
 

  

Abstract—The problem of learning context-free grammars 

(CFGs) using genetic algorithms is considered. In particular, 

we deal with a scheme for learning CFGs that first generates 

primitive CFGs, then genetic algorithms are used to find the 

smallest consistent CFGs by merging the non-terminals 

repeatedly (i.e., by partitioning the set of non-terminals). The 

primitive context-free grammar (CFG) based on the inputs that 

belong to the unknown target language is formed using the 

efficient parsing algorithm for CFG such as the Cocke-

Younger-Kasami algorithm. By employing this representation 

method, the problem of learning CFGs from examples can be 

reduced to the problem of partitioning the set of non-terminals. 

In order to formulate the solution of this partitioning problem 

using genetic algorithms, the problem of calculating fitness 

effectively and efficiently is still persists. In this paper, we 

present a scheme for determining fitness value that can improve 

the performance of learning algorithms for CFGs. 

 

Index Terms— Context-free grammar, genetic algorithm, 

tabular representation, fitness function, grammatical inference 

 

I. INTRODUCTION 

EARNING structural models from data is known as 

grammatical inference (GI). The data can represent 

sequences of natural language corpora, biosequences (DNA, 

RNA, primary structure of proteins), speech etc., but can 

also include trees, metabolic networks, social networks or 

automata. Typical models include formal grammars [7], and 

statistical models in related formalisms such as probabilistic 

automata, Hidden Markov Models, probabilistic transducers 

or conditional random fields. The major learning models 

proposed for formal languages are: identification in the limit 

[4], query learning model [10], and the probably 

approximately correct learning model, addressed PAC 

learning model, in short [11]. GI is the gradual construction 

of a model based on a finite set of sample expressions. In 

general, the training set may contain both positive and 

negative examples from the language under study. If only 

positive examples are available, no language class other than 

the finite cardinality languages is learnable [4]. 
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It has been proved that deterministic finite automata are 

the largest class that can be efficiently learned by provable 

converging algorithms. There is no context-free grammatical 

inference theory which provable converges, if language 

defined by a grammar is infinite. Building algorithms that 

learn context–free grammars (CFGs) is one of the open and 

crucial problems in the grammatical inference. The 

approaches taken have been to provide learning algorithms 

with more helpful information, such as negative examples. 

Some people have taken the notion of unlabelled derivation 

trees that describe the grammatical structures of the target 

language in order to formulate alternative representation of 

CFGs [8], [9]. 

Due to the hardness of learning CFGs many researchers 

have attacked the problem of grammar induction by using 

evolutionary methods to evolve (stochastic) CFG or 

equivalent pushdown automata, but mostly for artificial 

languages like brackets, and palindromes. In this paper, we 

introduce an improvement on the tabular representation 

algorithm (TBL) dedicated to inference of CFGs in 

Chomsky normal form. The TBL was proposed by 

Sakakibara and Kondo in [5] and later on Sakakibara 

analyzed some theoretical foundations for the algorithm [1]. 

A. Context-Free Grammar Parsing 

A context free grammar (CFG) is a quadruple G = (Σ, V, 

R, S), where Σ is finite set of terminal symbols called 

alphabet and V is finite set of non-terminal symbols such that 

Σ ∩ V = ∅. R is set of production rules in the form W → β 

where W ∈ V and β ∈ (V ∪ Σ)*. S ∈ V is a special non-

terminal symbol called start symbol. All derivations start 

using the start symbol S. A derivation is sequence of 

rewriting the string containing symbols (V ∪ Σ)* using 

production rules of CFG G. In each step of a derivation a 

non-terminal symbol from string is selected and replaced by 

string on the right side of the production rule. 

For example if we have CFG G = (Σ, V, R, S), where  

Σ = {a, b}, 

V = {A, B}, 

R = {A→ a, A → BA, A → AB, A→ AA, B→ b}, 

S = A. 

Then the derivation can have the form:  

A→ AA → ABA →AABA→ aABA → aABa → aAba → 

aaba. 

More details regarding the CFGs can be seen in the literature 

[2] and [3].  
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The derivation ends when there are no more non-terminal 

symbols left in the string. The language generated by CFG is 

denoted L(G) = {x ∈ Σ*| the string x can be derived starting 

from the start symbol S}. The word x is a string of any 

number of terminal symbols derived using production rules 

from CFG G. A CFG G = (Σ, V, R, S) is in Chomsky normal 

form if every production rule in R has the form: A → BC or 

A → a, where A, B, C ∈ V and a ∈ Σ. 

A CFG describes specific language L(G) and can be used 

to recognize words (strings) that are members of language 

L(G). But to answer the question which words are members 

of language L(G) and which are not we need a parsing 

algorithm. This problem, called membership problem can be 

solved using CYK algorithm. This algorithm is a bottom up 

dynamic programming technique that solves the membership 

problem in a polynomial time. 

B. CFG Induction Using TBL Algorithm 

Grammar induction target is to find a CFG structure (set 

or rules and set of non-terminals) using positive and negative 

examples in a form of words. It is a very complex problem, 

especially hard is finding grammar topology (set of rules). 

Its complexness results from great amount of possible 

solutions that grows exponentially with length of the 

examples. TBL algorithm uses tabular representations of 

positive examples. Tabular representation is similar to parse 

table of CYK algorithm and is able to remember exponential 

number of possible grammatical structures of example in a 

table of polynomial size. Fig. 1 shows all possible 

grammatical structures of word “aaba” and its tabular 

representation. 

The following pseudo code shows all steps of the TBL 

algorithm presented in [1]: 

1. Create tabular representation T(w) of each positive 

example w in U+. 

2. Derive primitive CFG G(T(w)) and Gw(T(w)) for each 

w in U+ 

3. Create union of all primitive CFG's, G(T(U+)) = Union 

of all w ∈ U+ {Gw (T (w))} 

4. Find smallest partition π* such that G(T(U+))/ π* is 

coherent with U, which is compatible with all positive 

and negative examples U+ and U- 

5. Return result CFG G(T (U+)) / π* 

Fig. 2 shows the tabular representation and the primitive 

grammar developed for the given sentence “aaba”. 

 

a a b a a a a b a a b a a a b a a aa b 

(a) 

(b) 

<12> <13> <14> 

<8> <9> <10> <11> 

<5> 

<1> 

<6> <7> 

<2> <3> <4> 

a a b a 

i = 1 i = 2 i = 3 i = 4 

j = 2 

j = 3 

j = 1 

j = 4 

 

Fig. 1. All possible grammatical structures of word "aaba" (a), and its tabular representation (b) 

j = 4 X1,4,1, X1,4,2, X1,4,3    

j = 3 X1,3,1, X1,3,2 X2,3,1, X2,3,2   

j = 2 X1,2,1 X2,2,1   X 3,2,1  

j = 1 X1,1,1 X2,1,1 X3,1,1 X4,1,1 

 i = 1 i = 2 i = 3 i = 4 

 a a b a 

(a) The tabular representation 

 

P = {S → X1,4,1 | X1,4,2 | X1,4,3; 

 X1,4,1 → X1,1,1 X2,3,1 | X1,1,1 X2,3,2; 

 X1,4,2 → X1,2,1 X3,2,1; 

 X1,4,3 → X1,3,1 X4,1,1 | X1,3,2 X4,1,1; 

 X1,3,1 → X1,1,1 X2,2,1;  X1,3,2 → X1,2,1 X3,1,1; 

 X2,3,1 → X2,1,1 X3,2,1;  X2,3,2 → X2,2,1 X4,1,1; 

 X1,2,1 → X1,1,1 X2,1,1;  X2,2,1 → X2,1,1 X3,1,1; 

 X3,2,1 → X3,1,1 X4,1,1; 

 X1,1,1 → a;  X2,1,1 → a;  X3,1,1 → b; X4,1,1 → a } 

(b) The Primitive grammar 

Fig. 2. The tabular representation T(aaba) (a), and the derived 

primitive CFG G (T(aaba)) (b). 



 

Once the partitioning has been completed, the subsequent 

chromosomes are generated by applying genetic operators 

like structural crossover, mutation and special deletion. Then 

we generate the next population set by choosing 

probabilistically the fit chromosome and forwarding it to the 

next generation. 

The fitness function proposed by Sakakibara does not 

consider the negative examples role in the fitness and hence 

it is weak. We thereby, propose a solution to improve the 

quality of the fitness and lead to results with better 

efficiency. 

Our method of the improved fitness function is given in 

the next section.  

II. METHODOLOGY 

Our main aim is to generate a grammar from a finite set of 

positive and negative examples. A temporary set of 

grammars is generated from the given set of examples. 

Successive populations are generated by applying the 

genetic operations namely structural crossover, structural 

mutation and special deletion. The transition of a particular 

set of chromosomes (grammar) into the next generation is 

decided by its fitness. 

Step 1: Calculation of fitness 

The two methods for the calculation of fitness of a particular 

grammar that we propose are as follows: 

 

Method 1: 

F = |{w ∈ U+ | w ∈ G(U+)} -  {w ∈ U- | w ∈ G(U-)}|                

|U+| 

And Method 2: 

f1 =  |{w ∈ U+ | w ∈ G(U+)} |  

    |U+| 

f2 =  | {w ∈ U- | w ∈ G(U-)}  | 

    |U-| 

And F = f1-f2  

U+ is the no of positive examples and U- is the number of 

negative examples. 

G(U+) and G(U-) are no of positive and negative examples 

accepted by the grammar respectively.  

These methods are better because: 

1) Sakakibara’s method [1] does not consider the negative 

set of examples into consideration. It happens so in his 

method that if a grammar even accepted only one 

negative example, its fitness would be 0. Let’s consider 

an example: Let we require a grammar which accepts 

say 100 positive example and must reject 80 negative 

examples. 

Case 1: Grammar accepts 99 positive and one negative 

example. Fitness = 0 

 Case 2: Grammar accepts 99 positive and 79 negative 

examples. Fitness = 0 

 The first grammar is almost perfect whereas the second 

one is nowhere near it. Yet these are rated at the same 

fitness levels. 

2) Marcin Jaworski’s and Olgierd Unold’s methods [6] 

took into consideration the partitions too. Hence the 

fitness calculated was partition dependent. 

3) Once any one of the methods defined by me is used, the 

fitness value of each grammar in the population is 

obtained. These fitness values are of the type: F <= 1. 

Step 2: Generation of next population 

We generate the next population based on the fitness values 

obtained. The pseudo code is as follows: 

1. Choose the minimum value of fitness from the set, say it 

is ‘x’. 

2. Compute the increment value for the entire set i = | x | 

+ 1. 

3. Shift each value in the set, i.e. add ‘i’ to each element in 

the set. 

4. Calculate ratio of each updated value to the sum of all 

the values in the set. This results in a new set of 

numbers which add up to 1. 

5. Represent these ratios (parts) in a pie chart format and 

employ roulette wheel. 

6. Generate a random number between 0 and 360. The 

value generated is the angle on the pie chart. The value 

having more area hence has a greater probability of 

getting selected that those with a lower area. 

7. Repeated selection using the roulette wheel mechanism 

will lead to the entire set of the next population. 

III. AN EXAMPLE 

A. Improvement on Fitness Function 

We now demonstrate the working of the fitness function 

and its advantage in this section. A couple sample tests and 

their results are as follows: 

TEST 1: 

Positive examples given by user: 1000 

Negative examples given by user: 800 

Positive examples accepted by the grammar: 600 

Negative examples accepted by the grammar: 350 

 

Fitness: 

Fitness Value using Method 1: 0.25 

Fitness Value using Method 2: 0.162499 

Fitness Value using Sakakibara’s method: 0 

TEST 2: 

Positive examples given by user: 1000 

Negative examples given by user: 800 

Positive examples accepted by the grammar: 999 

Negative examples accepted by the grammar: 1 

 

Fitness: 

Fitness Value using Method 1: 0.998 

Fitness Value using Method 2: 0.99775 

Fitness Value using Sakakibara’s method: 0 

It is clearly seen that even though the second grammar 

(TEST 2) is a lot better than the first one (TEST 1), using 



 

Sakakibara’s method it is rated 0 in both cases. Whereas the 

comparative fitness is obtained in our method (0.25, 

0.162499 and 0.998, 0.99775 respectively) proving that it is 

better capable of detecting the grammar that is more close to 

the answer that is needed. 

B. Generation of the next population 

For example let there be four fitness values say: 

a) -2.3 

b) .63 

c) .99 

d) -.235 

We choose among all the fitness values in the population 

the least valued fitness. 

Chosen value = -2.3 

Then we shift each fitness value in the population by the 

|least value| +1. 

Shift them by |least value| +1. This becomes: 

a) 1 

b) 3.93 

c) 4.29 

d) 3.065 

Now calculate the ratio of each fitness value to the total of 

the fitness values. 

Total = 1+3.93+4.29+3.065 = 12.285 

Ratios: 

a) 1/12.285 = .0814 

b) 3.93/12.285 = .3199 

c) 4.29/12.285 = .3499 

d) 3.065/12.285 = .2494 

Make a virtual pie chart with its area divided into parts 

corresponding to the ratios. 

Now a roulette wheel method can be used to generate a 

random number between 0 and 360. The number generated 

specifies an angle between 0 and 360 of the roulette wheel. 

The selected angle denotes the selected chromosome to be 

sent into the next generation. The probability of the 

chromosome with more fitness and hence more area to be 

selected is greater than the probability of the chromosome 

with a lesser fitness. Repeated selection using the roulette 

wheel mechanism will lead to the entire set of the next 

population. The pie chart constructed for the above example 

is shown in Fig. 3.  

IV. CONCLUSIONS 

Our methods produced results having fitness that took into 

consideration, the importance of both the positive and 

negative examples. Hence the functioning of the algorithm 

won’t be single minded and positive oriented anymore. 

Moreover, the method also eliminates the partition 

dependency of the results and puts forth a more 

straightforward way of handling the chromosomes. 

Further researches would help in generating more efficient 

fitness functions and better algorithms for the partitioning 

problem that would significantly reduce the complexity of 

the said problem and make it a more deterministic approach. 
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Fig. 3. The pie chart 




