



Abstract—Web Service rapidly grows and is

implemented by many famous enterprises. Web Service

Business Process Execution Language (WS-BPEL)

appears to solve and support more complex business

processes. Mutation Testing has occurred for few

decades to justify if the test data are sufficient to test the

program or a component of code in the program. With

fault-based testing method, mutation testing can help

testers improve effectiveness of the test cases. Weak

mutation testing is a kind of mutation testing which aims

at reducing computational cost. Weak mutation

considers only a component in the program, mutates it,

and finally compares the results between the original

program and the mutant. In our previous work [1], we

analyzed a set of mutation operators, which can be used

for weak mutation with WS-PEL and introduce a

framework for weak mutation. This paper we continue

our work by proposing a weak mutation tool for WS-

BPEL, which supports mutant generation, running test

cases against the mutants, as well as specifying live,

killed, and equivalent mutants. The tool has been tested

with six BPEL programs.

Index Terms— Web Service; WS-BPEL; Mutation Testing;

Mutation Operators; Weak Mutation Testing

I. INTRODUCTION

ANY organizations begin move from Object-Oriented

paradigm to Service-Oriented paradigm (SOA) [2]. As

a plenty of systems and applications increase, those

organizations encounter challenges ranging from integration,

and maintaining legacy systems. With loosely coupled and

easy to reusable benefits make SOA implemented in various

software industries.

SOA is made more concrete by executing web services,

which are XML (Extensible Mark-up Language) [3] -based

syntax and are able to integrate various applications in

different platforms. Web Services communicate each other

by using SOAP (Simple Object Access Protocol) [4] and

WSDL (Web Service Description Language) [5] explaining

web service characteristics for example; which partners this

web service calls, which operations this web service provide.

Manuscript received January 09, 2012; revised January 16, 2012.

Panya Boonyakulsrirung is with Department of Computer Engineering,

Faculty of Engineering, Chulalongkorn University, Bangkok Thailand (e-

mail: panya.javamania@gmail.com).

Taratip Suwannasart is with Department of Computer Engineering,

Faculty of Engineering, Chulalongkorn University, Bangkok Thailand (e-

mail: taratip.s@chula.ac.th).

Nowadays various enterprises are developing more

complicate, therefore, web services no longer meet

requirements. Thus, Web Service Execution Business

Process Execution Language (WS-BPEL) [6], which is also

an XML document, are proposed to support more structure

and more complex business processes. These advantages

allow many applications integrate and cooperate with each

other effectively.

Mutation testing has become a prominent testing strategy

for thirty years ago and trends to increase in the future [7].

Mutation testing is performed by feeding a fault into a

program. Then the program becomes a mutated program or a

mutant. Test data or test cases are run against the mutant and

the results between the original program and the mutant are

compared. If the results of the original program and the

mutant are the same, the mutant is dead, otherwise it is live.

We must create new test cases or test data to kill the mutant.

If the mutant cannot be killed by any test cases, the mutant is

called the equivalent mutant. Weak Mutation Testing is

another category of mutation testing which considers only a

component in the program in order to decrease the

computational cost.

There are numbers of researches has focused on testing

web services. Natthapol and et al [8] defined expression

mutation operators for WS-BPEL in selective mutation

testing and developed an environment to support selective

mutation testing technique for WS-BPEL. Antonia Estero-

Botaro and et al [9] defined more three categories of

mutation operators for WS-BPEL. Those are Identifier

Mutation Operator, Activity Mutation Operators, as well as

Exceptional and Event Mutation Operators.

Both two researches that mentioned above has focused on

strong mutation testing, but Boonyakulsrirung P. and et al

[1] proposed a weak mutation testing framework for WS-

BPEL and also analyzed all categories of mutation operators

proposed by [9], [10]. We concluded that there are twenty-

six mutation operators that can be used in weak mutation

technique for WS-BPEL.

We continue our on-going research by developing a weak

mutation tool for WS-BPEL. In this paper, we propose the

tool called WeMuTe that allows testers uploading WS-

BPEL as an original program, selecting mutation operators,

generating mutants from the uploaded original WS-BPEL

program, uploading test cases, running test cases against the

original program and mutants, as well as making live, killed,

and equivalent mutants.

In section II, we give a brief description of WS-BPEL.

Section III and IV illustrate mutation testing and weak

mutation testing, respectively. We propose our weak

WeMuTe – A Weak Mutation Testing Tool for

WS-BPEL

Panya Boonyakulsrirung and Taratip Suwannasart

M

mutation tool in section V and the implementation in section

VI. Section VII describes our experiments and results.

Finally, our conclusions and future work are presented in

Section VIII.

II. WS-BPEL LANGUAGE

Web Service Business Process Execution Language (WS-

BPEL) is used for defining business processes, orchestrating

web services to work together to produce more complex and

structure software. WS-BPEL consists of two types of

activity as describe below:

First, the basic activity includes assign, invoke, receive,

and reply. The assign activity is used for copying from a

variable to another. The invoke activity invokes with web

service partner with ant operation. The receive activity

receives the message from the outside process. The reply

activity replies a message to outside process.

Second, the structure activity includes if-Else, flow,

forEach, pick, repeatUntil, sequence, while. The if-Else

activity provides conditional behavior. The flow activity

provides concurrency and synchronization. The flow activity

is completed when all child activities within the flow are

executed. The forEach activity provides a scenario that

needs to interact with a set of partners in parallel, and the

partners are dynamically examined at runtime. The pick

activity waits for the occurrence of precisely one event from

a group of events, and then executes the activity related with

that event. The repeatUntil activity provides repeated

execution of a group of activities. The child activity is

executed until the Boolean expression or statement becomes

true. The sequence activity provides a sequential activity that

contains child activity with a specific order. The while

activity is the same as repeatUntil activity but it checks

Boolean statement at first before executing the child activity.

III. MUTATION TESTING

Mutation Testing [11], [12], [13], [14], [15] is fault-

seeding method to generate a mutated program from an

original program. Then, both original and mutated programs

are executed against test cases or test data. The original

program is mutated based on mutation operators. There are

many categories of mutation operators, for example

arithmetic expression mutation operators, and relational

expression mutation operators. The arithmetic expression

mutation operators is used by replacing an arithmetic

operator (+, -, *, /, %) in an expression or a statement with

another one. The relational expression mutation operator

create mutants by replacing a relational operator (=, !=, <, >,

<=, >=) in expression or statement by another one.

We consider if the mutant is killed by comparing its

results with the original program. If the results of the mutant

are different from the original program with same input data,

the mutant will killed. Otherwise, the mutant is live. There is

another type of mutant called equivalent mutant which

produces outputs that are the same as the original program.

Mutation testing is not used only for generating mutants,

but is also used for assisting testers to improve their test

cases by considering a measurable value called mutation

score (MS) which represents a ratio of dead mutants (D)

divided by a difference total mutants (T) and equivalent

mutants (E) as shown in Equation (1) belows:


ET

D
MS




(1)

IV. WEAK MUTATION TESTING

This analysis method is another kind of mutation testing

[16], [17], [18] with the same concept by feeding fault in a

program and considering only the results of the component

around the fault. Offut and et al [19], [20] proposed four

types of components which can be considered when we want

to create a mutant. The components can be considered as

locations of a program that the fault can be seeded and the

results can be compared. These components or locations are

illustrated as follows:

1) EX-WEAK/1 (Expression-WEAK/1 execution) Mutation

The result of the expression that is surrounded with the

mutation operator is compared with the result of the

expression of the original program. For example, the original

innermost expression is A = (B - C) * D and the expression

of the mutant is A = (B + C) * D. Subsequently, the

execution of innermost expression value of (B - C) and (B +

C) must be compared.

2) ST-WEAK/1 (Statement-WEAK/1 execution) Mutation

The result of the first execution of the mutated statement

is compared with the result of the statement in the original

program. For instance, the original statement is ((X != Y)

&& (Y == Z) && (X != 0)) and the mutant is ((X == Y) &&

(Y==Z) && (X != 0)). The value of both statements would

be compared after the first execution.

3) BB-WEAK/1 (Basic-Block-WEAK/1 execution) Mutation

The third type focuses on a basic-block as a maximal

sequence of instructions with one entry and one exit in a

program which is the biggest component. Basic block in

WS-BPEL language can consider as activities including

forEach, repeatUntil, and while. After the first execution of

basic block is finished, values or some variables in the block

would be compared between the original and the mutated

block.

4) BB-WEAK/N (Basic-Block-WEAK/N execution) Mutation

Last type of weak mutation technique is BB-WEAK/N

which is similar to BB/WEAK/1 except that it allows

multiple executions of mutated basic-block. The BB-

WEAK/N compares results of executing of each iteration

between the original and the mutated block.

V. WEAK MUTATION TESTING TOOL

In our previous work, we proposed the framework for

weak mutation testing for WS-BPEL. Figure 1 illustrates our

framework, which is composed of seven components: BPEL

Validator, Mutant Generator, Mutant Controller, State

Comparator, Execution timer, Mutation Score Calculator,

and Test Cases Effectiveness Calculator. Functionalities of

each component are described in details in [1].

In this paper, we elaborate an important component:

“State Comparator”, that is responsible for finding the

results of an original program and the mutants generated

using four types of mutation operators mentioned above for

WS-BPEL. The state comparator consists of two sub-

components shown is figure 2 and described as follows:

a) WeMuTe Expression Parser (WEP): This component

considers only an expression and a statement of an original

program and mutants which are from Test Mutant Controller. For

instance, if the original expression is $input.A + $input.B and a

mutant expression is $input.A - $input.B. The state comparator

will retrieve test data to evaluate the original and the mutated

expression and. From the example the test data for A is 5 and for B

is 2. The original expression result is 5 + 2 = 7 and the mutated

result is 5 – 2 = 3. After that, the results are sent to the next sub-

component to be compared.

b) Result Comparison: After WeMuTe Expression

Parser component has already evaluated results of the original and

the mutants, the results are sent to this component to be compared.

If the results are same, it is implicit that the mutants are live. On

the other hand, if the results are different the mutants are killed.

VI. WEMUTE IMPLEMENTATION

The proposed weak mutation tool for WS-BPEL has been

implemented as a Web-based tool called WeMuTe.

WeMuTe allows testers to perform weak mutation testing

technique with WS-BPEL by uploading a WS-BPEL

program, choosing a type of weak mutation analysis,

selecting mutation operators, uploading test cases or test

data, and then WeMuTe will display the results of the

testing. WeMuTe features can be described as follows:

1) Uploading BPEL file UI: This feature allows testers to

browse for upload a zip file which contains BPEL file,

WSDL file, and other optional files such as XML Schema or

XML file as shown in Figure 3.

 2) Select Weak Mutation Analysis Type UI: This page

allows testers to choose a type of weak mutation analysis

and select mutation operators under the chosen weak

mutation analysis type as shown in figure 4. Weak mutation

analysis types that WeMuTe provides are described below

a) Expression Weak – 1: This type considers

identifier and expression operators, which consist of ISV,

EAA, ERR, EEU, ELL, ECC, ECN, EMD, and EMF.

Fig. 1 Overview our framework

Fig. 2 Details State Comparator

Fig.3 Uploading BPEL zip file UI

b) Statement Weak – 1: This type focuses activity

operators and exceptional operators that include AIE, AJC,

APA, APM, XMF, XMC, XMT, XTF, XER, and XEE.

c) Basic-Block Weak – 1: This type considers

additional activity operators that related to iteration such as

AWR, AEL, AFP, ASF, and ASI.

d) Basic-Block Weak – N: This type focuses on the

same mutation operators as Basic-Block Weak – 1.

3) Selecting Test Cases UI: This part permits testers to load

prepared test cases for testing an original program, and

mutants respectively as shown in figure 5.

4) Executing Test Mutant UI: This feature is performed after

weak mutation testing mutants task is finished. A testing

result is displayed as a table shown in table 1 with several

columns that are mutant names, mutant killed, original

expression, mutant expression, result in original expression,

and result mutant in expression.

In this work, we propose the complete WeMuTe tool and

try five more BPEL programs and display summary results

of total mutant for each mutation operators, and summarized

testing results

VII. EXPERIMENTS AND RESULTS

After we have implemented WeMuTe tool with six WS-

BPEL programs which are Triangle, SimpleCalculator,

LoanApproval, ATM, ShopProduct, and TravelReservation.

Figure 6 demonstrates the characteristics of WS-BPEL

programs. There are three values for each program which are

Line of Codes, Total Mutants, and Killed Mutants. Details

are described as follow:

- Triangle program generated the most numbers of

mutants than others because Triangle program

contains much more statements and expressions than

other programs.

- On the other hand, the programs except Triangle are

not much emphasized on logic checking. Logic

checking activities in WS-BPEL includes if, while,

and repeatUntil. Therefore, numbers of produced

mutants in SimpleCalculator, LoanApproval, ATM,

ShopProduct, and TravelReservation programs are

significantly less than Triangle.

Figure 7 shows another results of testing, there are

Execution Time, Mutation Score, and Test Cases

Effectiveness. Explanations are described below:

- Obviously, Triangle program has more computational

cost than others because the program produces many

expression and statement mutants.

Accidentally, mutation score and test cases effectiveness

are in the same line due to we use one test suite in our testing

tool.

Fig. 4 Selecting Weak Mutation Analysis Type UI

Fig. 5 Selecting Test Cases UI

Fig. 6 Summary of Experiment I

Fig. 7 Summary of Experiment II

VIII. LIMITATIONS

Although, the tool can automatically produce mutants and

support all four type of weak mutation techniques. Our tool

also has some restrictions below:

- The tool now generates test cases manually. Tester

needs to create own test data and places it in a

specified location.

- Even though WeMuTe can generate many mutants

from WS-BPEL programs against four types of

mutation analysis, it can now use only one test suite.

- WeMuTe now cannot identify equivalent mutants.

IX. CONCLUSIONS AND FUTURE WORKS

This paper proposes a weak mutation testing tool for WS-

BPEL called WeMuTe. We have designed and developed

WeMuTe from our proposed framework in the previous

work. Our weak mutation tool covers all types of weak

mutation analysis techniques. This tool is still our on-going

work. We have experienced the tool with six WS-BPEL

programs.

In section V, we re-introduce overall image of WeMuTe

and deep down into WeMuTe Expression Parser functions.

In section VI, we demonstrate some user interfaces of

WeMuTe tool and brief detail for each component one by

one.

We give the results of weak mutation techniques and

explain some different information among the WS-BPEL

processes in section VII.

In section VIII, we explain about constraints of our tool

and expect to improve the functions hereafter.

For our future works, we plan to continue solving some

difficulties, improving tool performance, and to experience

with more complex WS-BPEL programs.

REFERENCES

[1] Panya Boonyakulsrirung and Taratip Suwannasart, “A Weak
Mutation Testing Framework for WS-BPEL,” Computer Science and
Software Engineering (JCSSE), 2011 Eighth International Joint
Conference on Date:11-13 May 2011, pp. 313-318.

[2] OASIS Standard, “Reference Model for Service Oriented
Architecture 1.0”, 12 October 2006, http://docs.oasis-open.org/soa-
rm/v1.0/

[3] W3C Recommendation, “Extensible Markup Language (XML) 1.0
(Fifth Edition)”, 26 November 2008, http://www.w3.org/TR/REC-
xml/J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd
ed., vol. 2. Oxford: Clarendon, 1892, pp.68–73.

[4] W3C Recommendation, “SOAP Version 1.2 Part 0: Primer (Second
Edition)”, 27 April 2007, http://www.w3.org/TR/2007/REC-soap12-
part1-20070427/.

[5] W3C Recommendation, “Web Services Description Language
(WSDL) Version 2.0 Part 1: Core Language”, 26 June 2007,
http://www.w3.org/TR/2007/REC-wsdl20-20070626/.

[6] OASIS, “Web Services Business Process Execution Language 2.0”,
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html, 2007,
Organization for the Advancement of Structured Information
Standards.

[7] Y. Jia and M. Harman, “An Analysis and Survey of the Development
of Mutation Testing”, CREST Center. King’s College, London, Tech.
Rep. TR-09-06, 2009.

[8] Natthapol Thaisakonpun and Taratip Suwannasart, “Mutation Testing
for Expression Modification Operator of BPEL” Software
Engineering Laboratory, Center of Excellence in Software
Engineering, Faculty of Engineering, Chulalongkorn University,
Bangkok, Thailand.

[9] Antonia Estero-Botaro, Francisco Palomo-Lozano, and Inmaculada
Medina-Bulo, “Quantitative Evaluation of Mutation Operators for
WS-BPEL Compositions” Department of Computer Languages and
Systems, University of C?adiz, C?adiz, Spain.

[10] A. Estero-Botaro, F. Palomo-Lozano, and I. Medina-Bulo,“Mutation
operators for WS-BPEL 2.0,” in ICSSEA 2008: 21th International
Conference on Software & Systems Engineering and their
Applications, Paris, France, 2008.

[11] H. Agrawal, R. Demillo, R. Hathaway, W. Hsu, W. Hsu, E. Krauser,
R. J. Martin, A. Mathur, and E. Spafford, “Design of mutant
operators for the C programming language,” Software

Engineering Research Center, Department of Computer Science,
Purdue University, Indiana, Tech. Rep. SERC-TR-41-P, 1989.

[12] K. N. King and A. J. Offutt, “A FORTRAN language system for
mutation-based software testing,” Software – Practice and
Experience, vol. 21, no. 7, pp. 685–718, 1991.

[13] A. J. Offutt, J. Voas, and J. Payne, “Mutation operators for Ada,”
Information and Software Systems Engineering, George Mason
University, Tech. Rep. ISSE-TR-96-09, 1996.

[14] J. Tuya, M. J. Su?arez Cabal, and C. de la Riva, “Mutating database
queries,” Information and Software Technology, vol. 49, no. 4, pp.
398–417, 2007.

[15] A. Derezi?nska, “Quality Assessment of Mutation Operators
Dedicated for C# Programs,” in QSIC 2006: Sixth International
Conference on Quality Software. Beijing, China: IEEE,Computer
Society, 2006, pp. 227–234.

[16] W. E. Howden. “Weak Mutation Testing and Completeness of Test
Sets”, IEEE Transactions on Software Engineering, 8(4):371-379,
July 1982.

[17] M. R. Girgis and M. R. Woodward. 1985. “An integrated system for
program testing using weak mutation and data flow analysis”. In
Proceedings of the 8th international conference on Software
engineering (ICSE '85). IEEE Computer Society Press, Los Alamitos,
CA, USA, 313-319.

[18] Mike Papadakis and Nicos Malevris, “Metallaxis: An Automated
Framework for Weak Mutation” , Department of Informatics, Athens
University of Economics and Business Athens, Greece.

[19] A. Jefferson Offutt, and Stephen D. Lee, “An Empirical Evaluation of
Weak Mutation”, Department of Information and Software Systems
Engineering, George Mason University, Fairfax, VA 22030, Stephen
D. Lee, IBM Corporation A00/062, P.O. Box 12195, Research
Triangle Park, NC 27709, February 24, 1996.

[20] A. Jefferson Offutt and Stephen D. Lee. 1991, “How strong is weak
mutation?”, In Proceedings of the symposium on Testing, analysis,
and verification (TAV4). ACM, New York, NY, USA, 200-213.
DOI=10.1145/120807.120826,
http://doi.acm.org/10.1145/120807.120826.

Author Photographs

Taratip Suwannasart received Ph.D. degree in

computer science at the Illinois Institute of

Technology in 1996. She is working as an

association professor in the Department of

Computer Engineering, faculty of Computer

Engineering at Chulalongkorn University. Her

research interests are software engineering

especially software testing and software quality

assurance.

Panya Boonyakulsrirung graduated with

Bachelor's degree in Electrical Communication

Engineering at Kasetsart University in 2005.

He is studying his Master degree in Software

Engineering in the Department of Computer

Engineering, faculty of Computer Engineering

at Chulalongkorn University. His research

interests are software engineering particularly

software testing and software quality

assurance.

