

Abstract—The problem of learning context-free grammars

(CFGs) using genetic algorithms is considered. In particular,

we deal with a scheme for learning CFGs that first generates

primitive CFGs, then genetic algorithms are used to find the

smallest consistent CFGs by merging the non-terminals

repeatedly (i.e., by partitioning the set of non-terminals). The

primitive context-free grammar (CFG) based on the inputs that

belong to the unknown target language is formed using the

efficient parsing algorithm for CFG such as the Cocke-

Younger-Kasami algorithm. By employing this representation

method, the problem of learning CFGs from examples can be

reduced to the problem of partitioning the set of non-terminals.

In order to formulate the solution of this partitioning problem

using genetic algorithms, the problem of calculating fitness

effectively and efficiently is still persists. In this paper, we

present a scheme for determining fitness value that can improve

the performance of learning algorithms for CFGs.

Index Terms— Context-free grammar, genetic algorithm,

tabular representation, fitness function, grammatical inference

I. INTRODUCTION

EARNING structural models from data is known as

grammatical inference (GI). The data can represent

sequences of natural language corpora, biosequences (DNA,

RNA, primary structure of proteins), speech etc., but can

also include trees, metabolic networks, social networks or

automata. Typical models include formal grammars [7], and

statistical models in related formalisms such as probabilistic

automata, Hidden Markov Models, probabilistic transducers

or conditional random fields. The major learning models

proposed for formal languages are: identification in the limit

[4], query learning model [10], and the probably

approximately correct learning model, addressed PAC

learning model, in short [11]. GI is the gradual construction

of a model based on a finite set of sample expressions. In

general, the training set may contain both positive and

negative examples from the language under study. If only

positive examples are available, no language class other than

the finite cardinality languages is learnable [4].

Manuscript received October 14, 2011; revised January 05, 2012.

G. L. Prajapati is with the Department of Computer Engineering,

Institute of Engineering & Technology, Devi Ahilya University, Indore-

452001 INDIA (phone: +91 731 2366800, 2462311; fax: +91 731

2764385; e-mail: glprajapati1@gmail.com).

M.Vignesh is with the Swami Vivekanand College of Engineering,

Indore- 452020 INDIA (e-mail: mvignesh1990@gmail.com).

It has been proved that deterministic finite automata are

the largest class that can be efficiently learned by provable

converging algorithms. There is no context-free grammatical

inference theory which provable converges, if language

defined by a grammar is infinite. Building algorithms that

learn context–free grammars (CFGs) is one of the open and

crucial problems in the grammatical inference. The

approaches taken have been to provide learning algorithms

with more helpful information, such as negative examples.

Some people have taken the notion of unlabelled derivation

trees that describe the grammatical structures of the target

language in order to formulate alternative representation of

CFGs [8], [9].

Due to the hardness of learning CFGs many researchers

have attacked the problem of grammar induction by using

evolutionary methods to evolve (stochastic) CFG or

equivalent pushdown automata, but mostly for artificial

languages like brackets, and palindromes. In this paper, we

introduce an improvement on the tabular representation

algorithm (TBL) dedicated to inference of CFGs in

Chomsky normal form. The TBL was proposed by

Sakakibara and Kondo in [5] and later on Sakakibara

analyzed some theoretical foundations for the algorithm [1].

A. Context-Free Grammar Parsing

A context free grammar (CFG) is a quadruple G = (Σ, V,

R, S), where Σ is finite set of terminal symbols called

alphabet and V is finite set of non-terminal symbols such that

Σ ∩ V = ∅. R is set of production rules in the form W → β

where W ∈ V and β ∈ (V ∪ Σ)*. S ∈ V is a special non-

terminal symbol called start symbol. All derivations start

using the start symbol S. A derivation is sequence of

rewriting the string containing symbols (V ∪ Σ)* using

production rules of CFG G. In each step of a derivation a

non-terminal symbol from string is selected and replaced by

string on the right side of the production rule.

For example if we have CFG G = (Σ, V, R, S), where

Σ = {a, b},

V = {A, B},

R = {A→ a, A → BA, A → AB, A→ AA, B→ b},

S = A.

Then the derivation can have the form:

A→ AA → ABA →AABA→ aABA → aABa → aAba →

aaba.

More details regarding the CFGs can be seen in the literature

[2] and [3].

Improvement on Fitness Function for Learning

Context-Free Grammars Using Tabular

Representations

Gend Lal Prajapati, Member, IAENG, M.Vignesh

L

The derivation ends when there are no more non-terminal

symbols left in the string. The language generated by CFG is

denoted L(G) = {x ∈ Σ*| the string x can be derived starting

from the start symbol S}. The word x is a string of any

number of terminal symbols derived using production rules

from CFG G. A CFG G = (Σ, V, R, S) is in Chomsky normal

form if every production rule in R has the form: A → BC or

A → a, where A, B, C ∈ V and a ∈ Σ.

A CFG describes specific language L(G) and can be used

to recognize words (strings) that are members of language

L(G). But to answer the question which words are members

of language L(G) and which are not we need a parsing

algorithm. This problem, called membership problem can be

solved using CYK algorithm. This algorithm is a bottom up

dynamic programming technique that solves the membership

problem in a polynomial time.

B. CFG Induction Using TBL Algorithm

Grammar induction target is to find a CFG structure (set

or rules and set of non-terminals) using positive and negative

examples in a form of words. It is a very complex problem,

especially hard is finding grammar topology (set of rules).

Its complexness results from great amount of possible

solutions that grows exponentially with length of the

examples. TBL algorithm uses tabular representations of

positive examples. Tabular representation is similar to parse

table of CYK algorithm and is able to remember exponential

number of possible grammatical structures of example in a

table of polynomial size. Fig. 1 shows all possible

grammatical structures of word “aaba” and its tabular

representation.

The following pseudo code shows all steps of the TBL

algorithm presented in [1]:

1. Create tabular representation T(w) of each positive

example w in U+.

2. Derive primitive CFG G(T(w)) and Gw(T(w)) for each

w in U+

3. Create union of all primitive CFG's, G(T(U+)) = Union

of all w ∈ U+ {Gw (T (w))}

4. Find smallest partition π* such that G(T(U+))/ π* is

coherent with U, which is compatible with all positive

and negative examples U+ and U-

5. Return result CFG G(T (U+)) / π*

Fig. 2 shows the tabular representation and the primitive

grammar developed for the given sentence “aaba”.

a a b a a a a b a a b a a a b a a aa b

(a)

(b)

<12> <13> <14>

<8> <9> <10> <11>

<5>

<1>

<6> <7>

<2> <3> <4>

a a b a

i = 1 i = 2 i = 3 i = 4

j = 2

j = 3

j = 1

j = 4

Fig. 1. All possible grammatical structures of word "aaba" (a), and its tabular representation (b)

j = 4 X1,4,1, X1,4,2, X1,4,3

j = 3 X1,3,1, X1,3,2 X2,3,1, X2,3,2

j = 2 X1,2,1 X2,2,1 X 3,2,1

j = 1 X1,1,1 X2,1,1 X3,1,1 X4,1,1

 i = 1 i = 2 i = 3 i = 4

 a a b a

(a) The tabular representation

P = {S → X1,4,1 | X1,4,2 | X1,4,3;

 X1,4,1 → X1,1,1 X2,3,1 | X1,1,1 X2,3,2;

 X1,4,2 → X1,2,1 X3,2,1;

 X1,4,3 → X1,3,1 X4,1,1 | X1,3,2 X4,1,1;

 X1,3,1 → X1,1,1 X2,2,1; X1,3,2 → X1,2,1 X3,1,1;

 X2,3,1 → X2,1,1 X3,2,1; X2,3,2 → X2,2,1 X4,1,1;

 X1,2,1 → X1,1,1 X2,1,1; X2,2,1 → X2,1,1 X3,1,1;

 X3,2,1 → X3,1,1 X4,1,1;

 X1,1,1 → a; X2,1,1 → a; X3,1,1 → b; X4,1,1 → a }

(b) The Primitive grammar

Fig. 2. The tabular representation T(aaba) (a), and the derived

primitive CFG G (T(aaba)) (b).

Once the partitioning has been completed, the subsequent

chromosomes are generated by applying genetic operators

like structural crossover, mutation and special deletion. Then

we generate the next population set by choosing

probabilistically the fit chromosome and forwarding it to the

next generation.

The fitness function proposed by Sakakibara does not

consider the negative examples role in the fitness and hence

it is weak. We thereby, propose a solution to improve the

quality of the fitness and lead to results with better

efficiency.

Our method of the improved fitness function is given in

the next section.

II. METHODOLOGY

Our main aim is to generate a grammar from a finite set of

positive and negative examples. A temporary set of

grammars is generated from the given set of examples.

Successive populations are generated by applying the

genetic operations namely structural crossover, structural

mutation and special deletion. The transition of a particular

set of chromosomes (grammar) into the next generation is

decided by its fitness.

Step 1: Calculation of fitness

The two methods for the calculation of fitness of a particular

grammar that we propose are as follows:

Method 1:

F = |{w ∈ U+ | w ∈ G(U+)} - {w ∈ U- | w ∈ G(U-)}|

|U+|

And Method 2:

f1 = |{w ∈ U+ | w ∈ G(U+)} |

 |U+|

f2 = | {w ∈ U- | w ∈ G(U-)} |

 |U-|

And F = f1-f2

U+ is the no of positive examples and U- is the number of

negative examples.

G(U+) and G(U-) are no of positive and negative examples

accepted by the grammar respectively.

These methods are better because:

1) Sakakibara’s method [1] does not consider the negative

set of examples into consideration. It happens so in his

method that if a grammar even accepted only one

negative example, its fitness would be 0. Let’s consider

an example: Let we require a grammar which accepts

say 100 positive example and must reject 80 negative

examples.

Case 1: Grammar accepts 99 positive and one negative

example. Fitness = 0

 Case 2: Grammar accepts 99 positive and 79 negative

examples. Fitness = 0

 The first grammar is almost perfect whereas the second

one is nowhere near it. Yet these are rated at the same

fitness levels.

2) Marcin Jaworski’s and Olgierd Unold’s methods [6]

took into consideration the partitions too. Hence the

fitness calculated was partition dependent.

3) Once any one of the methods defined by me is used, the

fitness value of each grammar in the population is

obtained. These fitness values are of the type: F <= 1.

Step 2: Generation of next population

We generate the next population based on the fitness values

obtained. The pseudo code is as follows:

1. Choose the minimum value of fitness from the set, say it

is ‘x’.

2. Compute the increment value for the entire set i = | x |

+ 1.

3. Shift each value in the set, i.e. add ‘i’ to each element in

the set.

4. Calculate ratio of each updated value to the sum of all

the values in the set. This results in a new set of

numbers which add up to 1.

5. Represent these ratios (parts) in a pie chart format and

employ roulette wheel.

6. Generate a random number between 0 and 360. The

value generated is the angle on the pie chart. The value

having more area hence has a greater probability of

getting selected that those with a lower area.

7. Repeated selection using the roulette wheel mechanism

will lead to the entire set of the next population.

III. AN EXAMPLE

A. Improvement on Fitness Function

We now demonstrate the working of the fitness function

and its advantage in this section. A couple sample tests and

their results are as follows:

TEST 1:

Positive examples given by user: 1000

Negative examples given by user: 800

Positive examples accepted by the grammar: 600

Negative examples accepted by the grammar: 350

Fitness:

Fitness Value using Method 1: 0.25

Fitness Value using Method 2: 0.162499

Fitness Value using Sakakibara’s method: 0

TEST 2:

Positive examples given by user: 1000

Negative examples given by user: 800

Positive examples accepted by the grammar: 999

Negative examples accepted by the grammar: 1

Fitness:

Fitness Value using Method 1: 0.998

Fitness Value using Method 2: 0.99775

Fitness Value using Sakakibara’s method: 0

It is clearly seen that even though the second grammar

(TEST 2) is a lot better than the first one (TEST 1), using

Sakakibara’s method it is rated 0 in both cases. Whereas the

comparative fitness is obtained in our method (0.25,

0.162499 and 0.998, 0.99775 respectively) proving that it is

better capable of detecting the grammar that is more close to

the answer that is needed.

B. Generation of the next population

For example let there be four fitness values say:

a) -2.3

b) .63

c) .99

d) -.235

We choose among all the fitness values in the population

the least valued fitness.

Chosen value = -2.3

Then we shift each fitness value in the population by the

|least value| +1.

Shift them by |least value| +1. This becomes:

a) 1

b) 3.93

c) 4.29

d) 3.065

Now calculate the ratio of each fitness value to the total of

the fitness values.

Total = 1+3.93+4.29+3.065 = 12.285

Ratios:

a) 1/12.285 = .0814

b) 3.93/12.285 = .3199

c) 4.29/12.285 = .3499

d) 3.065/12.285 = .2494

Make a virtual pie chart with its area divided into parts

corresponding to the ratios.

Now a roulette wheel method can be used to generate a

random number between 0 and 360. The number generated

specifies an angle between 0 and 360 of the roulette wheel.

The selected angle denotes the selected chromosome to be

sent into the next generation. The probability of the

chromosome with more fitness and hence more area to be

selected is greater than the probability of the chromosome

with a lesser fitness. Repeated selection using the roulette

wheel mechanism will lead to the entire set of the next

population. The pie chart constructed for the above example

is shown in Fig. 3.

IV. CONCLUSIONS

Our methods produced results having fitness that took into

consideration, the importance of both the positive and

negative examples. Hence the functioning of the algorithm

won’t be single minded and positive oriented anymore.

Moreover, the method also eliminates the partition

dependency of the results and puts forth a more

straightforward way of handling the chromosomes.

Further researches would help in generating more efficient

fitness functions and better algorithms for the partitioning

problem that would significantly reduce the complexity of

the said problem and make it a more deterministic approach.

REFERENCES

[1] Yasubumi Sakakibara, “Learning context-free grammars using

tabular representations”, Pattern Recognition 38 (2005) pp. 1372 –

1383.

[2] Daniel I A Cohen, “Introduction to Computer Theory” second

edition, John Wiley & Sons, Inc. ISBN 9971-51-220-3

[3] John Martin, “Introduction to Languages and the Theory of

Computation” Third Edition, Tata McGraw Hill Publishing Company

Ltd. ISBN 0-07-049939-X

[4] Gold E.M.: “Language Identification in the Limit”, Information

Control, 10: (1967) pp. 447-474.

[5] Sakakibara Y., Kondo M.: “GA-based learning of context-free

grammars using tabular representations”, in Proc. 16th

International Conference in Machine Learning (ICML-99)

[6] Marcin Jaworski and Olgierd Unold, “Improved TBL algorithm for

learning context-free grammar,” in Proc. the International Multi-

conference on Computer Science and Information Technology,

(2007) pp. 267 – 274

[7] G.L. Prajapati, “Advances in Learning Formal Languages,” in Proc.

International MultiConference of Engineers and Computer Scientists

(IMECS 2011), The 2011 IAENG International Conference on

Artificial Intelligence and Applications (ICAIA 2011), Hong Kong,

Proceedings in Lecture Notes in Engineering and Computer Science,

ISSN: 2078-0958 (Print), ISSN: 2078-0966 (Online), ISBN: 978-988-

18210-3-4, vol. 2188, pp. 118-126 2011

[8] Sakakibara, Y., “Efficient Learning of Context-Free Grammars from

Positive Structural Examples,” Information and Computation, vol.

97, pp. 23-60, 1992.

[9] Prajapati G.L., Chaudhari N.S., and Chandwani M., “Efficient

Incremental Model for Learning Context-Free Grammars from

Positive Structural Examples,” in Proc. 5th Hellenic Conference on

Artificial Intelligence, SETN-08, Syros, Greece, Proceedings in

Artificial Intelligence: Theories, Models and Applications, Lecture

Notes in Artificial Intelligence (LNAI), Springer Verlag, Berlin,

ISSN: 0302-9743, ISBN: 978-3-540-87880-3, vol. 5138, pp. 250-

262, 2008.

[10] Angluin, D., “Queries and Concept Learning,” Machine Learning,

vol. 2, pp. 319-342, 1988.

[11] Valiant, L.G., “A Theory of the Learnable,” Communications of the

ACM vol. 27, pp. 1134-1142, 1984.

a)

8%

b)

32%

c)

35%

d)

25%

Fitness

Fig. 3. The pie chart

