

Abstract—Software size measurement is crucial for the

software development process. It is used for project planning
and control purposes during the project execution. It is
required for productivity measurement after the project
finished. Software size is also an important driver of software
effort and cost estimation. This paper analyzed software sizing
articles reviewed from the literature and presents the
development, and achievements of software size measurement.
Comments on the findings and future trends and challenges of
the software size estimation models are also given.

Index Terms— Software Size, Software Sizing Software size
measurement.

I. INTRODUCTION

oftware size is crucial for the software development
process. It is used for project planning and control
purposes during the project execution. It is required for

productivity measurement after the project finished.
Software size is also an important driver of software effort
and costs estimation. Most of the software effort estimation
methods require software size. Boehm asserted in his list
that “the biggest difficulty in using today’s algorithm
software cost models is the problem of providing sound
sizing estimates [1].”

Lines of Code (LOC) and Function Points (FP) are two
well known measures for software sizing. Over the years,
there have been a lot of researches contributed to this area. This
intrigues the question on how software sizing research has
been developed and achieved. Hence, the objective of this
paper is to review and analyze the software sizing articles
from the literature and present the general picture the
development and update the status of research in the field of
software size measurement.

The remaining of this paper is organized as follows:

Section II gives a review of the software size. Section III
concludes and discusses the findings. Future trends of
software sizing are also discussed in section IV.

II. SOFTWARE SIZE MEASUREMENT REVIEW

Review from the literature has shown that software size
can be measured in either lines of codes, or function points

and its variants. Only few other measures were mentioned.

T. Arnuphaptrairong is with the Department of Statistics, Chulalongkorn

Business School, Chulalongkorn University, Bangkok 10250 Thailand (e-
mail: Tharwon@chula.ac.th).

A. Lines of Code

Measuring software size in Lines of Code (LOC) can be
achieved by either “counting” or “estimating /
approximating”.

Lines of Code Counting

Lines of Code (LOC) or Source lines of code (SLOC) is
probably the oldest software matrix used to measure
software size, since the first program was typed on cards
one instruction per line per card. It is simply counting the
number of lines in the text of the program's source codes.

Counting for SLOC is feasible when the program is

completed. The counting is helpful for productivity and
performance measurement and evaluation. However, for
planning of software effort, duration and cost purpose, one
cannot wait until the software is finished. Estimating or
approximating the LOC of the program to be developed is
then necessary before it is actually built.

Lines of Code Estimation

There are two methods in order to estimate the lines of
code (LOC), either by using a model with some parameters
or without any parameters. To estimate the LOC using a
model with some parameters is sometimes called model
based method or derived method. To estimate the LOC
without any parameters is also known as non-model based
method or direct method [2]. The direct methods or direct
estimation methods include: expert judgment, Delphi,
Wideband Delphi (expert consensus), analogy or case-based
reasoning (CBR), thumb’s rule, standard component, and
three points estimation. The derive methods comprises of
methods such as, extrapolative counts, components based
method and backfiring. The following section gives more
details for these methods.

Direct estimation method

Expert judgment [1], [3], [4], sometimes called heuristic
method, refers to the estimation method based on the
expertise, skill and experience of one or more experts. This
method needs someone who already familiar with the
domain of the software to be built.

Delphi or Shang technique [2]-[4] was originally
developed by Rand Corporation in 1944. This method may
be considered as a subset of expert judgment method, where
group of experts are asked for the estimates until the
consensus is reached.

Wideband Delphi or expert consensus [3], [4] is a
subset of Delphi method proposed by Rand Corporation and

The Development and Achievements of
Software Size Measurement

Tharwon Arnuphaptrairong

S

later modified by Boehm [5]. Original Delphi technique
avoids discussions. Wideband Delphi accommodates group
discussion to achieve the consensus.

Analogy or Case-Based reasoning (CBR) [4], [6], [7]
involves the retrieval of the similar projects from the
repository and use of the knowledge learned from those
projects for the estimation of the new project. Accessing the
similarity may use variety of techniques including --
Euclidian distance, nearest distance, manually guided
induction, template retrieval, goal directed preference,
specialty preference, frequency preference, recency
preference, and fuzzy similarity.

Thumb’s Rule [3], [8], the estimation is made according
to a rough and ready practical rule or way of guessing, not
based on science or exact measurement.

Standard component or three point estimation [2] or
PERT technique [4], this is rather a technique than a
method to accompany with other direct estimation method
in order to improve the estimation. It involves the expert
judgment of three possible estimates – the highest (Max),
the most likely and the lowest possible (Min). The estimate
of the LOC is computed as: LOC = (Max + 4 Most likely +
Min) / 6.

Machine Learning (ML), a subfield of artificial
intelligence, has been applied in the area [9, 10]. Machine
learning method is to automatically inducing knowledge in
the forms such as models, functions, rules and patterns,
from historical project data. Regolin et al. [10] demonstrated
how two machine learning algorithms --genetic
programming (GP) and neural networks (NN) can be used
to predict lines of code from function points (FP), or
number of components (NOC) [11]. Machine learning
algorithms such as genetic programming (GP) and neural
networks are considered as “black boxes” and therefore it is
not easy to explain how it works to the users [12].

Derived method

This LOC estimation method uses a model with some
known (at the point of estimation) software attributes as
parameters or drivers to estimate the LOC.

Extrapolative counts, this method extrapolates the LOC

from the countable components using statistical method or
other theoretical basis, for example, work of Tan, Zhao and
Yuan [13]. Zhao, Yuan and Zhang [13] used conceptual
data model to estimate the LOC. By using regression
techniques they found the relations between KLOC (Kilo
Source Lines of Code), C (number of class), R (Number of
relation) and Ā (Average number of attributes per class).
The relation can be expressed as:

 KLOC = β0 + β1 C + β2 R+ β3 Ā
From the dataset they analyzed, the Java-Based system,

the relation is as:
 KLOC = -10.729 + 1.342 C + 1.254 R+ 0.889 Ā

Components based method, Verner and Tate [11]

discussed a method that is bottom up approach by sizing the
individual software components e.g., menus, screen, report
components, relations and updates. Then sum up all of the
components sizes to obtain the software size.

Backfiring method, this method came from the research

of Caper Jones [14]. This method estimates the lines of
codes needed to implement a Function Point value
(Albrecth’s Function Points) of a program or a piece of
software for different languages. Details of this method are
discussed in the next section –Function Points Estimation.

B. Function Point

Function Point (FP) was originated in 1979 and widely
accepted with a lot of variants, from both academics and
practitioner [15]. The research in this area is also known as
Function Point Analysis (FPA) or Function Size
Measurement (FSM). The FP measurement could be
classified into FP counting and estimation [2].

Function Point Counting

Function Point was introduced by Albrecht [16], the
concept is based on the idea that the functionality of the
software delivered is the driver of the size of the software
(LOC). In other words, the more the functions delivered, the
more the LOC. The functionality size is measured in terms
of Function Points (FP).

FPA assumes that a software program comprises of
functions or processes. In turn each function or process
consists of five unique components or function types as
shown in Figure 1. The five function types are External
Input (EI), External Output (EO), External Query (EQ),
Internal Interface File (ILF), and External Interface File
(EIF).

Each of these five function types is individually assessed
for complexity and given a Function Point value which
varies from 3 (for simple external inputs) to 15 (for complex
internal files). The Function Point values are based the
complexity of the feature being counted.

The low, average and high complexity level of ILF and
EIF are based on the number of Record Element Type
(RET) and Data Element Type (DET). A Record Element
Type (RET) is a subgroup of the data element (record) of an
ILF or ELF. A data element type is a unique non-repeated
data field.

The complexity level of EI and EO and EQ are based on
the number of File Type Referenced (FTR) and Data
Element Type (DET). A File Type Referenced (FTR) is an
ILF or EIF.

 Fig. 1. The Albrecht five function types
The Unadjusted Function Points (UFP) or Unadjusted

Function Points Counts (UFC) is calculated as follows [4]:

The sum of all the occurrences is computed by
multiplying each function count (N) with a Function Point
weighting (W), and then the UFP is attained by adding up
all the values as follows:

 UFP =

5

1i

3

1j
ijijWN

Where Nij is the number of the occurrences of each
function type i of the five types and Wij is the
corresponding complexity function point weighting value j
of the 3 levels –low, average and high.

The Function Point values obtained can be used directly
for estimating the software project schedule or software
costs. But in some cases, it may need further adjustments
with the software development environment factors.

In order to find adjusted FP, UFP is multiplied by
technical complexity factors (TCF) which can be calculated
by the formula:

 TCF = 0.65 + (sum of factors) / 100

There are 14 technical complexity factors --data
communications, performance, heavily used configuration,
transaction rate, online data entry, end user efficiency,
online update, complex processing, reusability, installation
ease, operations ease, multiple sites, facilitate change,
distributed functions. Each complexity factor is rated on the
basis of its degree of influence from no influence (0) to very
influential (5). The adjusted Function Points (FP) or
Function Point Counts (FC) is then derived as follows:

FP = UFP x TCF

Evolution of the FPA method

The International Function Point User Group (IFPUG) is
the organization establishes the standards for the Function
Point Size Measurement to ensure that function points
counting are the same and comparable across organizations.
The counting manual can be found at http://www.ifpug.otg.

The International Standard Organization (ISO), in 1996,
established the common standard, in order to support the
consistency and promote the use of this Function Size
Measurement (FSM). The updated versions are maintained.
Besides the IFPUG FPA, three other FPA variants are also
certified methods by ISO --Mk II, NESMA, and COSMIC
FFP. These methods are reviewed in the following sections.

Function Points Estimation

In some situations when counting was not possible
because of the lack of detailed information needed, many
surrogate methods were suggested. This can either be direct
estimation method or derived method [2].

Direct estimation method

The direct estimation methods are the same techniques
already described in direct method for LOC estimation.
These include expert judgment, Delphi or Shang techniques
and its variants –Wideband Delphi (expert consensus), three
points or standard component, analogy or case-based
reasoning (CBR), thumb’s rule and machine learning

method. Expert judgment, Delphi or Shang techniques and
Wideband Delphi (expert consensus) are also called expert
opinion method [2].

Machine Learning Method, as reviewed in LOC

estimation, Regolin [10] demonstrated how two machine
learning algorithms –genetic programming and neural
networks can be used to predict lines of code (LOC) from
Function Points (FP), or number of components (NOC)
[11]. Conversely, this implies that Function Points can be
estimated from lines of code.

Derived Method

The derived method, some surrogate variables or
algorithms are suggested in order to obtain the Function
Points. Literature in [2] includes methods such as,
extrapolative counts, sample counts, average complexity
estimation, catalogue of typical elements, Early Function
Points Analysis (EFPA), backfiring and others variants.

Extrapolative counts, this method extrapolates the FP

counts from the countable components (usually the Internal
Logical File (ILF)) using statistical method (mostly
regression analysis). This method, the size of the whole
system is approximated with respect to some FP
components (LIF, EIF, EI, EO, or EQ). A few examples –
Mark II, NESMA’s Indicative FP, Tichenor ILF Model,
Prognosis by CNV AG, and ISBSG Benchmark are
reviewed as follows:

Mark II FPA [17] or Mk II FP was originated by Charles

Symon and published in 1988. Mk II is mainly used in the
United Kingdom. Mk II FPA assumes that a software
program comprises of functions or Logical transaction or
Basic Function Component (BFC) which is elementary
process. Each function or process consists of 3 components
–input, process, and output. The function size (Mk II UFP)

 = Wi * number of input data element types +
 We * number of entity types referred +
 Wo * number of output data element types
Wi, We, Wo are the function points weighting values. The

industrial weighting values are 0.58 for Wi, 1.66 for We, and
0.28 Wo

NESMA’s Indicative FP (Netherlands Software Metrics

Association) or the Dutch method [18].
Indicative Size Unadjusted Function Point (UFP)

= 35 * no. of ILF + 15 * no. of EIF

Tichenor ILF Model is another example. The UFP is
computed as the following:

 UFP = No. of ILF * 11.01
 FP = 1.0163 * (UFP * VAF) 1.0024

 VAF is Value Adjusted Factors.

Prognosis by CNV AG uses the following model:
 FP = 56 + 7.3 * #IO; Where #IO = number of EI + EO;

ISBSG Benchmark employs the following model:

UFP(only ILF) = 7.4 * #ILF

 UFP(Total) = UFP(only ILF) / 22 *100

Asensio et al. [19] is an example of recent works of this

category. Asensio [19] argued the need for estimates at the
early stage of software development when the required
document is not available yet. They, therefore, proposed a
method called “Early Function Point Method (EFPM)”. The
FP can be found using the following regression equation:

FP = 130,327 + 15,902 * CILE
FP = 66,905 + 13,035 * CILEEIF
FP = 50,784 + 6,289 * CEIEOEQ

Where CILE is the counter of ILFs, CILEEIF is the

counter of ILFs+EIFs, and CEIEOEQ is the counter of EIs +
EIs + EQs.

Asensio et al. [19] also claimed that he included a greater
number of sample projects in his work and supposed an
advantage in comparison to Tichenor ILF Model or
Function Point prognosis CNV AG mentioned above.

Sample counts, this method counts Function Points from

parts of the system and the rest or the system is then
estimated based on these counts. With this method, only
some portions of the system are investigated but with
respect to all FP components (LIF, EIF, EI, EO, or EQ) [2].

Average complexity estimation --Instead of following

the IFPUG complexity by classifying the components for
low, average, or high complexity, One may use the average
complexity for all components (EI, EO, EQ, ILF, and EIF)
[2]. For example, the estimated UFP of ISBSG using
average complexity values is as follows:

 UFP = EI * 4.3 + EO * 5.4 + EQ * 3.8 + ILF * 7.4 +
EIF * 5.5

Tichenor and NESMA also follow this approach and
proposed their own average complexity weights.

Catalogue of typical elements, this method catalogues or

lists the typical functionalities or processes, for example,
create, add, delete and update. Then identifies the number of
UFP needed for those processes. The UFP values are ready
for the estimators to use when they come across these
functions [2].

Backfiring method, this method came from the research

of Capers Jones [14]. This method derives the Function
Point values of a program or a piece of software from it
number of lines of codes (LOC). Jones gives a very detailed
table for converting between LOC and FP for different
programming languages.

C. Function Point variants

To overcome the shortcoming of Albrecth’s FPA, a
number of refinement methods were proposed. Major
contributions are Function Bang Metric [20], Feature Points
[14], 3D FP [21], EFP [22], FFP [23] and COSMIC FFP
[24], [25], and FP estimation from Structured Analysis (SA)
[26]-[31], for more details see [15]. Some prominent
measures will be reviewed below.

Function Bang Metric [20], [32], DeMarco categorized
systems into three groups: function-strong, data-strong and
hybrid systems. The categorization based on the calculated
ratio of RE/FP where RE stands for the number of the
relationships in the retained data model and FP means the
number of the function primitives –bottom level process of
the data flow diagram (DED). The system is considered
function-strong, if the ration RE/FP is less than 0.7.The
system is considered data-strong, if the ration RE/FP is
greater than 1.5. The system is hybrid system if otherwise.
For function strong systems, function bang (FB) metric is
calculated as follows:

FB = ∑wi * C F P I i

Where the term C F P I i is derived from the Halstead’s

model for counting a program size and is calculated as
follows:

C F P I i = (TC i * log 2 (TC i)) /2

The term TCi represents the number of data tokens

around the boundary of the i function primitive in a DFD
(Dataflow Diagram). The data tokens are data items that
need not to be subdivided with in the function primitive.

The term C F P I i needs to be adjusted with the
complexity of each function primitive by 16 weighting
factors (wi) suggested by DeMarco.

Feature Points [14], the original Function Points method

was developed with the primary aim for management
information systems which is data intensive. In 1986,
Feature Points was therefore developed by Software
Productivity Research (SPR) in order to anticipate the real
time system and algorithm intensive systems. Feature points
method adds a new parameter –an algorithm to the five
function point parameters with a default weight of 3.
Feature points method also reduces the ILF weight from 10
to 7.

 Early Function Points (EFP) and Extended

Function Points (XFP) were proposed by Meli [22], to
anticipate for the need of software size estimate at the early
stage of the development life cycle. The method requires the
estimator to put in knowledge at different detail levels of a
particular application. Functionalities are classified as:
Macrofunction, Function, Microfunction, and Functional
Primitive. Each type of functionality is assigned a set of FP
value (minimum, average, and maximum).

COSMIC FFP [23]-[25], The Full Function Points (FFP)

method was originated in Canada. The purpose is to extend
the IFPUG FPA accuracy of the real time systems
estimation. The research groups were later formed as
Common Software Measurement Consortium (COSMIC).
The FFP method was then modified and referred to as
COSMIC Full Function Points (COSMIC FFP). In the
COSMIC FFP method, the Functional User Requirements
(FURs) of the software is broken down into “functional
process type”

The elementary process comprises of a unique cohesive
and independently executable set of data movement types

which are –Entries (E), Exits (X), Reads (R), and Writes
(W).

The CSOMIC FFP method breaks down the software
architecture into software layers. The software layers can
receive requests from the layers above and can request for
services from the layers below. For the software
components in the same layer, peer to peer communication
can also be employed.

Each data movement –E, X, R and W, is assigned a size
of one Cfsu (COSMIC function size unit). The sum of all
data movements of all functional processes will give the size
of a piece of software.

FP Estimation and Structured Analysis (SA), DFD and ERD

Functionality is the heart of FPA. One stream of research
proposed that functionalities can be retrieved using
Structured Analysis (SA) which expressed in the form of
Dataflow Diagram (DFD) for process modeling and Entity
Relationship Diagram (ERD) for data modeling FPA.

DFD was proposed as the estimator for FPA by a number
of papers using either DFD alone or together with ERD
[26]-[31].

Rask [26, 27] introduced the algorithm for counting the
Function Points using specification from DFD and ERD
data model. The automated system was also built.

O’brien and Jones [28] proposed a set of counting rules to
incorporate Structured Analysis and Design Method
(SSADM) into Function Points Analysis. DFD, together
with I/O structure diagram, Enquiring Access Path (EAP)
and Effect Correspondence Diagram (ECD) were applied to
the counting rules for the Mark II FPA.

Shoval and Feldman [29] applied Mark II Function Points
with Architectural Design of Information System Based on
structural Analysis (ADISSA). The proposed method counts
the attributes of all inputs and outputs from the Dataflow
Diagram (DFD) of the system to be built and all of the
relations in the database from the database design process,
and then plugs in all the numbers in the Mark II model.

DFD was found also proposed to be used together with
ERD in [30]. Lamma et al. [31] to solve the problem of
counting error, a system for automating the counting is built
and called FUN (FUNction points measurement). The
system used the specification of a software system from
Entity Relationship Diagram and Dataflow diagram to
estimate software Function Points. Later, the system was
automated by Grammantieri et al [32].

D. Other Function Points “Like” Measures

With the advent of new technologies, platform and
languages, for example, Object Oriented technologies and
web technologies, researchers have incorporated the
information obtained from object-oriented analysis and
design approach into the object-oriented software size
estimation. Literature had shown a number of proposed new
measures to handle these advancements [33], [34]. To cover
this view point, the following section explores some of these
frequent mentioned measures --Use Case Points [35],
Predictive Object Points (POPs) [36], Class Points [37],
Object-Oriented Function Points [38], Object Oriented

Design Function Points [39], Web Points [40], OOmFP
[41], UML Points [42], and Pattern Points (PP) [43].

Use Case Points (UCP) method [35], [44] was

introduced by Karner’s 1993 M.Sc. thesis under supervision
of Ivar Jacobson written while Karner worked at Objectory
AB, (now Rational Software). UCP utilized the information
available in use case diagrams to estimate the software size.
The use case diagrams contain information about the
behavior of the software available from the requirement
analysis. UCP uses 2 drivers –actors and use case. The
procedure to calculate the Use Case points is as follows:

1. Actors are classified as simple (for example, API),

average (for example TCP/IP), and complex (for example
GUI web page) with the weight of 1, 2 and 3 respectively.
The total unadjusted actor weight (UAW) is calculated as:

UAW = ∑ actor i x weight i

2. Use cases are classified into ≤ 3, 4-7, and > 7

transactions with the weight of 5, 10 and 15 respectively.
The Unadjusted Use Case Weights (UUCW) and the
Unadjusted Use Case Points (UUPC) are calculated as:

UUCW = ∑ UC i x weight i

and UUCP = UAW + UUCW

3. Calculate the Technical Complexity Factor (TCF) and

Environmental Factor (EF) from the following equations
TCF = 0.6 + (0.1 * TFactor)

Where TFactor is calculated by assigning value 0-5 for

each factor, from factor 1 to 13, and then multiply by its
weight. Whereas,

 EF = 1.4 + (-0.03 * EFactor)

Where EFactor is calculated by assigning value 0-5 for
each factor from, factor 1 to 8, and then multiply by its
weight.

4. The Use Case Points (UCP) is then calculated by:
 UCP = UUCP *TCP * EF.

Predictive Object Points (POPs) method [36] was

proposed by Minkiewicz for measuring object-oriented
software size. Regression was performed on the data set
used and settled with the following equation:

POPs (WMC, NOC, DIT, TLC) = WMC * f 1 (TLC,

NOC, DIT) * f 2 (NOC, DIT)

Where TLC = the number of top level classes
 DIT = average depth of inheritance tree
 NOC = average number of children per base class
 WMC = average number of weighted methods per

class

f 1 attempts to size the overall system and f 2 applies the

effects of reused through inheritance. To find the WMC, the

author, followed Booch [45], classified 5 method types –
constructors, destructors, modifiers, selectors, and iterators
with corresponding weights.

Class points method [37] was introduced by Costagilola

et al. in 1998. The class points counting process consists of
4 steps:

1) Identify and classify of user classes.
System components are classified into 4 types --problem

domain type (PDT), human interaction type (HIT), data
management type (DMT), and task management type
(TMT). The classes are identified and classified from these
system components.

2) Evaluate the complexity of the classes
Two measures CP1 and CP2 are suggested. As for CP1

the complexity level of a class is assigned based on the
Number of Services Requested (NSR) and the Number of
External Methods (NEM) where as for CP2, the Number of
Attributes (NOA) is also taken into account together with
NSR and NEM. The measure CP1 is helpful for the initial
size estimation at the early stage whereas the CP2 measure
is suitable when more information is available at the later
stage.

3) The Total Unadjusted Class Points (TUCP) is then
calculated as:

TUCP =

4

1i

3

1j
ijijXW

Where Xij is the number of classes of system component
type i (PDT, HIT, DMT, TMT) with the complexity level j
(Low, Average, High) and Wij is the weight for the type i
and complexity level j.

4) Adjusting the TCUP with Technical Complexity
Factors (TCF)

The Technical Complexity Factors (TCF) is determined
by giving the value of 0 to 5 depending on the degree of
influence of the 18 technical system characteristics have on
the application. The sum of the influence values is called
Total Degree of Influence (TDI). The Technical Complexity
Factors (TCF) is then computed as:

 TCF = 0.55 + (0.01 * TDI)

The adjusted Class Points (CP) is computed as:
 CP = TUCP * TCF

Object-Oriented Function Points (OOFPs), there are a
number of proposals to adapt the traditional Function Points
Analysis method with Object-oriented technologies. OOFPs
method was proposed in works of Caldiera, et al. [46], and
Antoniol, et al. [47].

According to Antoniol et al. [47] there are two streams of
research in adapting FP approach to object-oriented
software estimation. The first group are for example,
Whitmire [48], Schoonevendt [49], IFPUG 1995 [50], and
Fetcke et al. [51]. While keeping the same concept and
counting method of traditional FP they introduced the
method to get around when dealing with the counting
method from classes diagram, to ILF and ELF. The second
stream invented new measures to exploit the additional
information gained from the OO method. For example,

Sneed [52] who proposed Object Points, Minkiewizcz [36],
Mehler and Minkiewizcz [53], presented the Predictive
Object Points (POPs), and Graham (54) introduced Task
Points.

Antoniol et al. [47] claimed that OOFPs share the
characteristics of both groups. OOFPs keeps the same
function points weights as in IFPUG. OOFPs maps classes
to Internal Logical File (ILF) and External Interface Files
(ELF), and methods to transactions. FP transactions –EI,
EO, and EQ are treated as generic service requests (SRs).
Counting OOFPs can be reached by:

 OOFP = OOFP ILF + OOFP EIF + OOFP SR
Where OOFP ILF = sum of the weights for each ILF objects,
classified by the their DETs and RETs,

 OOFP EIF = sum of the weights for each EIF objects
classified by the their DETs and RETs,

 OOFP SR = sum of the weights for each SRs,
classified by the their DETs and FTRs .

The latest development and refinement of OOFP could be
found in Zivkovic et al. [55].

Pattern Points method (PP) was proposed by Adelkile

[43] in 2010. The model gives attention to UML sequence
diagram for the object interactions. The method is based on
size of each of the 23 object oriented design patterns
defined in the book of Gamma et al. [56] entitled “Design
patterns: Elements of Reusable Object-Oriented Software”.
Each of the pattern is sized based on a pattern ranking and
an implementation ranking. The pattern ranking is a
function of the degree of difficulty and the structural
complexity of the design pattern, and the implementation
ranking is a function of the ease of applicability of the
pattern to the problem type.

Web Objects [40], Web Objects were introduced in
2000, as a measure appropriate for web applications sizing.
Ruhe et. al. [57] proposed to add four new web-related
components or web objects (WO) to the five functions types
of FP approach for web applications development. The four
web objects are multimedia files, web building block,
scripts, and links.

Each instance of the web objects and the five function
types are counted and classified in term of its complexity
level: low, average and high and then multiply with the
correspondence weight to the counted components. The sum
of those values represents the function size of the web
application in web objects

E. Other measures

Jones Very Early Size Predictor
Jones Very Early Size Predictor was developed by Capers

Jones [14]. The method classifies software projects into
different scopes, classes and types. There are altogether 10
scopes, 15 classes and 20 types. The size of the software to
be developed is then computed by the following formula:

 Size = (Scope + Class + Type) 2.35

Software science (Halstead)

Literature also showed different view of software

measurement. Halstead [58] proposed to measure software
size using code length and volume metrics. Code length is
designed to measure program source code length which is
defined as:

 N = N1 + N2

Where N is code length, N1 is the total number of

operator occurrences, and N2 is the total number of the
operand occurrences. Whereas Volume is the storage space
amount required and is defined as:

 V = N log (n1 +n2)

Where V = Volume, N = Code length, n1 is the number

of distinct operators and n2 is the number of operand that
appears in the program.

III. OBSERVATION AND DISCUSSION

From the literature reviewed, the following observations
are made:

1) Development of SLOC and FPA

Literature review has shown that software size can be
measured in either lines of codes (LOC), or Function Points
(FP) and Function Points variants. Only few other measures

were mentioned. There is little research in LOC where as
FP is widely accepted. Table I. shows the development of
FPA method from 1979 to 2010.

Most of the researches are refinements of Function Points
in order to address the problems of FPA. The developments
can be classified into 4 streams.

It was argued that the FPA counting was complex and
time consuming. From about 1979 to 1992, the first stream
of research, therefore, tried to make the FPA counting
simpler. Many surrogate methods were suggested in order
to ease and speed up the software size estimation method,
especially those extrapolation methods. To extrapolate,
regression was found to be a very popular technique used to
find the relations between software size and the software
attributes in order to make the estimates. These include
NESMA’s Indicative FP, Tichenor ILF Model, Prognosis by
CNV AG, ISBSG Benchmark, and Mark II.

Function Points method is good for business
applications. From, 1979 to 1999, the second stream tried to
cope with its weakness for scientific and real time
applications. These Function Points extensions include
Function Bang Metric, Feature Points, 3D FP, Full Function
Points (FFP), and COSMIC FFP.

The third stream spreads from 1987 to 2006. Many
researchers had arguing that functionalities can be retrieved
using Structured Analysis (SA) which expressed in the form
of Dataflow Diagram (DFD) for process modeling and
Entity Relationship Diagram (ERD) for data modeling.
These includes work of Rask [27, 28], O’brien and Jones
[29], Shoval and Feldman [30] and Lamma et al. [31].

From 1993 to 2011, the object oriented technology has
made a lot of impacts on the software size estimation
methods. Traditional FPA is argued that it is not suitable
with the object-oriented technologies. This latest stream
includes Use Case Points (UCP), Class Points, Predictive
Object Points (POP), Object-Oriented Function Points

(OOFP) UML points, Web Object Points and Pattern Points.
Besides the 4 streams, in around 1997, there was a small

group interest in solving the problems at the early stage
software size estimation to satisfy the needs of estimation at
the early stages of the software development life cycle, for
example, Jones Very Early Size Predictor, Early Function
Points Analysis (EFPA) and Meli’s Early Function Points
(EFP) and Extended Function Points (XFP) [20].

While there were many streams of interest for model
based method, Artificial Intelligent (AI) techniques, such as
simulation, machine learning, and neural network were the
latest stream proposed for non-model techniques.

TABLE I

DEVELOPMENT OF FPA

Year FPA Model

1979 Albreth FP

1980

1981

1982 Function Bang metric

1983

1984

1985

1986 Feature Points

1987

1988 Mark II FPA

1989

1990 NESMA FP

1991 DFD (Rask’s)

1992 3D FP

1993 UCP,
SSADM (Obrien and Jones’s)

1994 OO Metric

1995

1996 ADISSA
Object Points
Task points

1997 Jones Very Early Size Predictor
EFP
FFP
POP

1998 OOFP

1999 COSMIC FFP

2000 Object Oriented Design Function Points
Web Object Points

2001

2002

2003

2004 ER-DFD (Lamma’s)
OOmFP

2005 Class points (CP)
OOFP(2)

2006 DFD (Gramantieri’s)
UML Points

2007

2008

2009

2010 Pattern Points (PP)

2011

2) The Needs for validation

Many software size estimation models and methods have
been proposed but one of the questions is that which
estimation model or method performs better. The answer is

probably there is no better one estimation method for every
environment. [2]. A few research reported favor for
different models for example, in [59] expert judgment
seemed to perform better where as in [60], [61] favored the
performance of neural network

The question is then which estimation method is the best
under which circumstances or environment. More empirical
evidence is therefore called for to answer this question.

IV. FUTURE TREND AND SOFTWARE SIZING

We can not reject the effects of changing technologies on
the software size measurement. The literature has shown
that technologies and techniques related to requirement
gathering, and software analysis and design, such as,
Structured Analysis and Design Method (SSADM), and
Object-oriented Analysis and Design (OOAD), had
impacted on the size measurement models. This is because
they are directly related to the software functionality.
Significant future challenges for software sizing is probably
the sizing for new product forms which include requirement
or architectural specifications, stories and component-based
development [62]. Besides the new product forms, the new
process forms, such as, extreme programming and agile
methods is other aspect to look into.

REFERENCES
[1] B.W. Boehm, “Software engineering economics,” IEEE Transaction

of Software Engineering, vol.10, no.1, pp. 4-21, 1984.
[2] R. Meli and L. Santillo, “Function point estimation methods: a

comparative overview,” in FESMA '99 Conference proceedings,
Amsterdam, 4-8 October, 1999.

[3] M. Nasir, “A survey of software estimation techniques and project
planning practices,” In Proceeding of the Seventh ACIS Conference
on Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing (SNPD’06), 2006. pp. 305-310.

[4] H. Leong and Z. Fan, “Software cost estimation,” [on line], 2002
Available: ftp://cs.pitt.edu/chang/handbook/42b.pdf

[5] B.W. Boehm, Software engineering economics, Prentice-Hall,
Englewood Cliffs, N.J., 1981.

[6] M. Sheppard and C. Schofield, “Estimating software project effort
using analogies,” IEEE Transaction on Software Engineering, vol. 23,
no.11, pp.736-743; 1997.

[7] S. J. Delany, P. Cunningham and W. Wilke, “The limit of CBR in
software project estimation,” in German Workshop on Case-Based
Reasoning, 1998.

[8] O. Demirors, and C. A. Gencel, “Comparison of size estimation
techniques applied early in the life cycle,” in T. Dingsoyr (Ed),
EuroSPI 2004, LNSC, 2004, pp.184-194.

[9] D. Zhang and J.J. P.Tsai, “Machine learning and software
engineering,” in Proceeding the 14th International Conference on
Tools with Artificial Intelligence (ICTAI'02), 2002.

[10] E. N. Regolin, G.A. de Souza, A.R. Pozo, and S.R. Vergilio,
“Exploring machine learning techniques for software size estimation,”
in Proceeding of the XXII International Conference of the Chilean
Computer Science Society (SCCC'03), 2003, pp.130-136.

[11] J. Verner and G. Tate, “A software size model,” IEEE Transactions
on Software Engineering, vol.19, no. 4, 1992.pp.265-278.

[12] A. Idril, T.M. Khoshogoftaar, and A. Abbran, “Can neural net works
be easily interpreted in software cost estimation.” in Proceeding of the
2002 World Congress on Computational Intelligence, Honolulu,
Hawaii, May 12-17, 2002, pp.1162-1167.

[13] H.B.K. Tan, Z. Yuan and H. Zhang, “Estimating LOC for information
systems from their conceptual data models,” in Proceeding of the
International Conference on Software Engineering ICSE”06, May
20-28, Shanghai, China. 2006.

[14] C. Jones, Applied Software Measurement, Assuring Productivity and
Quality, 2ed, McGraw-Hill, 1997.

[15] C. Gencel and O. Demirors, “Functional size measurement revisited,”
ACM Transaction on Software Engineering and methodology, vol.17,
no. 3, pp.15.1-15.36, June 2008.

[16] A. J. Albrecht, “Measuring application development productivity,” in
Proceeding of the IBM Applications Development Symposium,
California, October 14-17, 1979, pp. 83-92.

[17] UKSMA, Mark II Function Points Analysis Counting Practice
Manual, Version 1.3.1.

[18] NESMA, Definitions and Counting Guidelines for the Application of
Function Point Analysis, Version 2.1, 2003.

[19] R. Asensio, F. Sanchis, F. Torre, V. Garcia and G. Uria, “A
preliminary study for the development of an early method for the
measurement in function points of a software product,” ACM classes:
D.4.8 [On Line], 2004 Available at:
http://arxiv.org/abs/cs?papernum=0402015

[20] T. DeMarco, Controlling Software Projects, Yourdon Press, New
York, 1982.

[21] S. A. Whitmire, “3D Function points: scientific and real-time
extension to function points,” in Proceeding of the Pacific Northwest
Software Quality Conferences, 1992.

[22] R. Meli, “Early and extended function point: a new method for
function points estimation,” IFPUG Fall Conference, September, 15-
19, Arizona, 1997.

[23] A. Abran, D. St. Peierre, M. Maya, and J. M. Desharnais, “Full
function points for embedded and real-time software,” in Proceeding
of the UKSMA Fall Conference, London, 1998.

[24] COSMIC, The COSMIC Functional Size Measurement Method,
Version 3.0, Common Software Measurement International
Consortium, 2007.

[25] ISO, ISO/IEC 19761: Software Engineering -- COSMIC FFP -- A
Functional Size Measurement Method, Version 2.2, 2003.

[26] R. Rask, “Algorithm for counting unadjusted function points from
dataflow diagram” Technical report, University of Joensuu, 1991.

[27] R. Rask, “Counting function points from SA descriptions,” The
Papers of the Third Annual Oregon Workshop on Software Metrics
(Ed. W. Harrision), Oregon, March 17-19, 1991.

[28] S. J. Obrien, and D. A. Jones, “Function points in SSADM,” Software
Quality Journal, vol. 2, no. 1, pp.1-11, 1993.

[29] P. Shoval, and O. Feldman, “Combining function points estimation
model with ADISSA methodology for system analysis and design,” in
Proceeding of ICCSSE”96, 1996, pp.3-8.

[30] F. Gramantieri, E. Lamma, P. Mello, and F. Riguzzi, “A system for
measuring function points from specification,” Technical Report,
Universitra di Bologna, 1997.

[31] E. Lamma, P. Mello and F. Riguzzi, “A system for measuring
function points from an ER-DFD specification,” The Computer
Journal, vol. 47, no.3, pp.358-372, 2004.

[32] F. Gramantieri, E. Lamma, P. Mello, and F. Riguzzi, “A System for
Measuring Function Points from Specifications,” DEIS – Universita
di Bologna, Bologna. and Dipartimento di Ingegneria, Ferrara, Tech.
Rep DEIS-LIA-97-006, 1997.

[33] G. Antoniol, C. Lokan, G. Caldiera, and R. Fiutem, “A function point-
like measure for object-oriented software,” Empirical Software
Engineering, vol. 4, no. 3, pp. 236-287, 1999.

[34] D. Card, K. El Eman, and B. Scalzo, “Measurement of object-oriented
software development projects,” Technical Report, Software
Productivity Consortium, Herndon, VA, 2001.

[35] G. Karner, “Metrics for objectory,” Diploma Thesis, University of
Linkoping, Sweden, No. LiTH-IDA-Ex- 9344:21, December 1993.

[36] A. Minkiewicz, “Measuring object-oriented software with the
predictive object points,” in Proceeding of 8th European Software
Control and Metrics Conference, Atlanta, 1997.

[37] G. Costagliola, F. Ferrucci, G. Tortora, and G. Vitiello, “Class points:
an approach for the size estimation of object-oriented systems,” IEEE
Transaction on Software Engineering, vol. 31, no.1, pp.52-74,
January 2005.

[38] G. Caldiera, C. Lokan, G. Antoniol, R. Fiutem, S. Curtis, G. La
Commare, and E. Mambella, “Estimating size and effort for object-
oriented systems,” In Proceeding of 4th Australian Conference on
Software Metrics, 1997.

[39] D.J. Ram and S.V.G.K. Raju, “Object oriented design function
points”, in Proceedings. First Asia-Pacific Conference on Quality
Software, October 30-31, 2000, pp121-126.

[40] D. Reifer, Web-Development: “Estimating quick-time-to-market
software.” IEEE software, vol. 17, no. 8, pp.57-64,
November/December 2000.

[41] S. Abrahao, G. Poels, and O. Pastor, “A functional size measurement
method for object oriented conceptual schemas: design and evaluation
issues”, Working paper, Faculty of economic and business
administration, Ghent University, 2004.

[42] S. E. Kim, W. Lively, and D. Simmons, “An effort estimation by
UML points in the early stage of software development,” in
Proceedings of the International Conference on Software Engineering
Research and Practice & Conference on Programming Languages
and Compilers, SERP 2006, Las Vegas, Nevada, USA, Volume 1,
June 26-29, 2006.

[43] O. Adekile, D.B. Simmons, W.M. Lively, “Object oriented software
development effort prediction using design patterns from object
interaction analysis.” in Proceeding of 2010 Fifth International
Conference on Systems, Menuires, April, 2010, pp.47-53.

[44] B. Anda, H. Dreiem, Dag I. K. Sjoberg and M. Jorgensen, “Estimating
software development effort based on Use Cases --experiences from
Industry, In G. Martin, and C. Kobryn (ed) UML 2001: the unified
modeling language: modeling languages, concepts, and tools: 4th
international conference, Toronto, Canada, October 1-5, 2001.

[45] G. Booch, Object Oriented Analysis with Applications, 2nd Edition.
Benjamin/Cumming Publishing CO. Inc. Redwood City, CA. 1994.

[46] G. Caldiera, G. Antoniol, R. Fiutem, and C. Lokan, “Definition and
experimental evaluation of function points for object-oriented
systems,” in Proceeding of 5th International Symposium on Software
Metrics, IEEE 1998, pp. 167-178.

[47] Antoniol, G., Fiutem, R., and Lokan, C. “Object-oriented function
points: an empirical validation,” Empirical Software Engineering, vol.
8, no. 3, pp. 225-254, 2003.

[48] S. A. Whitmore. “Applying function points to object oriented
software.” in J. Keyes (ed), Software Engineering Productivity
Handbook, Chapter 13, McGraw-Hill, 1993.

[49] M. Schoonneveldt. “Measuring the size of object oriented systems.”
in Proc. 2nd Australian Conference on Software Metrics, Australian
Metrics Associations. 1995.

[50] IFPUG, Function points counting practice: case study3 –object
oriented analysis, object-oriented design Draft, International Function
Point Users Group, Westerville, Ohio, 1995.

[51] T. Fetcke, A. Abran, and T. H. Nguyen, “Mapping the OO-Jacobson
approach to functions points analysis,” in Proceeding of IFPUG 1997
spring Conference, pp.134-142. 1997

[52] H. Seed, “Estimating the development costs of object-oriented
software,” in Proceeding of 7th European Software Control and
Metrics Conference, Wilmslow, UK., 1996.

[53] H. Mehler and A. Minkiewwicz, “Estimating size for object-oriented
software,” in Proceeding of ASM’97 Application in Software
Measurement, Berlin, 1997.

[54] I. Graham, “Making Progress in Metrics,” Object Magazine, vol. 6,
no. 8, pp. 68-73, 1996.

[55] A. Zivkovic, I. Rozman, and M. Hericko, “Automated software size
estimation based on function points using UML model” Information
& Software Technology, vol. 47, pp. 881-890. 2005.

[56] E. Gamma, R. Helm, R. Johnson, and J.M. Vissides, Design Pattern:
Elements of reusable Object-Oriented Software, Addison-Wesley
Professional, 1994

[57] M. Ruhe, R. Jeffery, and I. Wieczorek, “Using web objects for
estimating software development effort for web application,” in
Proceeding of the ninth International Software Metric Symposium
(METRICS'03), 2003.pp.30-37.

[58] M.H. Halstead, Elements of Software Sciences, Elsevier, New York,
1977

[59] M. Jorgensen, “Forecasting of software development work effort:
evidence on expert judgment and formal models,” International
Journal of Forecasting, vol.23, no. 3, pp:449-462, 2007.

[60] G. E. Witting, and G. R. Finnie, “Using artificial neural network and
function points to estimate 4GL software development effort,”
Australian journal of information system, vol.15, no. 2, pp.87-94
2008.

[61] J. Kaur, S. Singh, K.S Kahlon, “Comparative analysis of the software
effort estimation models,” Proc. Of World Academy of Science,
Engineering and Technology, vol.36, pp.485-487, December 2008.

[62] B. Boehm and R. Valerdi, “Achievement and challenges in
COCOMO-based software cost estimation,” Journal of IEEE
Software, vol.25, no.5, pp.74-83, 2008.

