
A Model Transformation Environment
for Embedded Control Software Design
with Simulink Models and UML Models

Masayoshi Tamura, Tatsuya Kamiyama, Takahiro Soeda, Myungryun Yoo and Takanori Yokoyama

Abstract—The paper presents a model transformation en-
vironment to transform a Simulink model to a UML model.
The embedded control software development process consists
of the control logic design phase and the software design
phase. MATLAB/Simulink is widely used to build a controller
model in the control logic design phase. On the other hand,
UML is widely used in the software design phase. To shift
from the control logic design phase to the software design
phase smoothly, we have developed a model transformation
tool to transform a Simulink model to a UML model. The
UML model generated by the transformation tool consists of
classes that encapsulate data and calculation methods of the
data. To improve the reusability of the classes, the Simulink
model should be well-layered. We have also developed a layering
support tool for efficient layering of the Simulink model.
We have applied the model transformation environment to a
number of Simulink models and found it useful for embedded
control software design.

Index Terms—embedded software, model-based design, soft-
ware tools, control systems, real-time systems.

I. I NTRODUCTION

The embedded control software development process can
be divided into the control logic design phase and the soft-
ware design phase. In the control logic design phase, control
engineers design control logic, just considering functional
properties. In the software design phase, software engineers
design the software structure and behavior to implement the
control logic, considering not only functional properties but
also nonfunctional properties.

Model-based design has become popular in embedded
control software design, especially in the automotive control
domain. In model-based design, a CAD/CAE tool such as
MATLAB/Simulink[1] is used to design control logic. A
controller model is designed with block diagrams and verified
by simulation, and source code can be generated from
the controller model. However, such CAD/CAE tools are
not sufficient for software design. Sangiovanni-Vincentelli
and Di Natale pointed out the shortcomings of the tools:
lack of separation between the functional and architecture
model, lack of support for defining the task and resource
model, lack of modeling for analysis and backannotation
of scheduling-related delays and lack of sufficient semantics
preservation[2]. CAD/CAE tools such as MATLAB/Simulink
should be used for just control logic design, not for software

Manuscript received December 14, 2011; revised January 10, 2012.
M. Tamura, T. Kamiyama and T. Soeda are with Graduate School of En-

gineering, Tokyo City University, 1-28-1, Tamazutsumi, Setagaya-ku, Tokyo
158-8557 Japan (e-mail:{g1181524, g1081516, g0981517}@tcu.ac.jp).

M. Yoo and T. Yokoyama are with Department of Computer Science,
Tokyo City University, 1-28-1, Tamazutsumi, Setagaya-ku, Tokyo 158-8557
Japan (e-mail:{yoo, yokoyama}@cs.tcu.ac.jp).

design. Software modeling languages such as UML should
be used for software design.

A control system consists of various software modules.
Simulink models are suitable to represent control logics such
as feedback control and feedforward control. On the other
hand, UML is suitable for some software modules such as
application modules with procedural algorithms, input and
output modules and network communication modules. To
integrate those models, Simulink models should be trans-
formed to UML models before the integration because UML
is suitable for software design. UML provides a number of
kinds of diagrams, which are useful for not only functional
design but also nonfunctional design.

Ramos-Hernandez et al. have presented a tool that trans-
forms a Simulink model to a UML model[3][4]. The
tool generates classes corresponding to each blocks of the
Simulink model. A dependency is generated corresponding
to a line that connects blocks. M̈uller-Glaser et al. have
presented a method to transform a Simulink model to a UML
model, in which each object of the generated UML model
corresponds each element of the Simulink model[5][6].
Blocks, lines and junctions are represented as objects in
the UML model. Sj̈ostedt et al. have presented a tool that
transforms a Simulink model to a UML model[7]. The tool
generates composite structure diagrams as structural models
and activity diagrams as behavior models. However, classes
of UML models generated by those tools may not be reusable
because each class represents just an element of the original
Simulink models. To improve the reusability of the software,
a UML model should be structured based on the object-
oriented concept.

The goal of the research is to develop a model trans-
formation environment, which transforms a Simulink model
to a reusable UML model. To achieve the goal, we define
rules to transform a Simulink model to a UML model based
on the design method for the time-triggered object-oriented
software[8][9][10]. A control systems designed by the design
method consists of objects that represent reasonable physical
quantities in the control logic, for example, input values,
output values, observed values, estimated values and desired
values. We develop a model transformation tool based on
the defined rules. The tool generates UML structural models
and behavioral models: class diagrams, object diagrams and
sequence diagrams. Each class of the generated UML model
corresponds to a reasonable physical quantity in the Simulink
model. The method of the class corresponds to the subsystem
block in the layered Simulink model. So a subsystem block
calculating a physical quantity can be reused as a class. We
also develop a layering support tool for efficient layering of

��� � � � � � � � � 	
��� � 	 � �
� ������� ��� � � 	 ��� � 	 � � �

� � � � � � �
�� � 	 � �

! � � � � � �"� 	 � �
� #�� � $"��� $ 	 � � � ��� $ "%� � � � � � � � � � � �
 "! � � � � � �

��� � � � � � � � ��� $ �
� � 	 ��� � 	 � ��� � $ � �

& � �
 � 	 � � � � � � $ �
� '��"� �

& � �
 � 	 � � � � �� � 	 � �
� � � � � � � � � ��� � 	 � � � � � � �

(�� � � � �
 � 	 � � � � �� � 	 � �
� '��"��) $ 	 � � � �

� � $ � *+ � , � � - ��. � �� � � � � 	 � ����� $ �
� '���� �

Fig. 1. Development Flow of Embedded Control Software

� � � � � �
��� � � 	
 � � � �

� � �
 �
� � �
 � � � � �

�

� � � � � �
� � � �
 �

�

��� � � 	 � � � �
��� � � � � �

� � � �

� � � � � 	 �
��� � � � � �

� � �

� � � �

� � �

 � � � � �

��
 � �

� � �
 �
��� 	 �
 	 � � � � �

� � � � � 	 �
��� � � � � �
��� 	 �
 	 � � � � �

�! " # $ $ % &(')# * $ " # %

Fig. 2. Example Simulink Model

a Simulink model.
The rest of the paper is organized as follows. Section II de-

scribes the control software development process with model
transformation. Section III describes details of the model
transformation environment and shows model transformation
examples. Section IV describes the experiments of the model
transformation environment. Finally, Section V concludes the
paper.

II. CONTROL SOFTWARE DEVELOPMENT PROCESS

A. Software Development Flow

Figure 1 shows the embedded control software develop-
ment flow, which consists of the control logic design phase,
the software design phase and the programming phase.

In the control logic design phase, we build a Simulink
model that represents a control system. A Simulink model
of a control system usually consists of a plant model and
a controller model. The controller model represents control
logic. Figure 2 shows an example Simulink model, which
is a throttle control part of an automotive control system.
The Simulink model inputs engine revolution, engine status
and accelerator opening, and outputs throttle opening. The
model consists of three inport blocks for engine revolution,
engine status and accelerator opening, two subsystem blocks
to calculate torque and throttle opening, and an outport block
for throttle opening. Figure 2 shows the higher layer model
of the layered Simulink model. The details of the calculation
of torque and throttle opening are described in the lower
layer models. The calculations are periodically executed in
the control period.

In the software design phase, we build a software model in
UML to implement the controller model. Software design can
be divided into functional design and nonfunctional design.
In functional design, we transform a Simulink model into a

� � � � � ��� � � 	

�� � � � � � � �
��� � � � �

� � � �

Fig. 3. Base Abstract Class of Value Object

UML model. We call the UML model the functional model
because the model represents implementation-independent
control functionalities. A functional model may be integrated
with other models built in UML. The details of functional
design are described in Section II-B. In nonfunctional de-
sign, we build an implementation model taking account of
nonfunctional properties. The details of nonfunctional design
are described in Section II-C.

Finally, in the programming phase, we write source pro-
gram to implement the implementation model. The source
program may be automatically generated from the software
model[11] or the controller model[10].

B. Functional Design

We transform a Simulink model into a functional model
represented in UML with a model transformation environ-
ment, details of which are described in Section III. Our model
transformation method is based on the design method of the
time-triggered object-oriented software[8][9][10]. A control
system designed by the design method consists of objects
that correspond to data in the block diagram. The design
method identifies objects referring to the data flow of the
block diagram representing control logic. The important data
representing reasonable physical quantities, such as input
values, output values, observed values, estimated values and
desired values, are candidates for objects, because those
values are rarely deleted or added even if the detailed control
logic is modified[10].

The object representing data is called the value object. The
value object encapsulates the data and the calculation method
of the value of the data. Figure 3 shows the base abstract
class namedValueObject. The class has methodupdatethat
calculates its own value and stores the value in an attribute
of the class. If values stored in other objects are required to
calculate its own value, the required values are obtained by
calling methodsget of the relevant objects. Concrete classes
of value objects are subclasses of the base abstract class.

Figure 4 shows the class diagram of the functional model
corresponding to the Simulink model shown by Figure 2.
The class diagram consists of six classes:Engine revolution,
EngineStatus, AcceleratorOpening, Torque, ThrottleOpening
andThrottleControl. ThrottleControlis a whole object, which
corresponds to the whole Simulink model shown by Figure 2.
The association namedconsmeans that the following class
consumes the value of the preceding class. For example,
methodupdateof classTorquegets the value ofEngineStatus
and the value ofAcceleratorOpening, calculates its own
value, and stores the calculated value in attributetorque.
Method execof ThrottleControl, which is periodically ex-
ecuted in the control period, calls methodupdateof class
Torqueand methodupdateof classThrottleOpening.

� � � � � � � � �	� �
 � �

 � � � � � � � �
 � � � � �

� �
 � �
� � � � � � � � ��� � ! � "� ! � # $

� � � % & �

 � � � � � � � �
 � � � � �� �
 �

�
� � � ' � � " � ! � # $

(� � � � � �) � � � �*� �
 �
 �
� �
 �

+
 � �
 � , �) � & �
� �
 �

+
 � �
 � -.� / � � & � � �

� �
 �
� � � � � � � � 0��
 � � � �

 � 1 � 2 � �

Fig. 4. Example Class Diagram of Functional Model

� � � � � � � �
� � � � � �

	
 � � � � � �
	 � � � � �

� �
 � �
 � � � � �
� � � � � � �

� � � � � � � ! !
" � � � � � � � � # $%� & � � '(� � #)*� + � , � & -
" . & / , & � 0 � � � # 1 � � 2 � � 3*3 1 4 � � + � 56� � & , & / # � � & � -

$%� & � � '(� �
)*� + � , � &

Fig. 5. Aspect Pattern of Buffering

C. Nonfunctional Design

An embedded control system is a hard real-time sys-
tem with timing constraints. We design the task structure,
scheduling policy, task priorities to meet timing constraints
in nonfunctional design. We may also add mechanisms
such as synchronization, mutual exclusion and inter-task
communication to the model so that the software correctly
executes in the preemptive multi-task environment. Aspect-
oriented programming[12] has been applied to separate
non-functional properties from functional properties. Model
level aspects for non-functional requirements have also been
presented[13][14].

Our nonfunctional design is based on the aspect-oriented
design method we have already presented[15][16]. We have
also presented aspect patterns for nonfunctional properties of
embedded control software and developed a model weaver
to weave the aspect patterns into the functional model. For
example, mechanisms for triggering methods (time-triggered
or event-triggered[17]), synchronizations and inter-task com-
munications are defined as aspect patterns. We select aspect
patterns and weave them into the functional model with the
model weaver to get the implementation model.

We consider the case in which the calculation of the values
of EngineRevolution, EngineStatusand AcceleratorOpening
and the calculation of the values ofTargetTorqueandThrot-
tleOpeningare executed by different periodic task. If the
priority of the former task is higher than the priority of
the latter task, the latter task may be preempted by the
former task. So a mechanism of mutual exclusion or inter-
task communication is needed for data integrity. Here, we use
buffering mechanism, which is one of wait-free inter-task
communications. Figure 5 shows the class diagram of the
aspect pattern of buffering, which connects a producer object
and a consumer object. ClassBufferhas attributebuf to store
the value, methodupdateto get the value fromProducerand
store the value inbuf, and methodgetfor Consumerto get the
value stored inbuf. The class diagram of the aspect pattern is
enclosed by a package with stereotype<<aspect>>, which
represents that the enclosed diagram is an aspect.

The binding expression is written under<<aspect>>.

� � � � � � � � �	� �
 � �

 � � � � � � � �
 � � � � �

� �
 � �
� � � � � � � � ��� � ! � "� ! � # $

� � � % & �

 � � � � � � � �
 � � � � �� �
 �

�
� � � ' � � " � ! � # $

(� � � � � �) � � � �*� �
 �
 �
� �
 �

+
 � �
 � , �) � & �
� �
 �

+
 � �
 � -.� / � � & � � �

� �
 �
� � � � � � � � 0��
 � � � �

 � 1 � 2 � �

3 & 4 4 � �

 � � � � � � � �
 � � � � �

� 5
� 6 " � ! � # $

7 & 4 4 � � �

Fig. 6. Example Class Diagram of Implementation Model

Crosscutting elements of the aspect pattern are represented as
variables (variable elements), which is bound with the actual
elements of the base model. In this case,Producer, Consumer
and Relation are variables. The binding expression means
that variableProducer is bound withEngineStatus, variable
Consumeris bound withTargetTorqueandThrottleOpening,
and variableRelation is bound withcons. We put the class
diagram shown by Figure 4 and the aspect shown by Figure 5
into the input of the model weaver, and we get the woven
class diagram shown by Figure 6.

III. M ODEL TRANSFORMATION ENVIRONMENT

A. Layering Support Tool

The target of the transformation to a UML model is the
higher layer model of the layered Simulink model, which
consists of subsystem blocks, inport blocks and outport
blocks. As described in Section II-B, a value object corre-
sponds to a data in the higher layer model and methodupdate
of the value object corresponds to the subsystem block that
calculates the value of the data. To make a class reusable, the
Simulink model should be well-layered before transformation
so that subsystem blocks calculating the important data such
as reasonable physical quantities are presented at the higher
layer.

We have developed a layering support tool to select
important data in a Simulink model and layer the Simulink
model. Figure 7 illustrates the layering work with the tool.
The layering support tool analyzes an input Simulink model,
and shows all data of the Simulink model on the window
of the tool. Each data of the Simulink model is shown by a
row of the table on the window. ColumnSystemmeans the
subsystem or the whole model in which the data is presented,
columnSrc Blockmeans the source block of the data, column
Dst Blockmeans the destination block of the data, andData
Namemeans the name of the data if the data has a name.
For example, the third row of the table in Figure 7 shows the
data fromSum1to Subsystem1with no name inController1
(the whole model).

We can select the data to be presented in the higher layer
by checking columnUpper Layer. In this case, the data
namedData1 from Subsystem1to Out1 in Controller1 and
the data fromGain1 to Sum1in Subsystem1are checked. If
the checked data has no name, we have to attach the name to
the data. In this example, nameDataB is attached to the data
from Gain1 to Sum1in Subsystem1. Then, the tool generates
a layered Simulink model in which the just the checked data
are presented in the higher layer. In this example, there are
two subsystem blocks in the higher layer of the generated
Simulink model. One subsystem block outputsDataB and
another subsystem block outputsDataA.

��� � � �

��� � � �

��� � 	

� � �

� ��� � � � � ��� � � � � � �

��� � � � � � !�" # $ % & � � ')(+* , , � & - .�� � /

� 0 12

��� � � �

� 0 3 4 � 4 � � 165

� 0 3 4 � 4 � � 12

� 4 � � � � � � ��� � �87�� 1 �

� 0 3 4 � 4 � � 18

� 0 3 4 � 4 � � 18

9 	

9 	 5

9 	 :

� 0 12

��� � 	

� 0 3 4 � 4 � � 12

��� � 	

;60 �

� 0 12

��� � � �;�0 �

� � �

9 	

9 	 5

9 	 :

;60 �

� 0 12

��� � 	

��� � 	
 � 0 12

" # $ % & � � '

(�* , , � & -

.�� � /

� � 4 � � 1

� 0 3 4 � 4 � � 12

<�� 	 � � � � �

<�� 	 � � � � �

<�� 	 � � � � �

� � � � � �

<�� 	 � � � � �

� � � � � �

� 0 3 4 � 4 � � 12

� 0 3 4 � 4 � � 12

��� � 	

� 0 12

� 0 18

��� � � �

=+> ? > @

<�� 	 � � � � �

� � �

� � �

� � �

9 	

9 	 5

��� � � �

��� � � ���� � � �9 	

9 	 5

9 	

9 	 5

Fig. 7. Layering of Simulink Model

B. Model Transformation Tool

We have developed a model transformation tool to trans-
form a layered Simulink model to a UML model. We devel-
oped the first version of the tool to generate class diagrams
and object diagrams as the UML structural model[18]. A
class diagram is generally used to represent the structure of
object-oriented software. An object diagram is also useful
for the embedded control system, in which most objects are
statically created at the initialization process, not dynamically
created. Then we have extended the model transformation
tool to generate sequence diagrams as the UML behavioral
model. A Sequence diagram is used to represent interactions
between objects in time sequence.

Figure 8 shows the internal processing of the model trans-
formation tool. The tool inputs a mdl file, which is a file to
store the information on a Simulink model. Then the tool an-
alyzes the mdl file and extracts Simulink model data needed
for transformation. The tool generates structural model data
referring to the Simulink model data. The tool also generates
behavioral model data referring to the Simulink model data
and the structural model data. Finally, the tool translates the
structural model data and the behavioral model data into
XMI files. XMI is a standard file format of UML[19]. The
details of structural model generation and behavioral model
generation are described in Section III-C and Section III-D.

C. Structural Model Generation

Figure 9 shows rules to transform elements of the Simulink
model to elements of the class diagram and the object
diagram. Column (a) of Figure 9 shows the rule to transform
a data from an inport block to a class of the class diagram
and an object of the object diagram. A class with just the
name is generated referring to the data. The name of the
generated class is the name of the data (DataA in this case).

��� � � � � � �	��
 � � � �

�� � � � ��� � � � � � ��� � � ���	 �

� � � � ! � � �

" � ��� � � � #
� ! � � �
$ � % � & ' � '

�	��
 � � � �
(� � �) % � ! �

") � * �) % �
��� ! � � �
(� � �) % � ! �

" � �+� � � � #
� ! � � �
, � % %

") � * �) % �
� ! � � �
, % %

- � . % / � !) % �
� ! � � �
, % %

- � . % / � !) % �
� ! � � �

(� � �) % � ! �

Fig. 8. Model Transformation Tool

� � ��� � � � �
�	�
 � �

� � � � � � ���

��� � � �� � �

� � � � � � ���

��� � � �� � �

��� � � ���� � � �
����� � � �
� � �
 � � � � �
�	� � � � �

����� � � �
� � �
 � � � � �
�	� � � � �

 ! "

��� � � �# ��� � � �

� � � � � � �

��� � � $� � �

��� � � $
����� � � $ # � � �
� � �
 � � � � �
�	� � � � �

��� � � $

 % "

� � �
��� � � &

��� � � &

��� � � &

 ' "

��� �

 � � � (� �

)*� + � , �

 � � � (� �

, � �

��� � � (� � -��� � � .
����� � � �
� � �
 � � � � �
�	� � � � �

� � / � , � �

 0 "

�1� � � (� � -# ��� � � .

��� � � .� � �

�1� � � (� � -

Fig. 9. Transformation Rules for Structural Model

An object of the object diagram is also generated referring
to the data.

Column (b) of Figure 9 shows the rule to transform a
data from a subsystem block to a class of the class diagram
and an object of the object diagram. A class with the name,
attributes and methods is generated referring to the data. The
name of the generated class is the name of the data (DataB
in this case). The name of the attribute is also the name of
the data. If the data type (int in this case) is declared in
the Simulink model, the data type is added to the attribute.
The generated class has methodupdateand methodget. An
object of the object diagram is also generated referring to
the data.

Column (c) of Figure 9 shows the rule to transform a
line between subsystem blocks (Subsystem1andSubsystem2
in this case) to an association between classes (DataC and
DataD in this case) of the class diagram and a link of the
object diagram. The preceding block with a line can be
an inport block. The associationcons is generated referring
to the line. A link of the object diagram is also generated
referring to the line.

Column (d) of Figure 9 shows the rule to generate a whole
object and composition. Composition means whole-part re-
lationship. A whole object is generated corresponding to the
whole Simulink model (ControlX in this case). Composition
between a whole object (ControlX in this case) and a value
object (DataE in this case) is generated.

Figure 4 shows the generated class diagram from the
Simulink model shown by Figure 2. Figure 10 shows the
generated object diagram from the same Simulink model.
The object diagram consists of six objects of the classes
shown in Figure 4. Just one object of each class exists
because each subsystem block of the Simulink model is
just one instance of the subsystem block. The objects are
connected with links that correspond to the lines of the

� � � � � � � � � �
	 � � �

� � � � � � �

� ��� � � � � � � � � � ��	 � � � �

� � � � � � � � � � � �

� � � � � � ��� � � � � � � � �

� � � � � � � � � ��� � � � � �

Fig. 10. Example Object Diagram of Functional Model

� � ��� � � � �
�	�
 � �

� � � � � � �	�

��� � � �� � �

� � � � � � ���

��� � � �� � �

� � �

� � � � � � � �

 � � � � � �

� � �

 � � � � � �

!"� # � � �

 � � � � � �

$ ��� � � �$ ��� � � �

� � � � � � � %

& � ' � � ()

��� � � �� � � � �

& � *
 � � � () & � *
 � � � ()� � �

$ � � � � � � � %

$ ��� � � �$ � � � � � � � %

� *
 � � � ()
� ' � � ()

$ ��� � � �

� *
 � � � ()

� � � � � � ���

� � � � +� � �

� � � � � � �,�

� � � � �� � �

� - �

$ ��� � � +$ ��� � � �

��� � � +��� � � �

& � � � () & � *
 � � � ()
� � �

$ ��� � � +

� *
 � � � ()

$ � � � � �

� � � ()

� � � � � � �

��� � � .� � �

$ � � � � .

��� � � .

$ ��� � � .

$ � � � � � � � %

� � � � � � � %

$ � � � � � � � %

�/� � � � � � %

� 0 � � 1 �

� ' � � ()

& � ' � � ()

Fig. 11. Transformation Rules for Behavioral Model

Simulink model shown by Figure 2 and to the associations
of the class diagram shown by Figure 4.

D. Behavioral Model Generation

Figure 11 shows rules to transform elements of the
Simulink model to elements of the sequence diagram. The
sequence diagram is generated referring to not only the
Simulink model but also the generated class diagram and
the generated object diagram.

Column (a) of Figure 11 shows the rule to generate a life-
line of a whole object (ControlX in this case) and execution
activated by messageexec. Column (b) of Figure 11 shows
the rule to generate a value object the lifeline.

Column (c) of Figure 11 shows the rule to generateupdate
message sequence and execution activated by the message
sequence. The whole object (ControlX in this case) calls
methodsupdateof value objects (DataB and DataC in this
case). The order of the message sequence is determined
according to the (partial) order of the data flow of the
Simulink model.

Column (d) of Figure 11 shows the rule to generateget
message and execution activated by the message. If an object
consumes (gets) the value of another object, methodget of
the latter object is called by methodupdateof the former
object.

Figure 12 shows the generated sequence diagram from
the Simulink model shown by Figure 2. The sequence
diagram shows that methodexecof object ThrottleControl
calls methodupdate of object Torque and methodupdate
of object ThrottleOpeningsequentially. Methodupdate of
objectTorquecalls methodsget of EngineStatusandAccel-
eratorOpeningto get those values. Methodexecof Throttle-
Control is executed periodically in the control period.

� � � � � � � � � �
	 � � � � � � � � � � � ��� � � � � � � � � � ��	 � � � � � ��� � � � � � � � � �� � � � � � ��� � � � � � � � �� � � � � � � � � ��� � � � � �

� 	 � � � � � �
 � � � �

 � � � �

 � � � �

 � � � �

 � � � �

� 	 � � � � � �

� � � � � �

Fig. 12. Example Sequence Diagram of Functional Model

TABLE I
MODELS USED IN EXPERIMENTS

Target System Number of Blocks

Subsystem Inport Outport

Fuel Injections 15 4 1

Hybrid Electric Vehicle 30 6 5

Stepping Motor Control 8 1 4

IV. EXPERIMENTS

We have applied the model transformation environment
to a number of Simulink models such as a fuel injections
system, a hybrid electric vehicle system and a stepping
motor control system, which are provided by the MathWorks,
Inc.[1].

At first, we made the original Simulink models layered
with the layering support tool. Table I shows the number
of blocks of the layered Simulink models used in the
experiments. The columnSubsystemshows the number of
subsystem blocks, the columnInport shows the number of
inport blocks and the columnOutport shows the number of
outport blocks. Then we transformed the layered Simulink
models to class diagrams, object diagrams and sequence
diagrams using the model transformation tool.

We show the case of a hybrid electric vehicle system. The
example hybrid electric vehicle is a series-parallel hybrid
electric vehicle that consists of a gasoline engine and an
electric motor. Figure 13 shows the higher layer of the
layered Simulink model of the hybrid electric vehicle system.
Figure 14 shows the generated structural model: the class
diagram and the object diagram. The class diagram consists
of thirty-seven classes. Figure 15 shows the generated be-
havioral model: the sequence diagram.

The original Simulink models used in the experiments
represent just control logics. They are built by control en-
gineers without considering implementation. After layering
the original models, the transformation tool successfully
transforms the layered Simulink models to class diagrams,
object diagrams and sequence models. So we think the
transformation tool can be applied to embedded control
software design.

V. CONCLUSION

We have developed a model transformation environment:
a Simulink model layering support tool and a Simulink to
UML model transformation tool. The model transformation
tool generates class diagrams, object diagrams and sequence

Fig. 13. Simlink Model of Hybrid Electric Vehicle System

Fig. 14. Class Diagram and Object Diagram of Hybrid Electric Vehicle
System

Fig. 15. Sequence Diagram of Hybrid Electric Vehicle System

diagram. Each class of a generated UML model corresponds
to a data in the Simulink model and the method of the class

corresponds to the subsystem block that calculates the value
of the data. We have also applied the tool to a number of
Simulink models and found it useful for embedded control
software design.

We are going to extend the model transformation tool to
generate a state machine diagram to make software design
more efficient and to deal with Simulink models with State-
flow charts.

REFERENCES

[1] The MathWorks Inc., http://www.mathworks.com/.
[2] Sangiovanni-Vincentelli, A. and Di Natale, M., Embedded System

Design for Automotive Applications,IEEE Computer,Vol.40, No.10,
pp.42–51, 2007.

[3] Ramos-Hernandez, D. N., Fleming, P. J., Bennett, S., Hope, S., Bass, J.
M. and Baxter, M.J., Process Control Systems Integration Using Object
Oriented Technology,Proceeding of Technology of Object-Oriented
Languages and Systems TOOLS 38,pp.148–158, 2001.

[4] Ramos-Hernandez, D. N., Fleming, P. J. and Bass, J. M., A Novel
Object-Oriented Environment for Distributed Process Control Systems,
Control Engineering Practice,vol.13, Issue 2, pp.213–230, 2005.

[5] Kühl, M., Spitzer, B. and M̈uller-Glaser, K. D., Universal Object-
Oriented Modeling for Rapid Prototyping of Embedded Electronic
Systems,Proceedings of the 12th IEEE International Workshop on
Rapid System Prototyping,pp.149–154, 2001.

[6] Müller-Glaser, K. D., Frick, G., Sax E. and Kühl, M., Multiparadigm
Modeling in Embedded Systems Design,IEEE Transactions on Con-
trol Systems Technology,Vol.12, No.2, pp.279–292, 2004.

[7] Sjöstedt, C.-J., Shi, J., T̈orngren, M., Servat, D., Chen, D., Ahlsten,
V. and Lönn, H., Mapping Simulink to UML in the design of em-
bedded systems: Investigating scenarios and structural and behavioral
mapping,OMER 4 Post Workshop Proceedings,2008.

[8] Yokoyama, T., Naya, H., Narisawa, F., Kuragaki, S., Nagaura, W.,
Imai, T. and Suzuki, S., A Development Method of Time-Triggered
Object-Oriented Software for Embedded Control Systems,Systems and
Computers in Japan,Vol.34, No.2, pp.338–349, 2003.

[9] Yokoyama, T., An Aspect-Oriented Development Method for Em-
bedded Control Systems with Time-Triggered and Event-Triggered
Processing,Proceedings of the 11th IEEE Real-Time and Embedded
Technology and Application Symposium,pp.302–311, 2005.

[10] Yoshimura, K., Miyazaki, T., Yokoyama, T., Irie, T. and Fujimoto,
S., A Development Method for Object-Oriented Automotive Control
Software Embedded with Automatically Generated Program from
Controller Models,2004 SAE World Congress,2004-01-0709, 2004.

[11] Narisawa, F., Naya, H. and Yokoyama, T., A Code Generator with
Application-Oriented Size Optimization for Object-Oriented Embed-
ded Control Software,Object-Oriented Technology: ECOOP’98 Work-
shop Reader,Springer LNCS-1543, pp.507–510, 1998.

[12] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.
Loingtier, J. M. and Irwin, J., Aspect-Oriented Programming,Proceed-
ings of 11th European Conference on Object-Oriented Programming,
pp.220–242, 1997.

[13] Wehrmeister, M. A., Freitas, E., Pereira, C. E. and Wagner, F. R., An
Aspect-Oriented Approach for Dealing with Non-Functional Require-
ments in a Model-Driven Development of Distributed Embedded Real-
Time Systems,Proceedings of 10th IEEE International Symposium on
Object and Component-Oriented Real-Time Distributed Computing,
pp.428–432, 2007.

[14] Driver, C., Reilly, S., Linehan, E., Cahill, V. and Clarke, S., Managing
Embedded Systems with Aspect-Oriented Model-Driven Engineering,
ACM Transactions on Embedded Computing Systems,Vol.10, No.2,
pp.21:1–26, 2010.

[15] Soeda, T., Yanagidate, Y. and Yokoyama T., Embedded Control
Software Design with Aspect Patterns,Proceedings of International
Conference on Advanced Software Engineering and Its Applications
2009,pp.34–41, 2009.

[16] Soeda, T., Yanagidate, Y. and Yokoyama T., Embedded Control
Software Design with Aspect Patterns,Journal of the Chinese Institute
of Engineers,vol.34, Issue 2, pp.213–225, 2011.

[17] Kopetz, H., Should Responsive Systems be Event-Triggered or Time-
Triggered?,IEICE Transaction on Information & Systems,Vol.E76-D,
No.11, pp.1325–1332, 1993.

[18] Kamiyama, T., Soeda, T., Yoo, M. and Yokoyama, T., A Simulink to
UML Transformation Tool for Embedded Control Software Design,
Proceedings of 2010 International Conference on Computer and
Software Modeling,pp.93–97, 2010.

[19] Object Management Group,XML Metadata Interchange Specification,
Version 2.0.1, 2005.

