, Camera_Fun_Free_2,
Camera_lllusion_1

Communication| PhoneQ_Lite_1, ReChat_0, Twitter_2

Finance AndTip_1, Auto_Loan_Calculator_1

Game Air_Control_Lite_1, AirAttack_Lite_3,
Andoku_1, Balance_The_Beer_1,
BallDroppings_Lite_1, Basketball_Shot_1,
BasketBall_v1, City Jump_1, JumperO,
Paddle_Bounce_1,
Pro_Basketball_Scores_2, Sand_Blaster_1,
Toss_lIt_1

Multimedia Adobe_Flash_Player_10, AMPlayer_0,
DAAP_Media_Player_0, Google_music,
Movies_2, Music_Queue_1, MusicCube_1,
SPB_TV_lite_1, Tranquilize_v1,
TV_Listings_2, Video_Player_1,
YouTube_2,

Reader Adobe_reader_2, BeamReader

Weather Animated_Weather_Free_2, CityWeather_1,
Weather_notification_0, Windfinder_1

its own classification, we manually classified th2
applications into 8 categories. Table 1 describke
information of the dataset used in the experiments.

In the experiment, we used GibbLDA++ [16] as theALD

Proceedings of the International MultiConference of Engineers and Computer Scientists 2012 Vol I,
IMECS 2012, March 14 - 16, 2012, Hong Kong

TABLE Il
THE CLASSIFICATION PERFORMANCE OF PRECISION AND RECALL FOR

LACTA.

Topics Thresholdh:

0.01 0.02 0.05 0.1 0.2
10 0.38, 0.62| 0.42, 0.62|0.46, 0.60|0.47, 0.60 | 0.48, 0.57
20 0.66, 0.83|0.67,0.81|0.72,0.79|0.74, 0.76 | 0.74, 0.74
30 0.78, 0.86/0.77,0.83|0.79, 0.83]0.78, 0.83|0.77, 0.81
40 0.84, 0.98/0.84, 0.98|0.85, 0.98| 0.89, 0.98]0.91, 0.95
50 0.87, 0.93|0.87, 0.93|0.87, 0.93|0.87, 0.93|0.86, 0.88
60 0.87, 0.93|0.89, 0.93|0.89, 0.93]0.89, 0.93|0.91, 0.93
70 0.85, 0.90| 0.87, 0.90|0.86, 0.90| 0.86, 0.90 | 0.86, 0.90
80 0.75, 0.95|0.78, 0.95|0.80, 0.95|0.87, 0.95|0.91, 0.95

TABLE Il
THE CLASSIFICATION PERFORMANCE OF PRECISION AND RECALL FORACT.

Topics Thresholdh,

0.01 0.02 0.05 0.1 0.2
10 0.15, 0.40/0.17,0.40|0.17,0.31|0.18, 0.29|0.19, 0.24
20 0.17, 0.45| 0.20, 0.40|0.23, 0.36|0.29, 0.33|0.29, 0.33
30 0.22,0.52|0.22,0.52|0.22, 0.52|0.22, 0.50 | 0.23, 0.45
40 0.19, 0.57|0.20, 0.57(0.19, 0.52|0.21, 0.52 | 0.24, 0.50
50 0.18, 0.64/0.19, 0.64|0.21, 0.64|0.23, 0.64|0.27, 0.57
60 0.20, 0.48|0.19, 0.48|0.21, 0.48|0.21, 0.48 | 0.20, 0.40
70 0.19, 0.48|0.19, 0.48|0.20, 0.48|0.20, 0.48|0.20, 0.40
80 0.21, 0.55|0.21, 0.55|0.22, 0.55|0.23, 0.55|0.24, 0.48

tappearances lower the classification performaneeois,
the original design of LACT focuses on open-sowsafware
applications whose source code is accessible. Hawenly

computation engine. The weighting factar was 5, the yecompiled source code is available for Androidiapgions.
thresholdh, was 0.9, and the topic-software threshbld tperefore; the significance of many ambiguous ifiers

ranged from 0.01 to 0.2 to discuss the impact &emdint
topic-software thresholds.

such as “a” and “aa” in the decompiled Java codeisi¢o be
adjusted. In LACTA, we extensively utilize the stgi

~ To evaluate the effectiveness of LACTA, we alsQeqqrce files in Android applications to adjust treights of
implemented LACT as the baseline. In the experisentyq axtracted terms.

precision and recall was computed as the performance Using the settings of the higheBt measure, LACTA

metrics for both LACT and LACTA. The classification
correctness is manually decided by inspectingdpi twords
and the application contents as in the original TAGrk [8].
Therefore, the generated categories are manualbpetato

automatically decides 33 categories for these $Hegtions.
Compared to the 8 categories defined in Table ILTA can
find more categories with more specific meaningablé 4

TABLE IV
the categories of Table 1 for performance evalnatithe Some AUTOMATICALLY GENERATED SOFTWARE CATEGORIES INACTA.
precision measure is the _fractlo_n_ of the number o Ca}ggory Topic Words Applications
applications correctly categorized divided by thenber of : : :
all applications categorized. The recall measutiedgraction 1 ';"'If)'u ?\Laﬁfé’i(ffﬁﬁgtar“sn ﬁdMo'T)'zyle:tgh Player 10
of the number of applications correctly categorizidded) batter)',, widget, long, staeBatteryChecker ,
by the number of applications belonging to thaegaty. In One_Touch_Battery_Saver
the table, we also mark the results with the higRemeasure, 3 EO”% piayer, music, “Ste‘MUS!CEQgeui_lv

. .. eaase musicCube_

whereF; = (2 x precisionx recall)/(precision+ recall). . plusmo, widget, drop, ballBallDroppings, Lite_1,

Table 2 shows the precision and recall resultE ACTA.

In the table, we can find that the topic-softwaigtribution
threshold h. and the number of topics influence the
performance significantly. When the number of tepie 40
andh=0.1, LACTA has the best precision and recall.

Table 3 shows the precision and recall resultd f&CT.
The experimental results show that LACT has the Bes
performance when the topic number is 50 &and0.2.
However, LACT cannot outperform LACTA in all cases.
There are two main reasons. First, the original LAl®es not
consider the domain knowledge of Android prograngmin
Therefore, many platform-related topics will be gexted in
LACT. For example, “Activity” and “Resource” are ow
common words in Android programming, and their

ISBN: 978-988-19251-1-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

new

Pro_Basketball_Scores_2

game, score, jump

City Jump_1, Jumper0Q

score, pointf, high, ball,
basket

BasketBall_v1,
One_Touch_Battery_Saver*,

6 Tranquilize_v1*,
Balance_The_Beer 1
7 view, game, flash, paddle Adobe_Flash_Player_10%,
Paddle_Bounce 1
8 call, phone, phoneq, date Jumper0*, PhoneQ_Lite 1
number
9 camera, image, preview, | Camera_Fun_Free_2,
effect, photo Camera_lllusion_1
10 ad, message, air, game, | AirAttack_Lite_3,
logisoft Air_Control_Lite_1
weather, update, city, Animated_Weather_Free_2,
11 locate, temperature, wind,CityWeather_1 ,

cloud

Weather_notification_0

IMECS 2012

Proceedings of the International MultiConference of Engineers and Computer Scientists 2012 Vol I,

IMECS 2012, March 14 - 16, 2012, Hong Kong

lists some automatically generated software categdhat
have more than two software applications. Someiegtjns

for a comprehensive study of various applicatiopety
Second, the settings of thresholds used in LACTay @n

in the table are marked with “*" because they arémportant role in classification performance. A in&gism

misclassified. From the table we can find that eék&acted
topic words can effectively represent the themesthef
categories. For example, applications in Categagd 3 are
all related to multimedia, and applications in Gaty 4-7
and 10 are related to games. In the categorizafibACTA,

these applications are classified into more specédtegories.

V. THREATS TOVALIDITY

that can automatically determine these settingsfagilitate
automatic software categorization in practice. This
challenging work will be also included in our pl&mnally, we

will investigate the mechanisms to extract more miregul
features from Android applications. With more infative
features, we are convinced that automatic software
categorization for Android applications will be redeasible

in daily use.

Although LACTA shows its improvements in automatic

software categorization for Android applicationisere are
some factors that may imperil the validity of tgperimental
results of LACTA. For threats of internal validitgne major
concern is that many manual inspections are ingbiuethe
experiments to decide whether the extract topidsdelong
to some categories. Therefore, the subjectivitjudgments

may be introduced. Since the development of Androi

applications is still emerging and the classificas for
Android applications are very divergent in manytwafe
repositories, this problem cannot be avoided indheent

situation. Another threat of internal validity &t the settings

of thresholds are only studied for the collectepliaptions. A
more comprehensive study needs to be conductetptore
the generality of the effectiveness of LACTA. Indén, a
threat of internal validity is that the performarafeLACTA

heavily relies on the exploration of Android domain

knowledge. How to build a high quality knowledgesbavill
be a major concern for the future study.

VI. CONCLUSION

Noticing that the number of new Android applicaton

tends to be rapidly increased in the near futueefind that
automatic software categorization will be in gréamand for
management of Android application archives. Althotlgere
have been may approaches proposed to addresddneatia
software categorization problem, they cannot beady
applied to Android applications because most digsated
Android applications are distributed in the nati&edroid

application package (APK) from. To perform software

thﬁ_z]
in turn complicates thg3] The JD-GUI tool. Available: http:/java.decompifege.fr/?q=jdgui

categorization on Android needs
decompilation process which

automatic software categorization problem.

applications

In this paper, we propose an enhancement basetieon [t15]
LACT approach [8] extensively employs Android domai
knowledge with Latent Dirichlet Allocation (LDA) to

improve the automatic software categorization penémce
for Android applications. In LACTA, software categes are
first determined and then Android applications @eessified
into these categories accordingly.

Using 42 Android applications collected from théshnet,
we conducted empirical
effectiveness of LACTA. Compared with the origih&iCT,
LACTA shows its prominent improvements in
experiments. The promising performance shows thenial
feasibility of LACTA.

There are still several issues which need to beudged in
the future. First, we plan to collect more Andrajablications

ISBN: 978-988-19251-1-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

REFERENCES

[1] Y.S. Maarek, D. M. Berry, and G. E. Kaiser, “Arfidrmation retrieval
approach for automatically constructing softwarerdries,” IEEE
Trans. Softw. Engvol. 17, no. 8, pp. 800-813, Aug. 1991.

[2] D. Merkl, “Content-based software categorization by
self-organization,” irProc. of the IEEE International Conf. on Neural
Networks 1995, pp. 1086—1091.

ﬁ] A. Chan and T. Spracken, “Discovering common festin software
code using self-organizing maps,” Broc. of the International
Symposium on Computational Intelligence (ISClI 2p0Rpsice
Slovakia, Aug. 2000.

[4] S. Ugurel, R. Krovetz, and C. L. Giles, “What's tteele? Automatic
classification of source code archives,” Rmoc. of the 8th ACM
SIGKDD International Conf. on Knowledge DiscovemdaData
Mining (KDD '02) 2002, pp. 632-638.

[5] R. Krovetz, S. Ugurel, and C. L. Giles, “Classifica of source code

archives,” inProc. of the 26th Annual International ACM SIGIRnEo

on Research and Development in Information Retti¢SHGIR '03)

2003, pp. 425-426.

[6] S.Kawaguchi, P. K. Garg, M. Matsushita, and Kuied'MUDABIue:
An automatic categorization system for open sovepesitories,” in
Proc. of the 11th Asia-Pacific Software Engineeridgnf. (APSEC
2004), 2004, pp. 184-193.

[7]1 S.Kawaguchi, P. K. Garg, M. Matsushita, and Kued'MUDABIue:
an automatic categorization system for open sorepesitories,”J.
Systems and Softwareol. 79, no. 7, July 2006, pp. 939-953.

[8] K. Tian, M. Revelle, and D. Poshyvanyk, “Using fateDirichlet
allocation for automatic categorization of softwane Proc. of the 6th
IEEE International Working Conf. on Mining SoftwaRepositories
(MSR 2009), 2009, pp.163-166.

[9] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent iighlet allocation,”
Journal of Machine Learning Researalol. 3, 2003, pp. 993-1022.

[10] T. Landauer, P. W. Foltz, and D. Laham, “An introdon to latent
semantic analysisDiscourse Processenro. 25, 1998, pp. 259-284.

[11] A. Kuhn, S. Ducasse, and T. Girba, “Semantic ctirgeidentifying

topics in source codelhformation and Software Technolqgyl. 49,

no. 3, 2007, pp.230-243.

The dex2jar project. Available: http://code.googten/p/dex2jar/

[14] The android-apktool project. Available:
http://code.google.com/p/android-apktool/

G. Maskeri, S. Sarkar, and K. Heafield, “Mining mess topics in
source code using latent Dirichlet allocation,”Rnoc. of the First
India Software Engineering ConfHyderabad, India, 2008, pp.
113-120.

experiments to evaluate the

the

[16] X.-H. Phan and C.-T. Nguyen, “GibbsLDA++: A C/C++
implementation of latent Dirichlet allocation”. Alable:
http://gibbslda.sourceforge.net/

IMECS 2012

