
Short-Term Load Forecasting Using Artificial
Neural Network

Muhammad Buhari, Member, IAENG and Sanusi Sani Adamu

Abstract--Artificial neural network (ANN) has been used for
many years in sectors and disciplines like medical science,
defence industry, robotics, electronics, economy, forecasts, etc.
The learning property of ANN in solving nonlinear and
complex problems called for its application to forecasting
problems. This report present the development of an ANN
based short-term load forecasting model for the 132/33KV sub-
Station, Kano, Nigeria. The recorded daily load profile with a
lead time of 1-24 hours for the year 2005 was obtained from the
utility company. The Levenberg-Marquardt optimization
technique which has one of the best learning rates was used as
a back propagation algorithm for the Multilayer Feed Forward
ANN model using MATLAB® R2008b ANN Toolbox.
Experiences gained during the development of the model
regarding the selection of the input variables, the ANN
structure, and the training parameters are described. The
forecasted next day 24 hourly peak loads are obtained based on
the stationary output of the ANN with a performance Mean
Squared Error (MSE) of ૞. ૡ૝ିࢋ૟ and compares favorably
with the actual Power utility data. The results have shown that
the proposed technique is robust in forecasting future load
demands for the daily operational planning of power system
distribution sub-stations in Nigeria.

Index Terms---Short term load forecasting, artificial neural

networks based Levenberg-Marquardt back propagation
algorithm.

I. INTRODUCTION

Electric load demand is a function of weather variables
and human social activities, industrial activities as well as
community developmental level to mention a few [2-7].
Statistical techniques and Expert system techniques have
failed to adequately address this issue [2-10]. The daily
operation and planning activities of an electric utility
requires the prediction of electricity demand of its
customers. In general, the required load forecasts can be
categorized into short-term, mid-term, and long-term
forecasts. The short-term forecasts refer to hourly prediction
of the load for a lead time ranging from one hour to several
days out. The mid-term forecasts can either be hourly or
peak load forecasts for a forecast horizon of one to several
months ahead. Scheduling of fuel purchases, load flow
studies or contingency analysis, and planning for energy,
while the long-term forecasts refer to forecasts made for one
to several years in the future. The quality of short-term
hourly load forecasts has a significant impact on the
economic operation of the electric utility since decisions
such as economic scheduling of generating capacity,
transactions such as ATC (Available Transmission
Capacity) are based on these forecasts and they have
significant economic consequences.

 Manuscript received September 26, 2011: revised October 09, 2011

Muhammad Buhari is with Bayero University, Kano, P.M.B 3011 Kano,
Nigeria, as an Assistant Lecturer, mobile: +2348065533305;
muhdbuhari@gmail.com. Sanusi Sani Adamu is also with Bayero
University, Kano, P.M.B 3011 Kano, Nigeria, as a senior lecturer;
adamus1664@buk.edu.ng

The need for accurate load forecasts will increase in the
future because of the dramatic changes occurring in the
structure of the utility industry due to deregulation and
competition. This environment compels the utilities to
operate at the highest possible efficiency, which, as
indicated above, requires accurate load forecasts [1].
For decades the problem of improving the accuracy of load
forecasts has been an important topic of research. Various
types of load forecasting methodologies as reported in [1]
have their own advantages. Load forecasting can be
performed using many techniques such as regression
analysis, statistical methods, artificial neural networks,
genetic algorithm, fuzzy logic etc. Short Term load
Forecaster (STLF) studies began at early 1960s with one of
the first studies done by Heinemann et al. in 1966 which
dealt with the relationship between temperature and load
[10]. In 1971, a load forecasting system was developed by
Lijesen and Rosing which used statistical approach [11]. In
1987, Hagan and Behr forecasted load using a time series
model [9]. The time series approach assumes that the load of
at any time depends mainly on previous load patterns. Like
the autoregressive-moving average models [2] and spectral
expansion technique [3], the regression method utilizes the
tendency that the load pattern has a strong correlation to
weather pattern [4, 5]. The weather sensitive portion of the
load is arbitrarily extracted and modeled by a predetermined
functional relationship with weather variables. The
statistical methods, such as autoregressive moving average,
linear regression, stochastic time series, and general
exponential smoothing involves the use of hard computing
techniques based on the exact model of the system and
utilize linear analysis [2]. However, they have limited ability
to capture non-linear and non-stationary characteristics of
the hourly load series and are not adaptive to rapid load
variations.
From 1990, researchers began to implement different
approaches for STLF other than statistical approach. The
emphasis shifted to the application of various AI techniques
for STLF [7-11]. AI techniques like Neural Network (NN),
Fuzzy NN (FNN), and Expert Systems [6] have been
applied to deal with the non-linearity, huge data sets
requirement in implementing the STLF systems and other
difficulties in modelling of statistical methods used for
application of STLF. Among the AI techniques available,
different models of NNs have received great deal of
attention by the researchers in the area of STLF due to
flexibility in data modelling. In 1991 Park et al. were
among the first group of researchers who chose to use the
ANN approach for STLF [12]. Some group of researchers
implemented STLF systems using hybrid methods. The
study done by Srinivasan et al. in 1995 was an example of
this kind of approach which used a model that consisted of
fuzzy logic and neural network [13].
NNs are able to give better performance in dealing with the
non-linear relationships among the input variables by

learning from training data set [3-5]. A comprehensive
review of the literature on the application of NNs to the load
forecasting was found in [6].Fuzzy Neural Networks (FNN)
[7] and other techniques applying wavelets with NN [8]
have also been tested for STLF. Due of the strong
relationship between outside temperature and electric power
demand (load), most STLF methods are based, at least in
part, on temperature [17]. Often the performance of STLFs
as reported in the literature is evaluated using actual
temperatures that can only be known after the fact.
However, when the STLF is actually used at a utility, these
future temperatures are not known and forecasts have to be
used instead. Among the ANN-based load forecasters
discussed in published literature, ANNSTLF-artificial neural
network short term load forecaster is the only one that is
implemented at several sites and thoroughly tested under
various real-world conditions [1]. An important aspect of
ANNSTLF is that a single architecture with the same input-
output structure can be used for modeling hourly loads of
various size utilities in different regions of a country. The
only customization required is the determination of some
parameters of the ANN models. No other aspects of the
models need to be altered [1].
This work involves the design of an ANNSTLF model for
the 132/33KV substation Kano in order to obtain accurate
forecasts of the load for a 24 hour period of the next day in
advance by training the neural network with previous load
data and daily average temperatures to produce a 24 hours
load forecast which is necessary for the operational planning
of the power system utility company. And in order to
determine the connection weights between the neurons, the
Levernberg Marquardt back-propagation algorithm available
from Matlab-R2008b ANN toolbox was used. The network
was trained with load data of year 2005 which was obtained
from the Power utility Kano.
The paper begins with an introduction to STLF followed by
a description of the designed neural network model. The
paper concludes with a discussion of the results and a
comparison with the actual data obtained from the power
utility.

II. DESIGN OF THE NEURAL NETWORK MODEL

This section describes the step by step procedures for
training the neural network to learn from the Year 2005
hourly load data and average temperatures of Kano (Table
1), in order to forecast next day's load demand. The Matlab
ANN toolbox was utilized in designing the network
architecture. The Multilayer Feedforward Network
architecture with two layers was designed. The layers
include the Hidden layer and the output layer. The input
consists of daily 24 hour load data for 12 months of the year
2005 and daily average maximum temperature altogether
making 25 inputs rows by 365 days. The output layer will be
a day's 24 hours load forecast for the utility company. The
Target data is the same as the input's daily 24 hours load
data. The Transfer function used in the two layers is the log-
sigmoid function for the hidden layers and the Purelin
function at the output layers; this is to enable the network to
be able to take care of any non-linearities in the input data
and at the output, to be able to give a wide range of values.
However, there is no theoretical approach to calculate the
appropriate number of hidden layer nodes. This number was
determined using a similar approach for training epochs i. e.

by examining the Mean squared error (MSE) over a
validation set for a varying number of hidden layer nodes
whereupon a number yielding the smallest error was
selected. The pattern of connectivity characterizes the
architecture of the network. A unit in the output layer
determines its activity by following a two step procedure
[14]. First, it computes the total weighted input ௝ܺ, using the
formula in equation 1.

௝ܺ ൌ ෍ݕ௜ ௜ܹ௝ ……………ሺ1ሻ

௜

Where ݕ௜ is the activity level of the ௜ܹ௝ th unit in the
previous layer and ௜ܹ௝ is the weight of the connection
between the I th and the jth unit. Next, the unit calculates the
activity ݕ௝ using some function of the total weighted input.
Typically we use the sigmoid function in equation 2.

௝ݕ ൌ
ଵ

ଵା௘
షೣೕ

…………… . ሺ2)

Once the activities of all output units have been determined,
the network computes the error E, which is defined by the
expression in equation 3.

ܧ ൌ
1

2
෍ሺݕ௜ െ ݀௜ሻ

ଶ …………… . ሺ

௜

3ሻ

Where ݕ௝ is the activity level of the jth unit in the top layer
and ௝݀ is the desired output of the jth unit. The Levenberg
Marquardt (lm) back-propagation algorithm consists of six
computational steps as described below:

1. It computes how fast the error changes as the activity of
an output unit are changed. This error derivative (EA) is the
difference between the actual and the desired activity
(equation 4).

௝ܣܧ ൌ
ܧ߲

௝ݕ߲
ൌ ௝ݕ െ ௝݀ …………… . . ሺ4ሻ

2. It then computes how fast the error change as the total
input received by an output unit is changed. This quantity
(EI) is the answer from step 1 multiplied by the rate at
which the output of a unit changes as its total input is
changed (equation 5).

௝ܫܧ ൌ
ܧ߲

௝ݔ߲
ൌ
ܧ߲

௝ݕ߲
ൈ
௝ݕ݀

௝ݔ݀
ൌ ௝൫1ݕ௝ܣܧ െ …௝൯ݕ . . ሺ5ሻ

3. It then computes how fast the error changes, as a weight
on the connection into an output unit is changed. This
quantity (EW) is the answer from step 2 multiplied by the
activity level of the unit from which the connection
emanates (equation 6).

ܧ ௜ܹ௝ ൌ
డா

డௐ೔ೕ
ൌ

డா

డ௫ೕ
ൈ

ௗ௫ೕ

ௗௐ೔ೕ
ൌ ௝ݕ௝ܫܧ …… . . ሺ6)

4. It then computes how fast the error change as the activity
of a unit in the previous layer is changed. This crucial step

allows back propagation to be applied to multilayer
networks. When the activity of a unit in the previous layer
changes, it affects the activities of all the output units to
which it is connected. So to compute the overall effect on
the error, we add together all these separate effects on output
units. But each effect is simple to calculate. It is the answer
in step 2 multiplied by the weight on the connection to that
output unit (equation 7).

௝ܣܧ ൌ
ܧ߲

௝ݕ߲
ൌ෍

ܧ߲

௝ݔ߲
ൈ
௝ݔ݀

௝ݕ݀
௝

ൌ෍ܫܧ௝ ௜ܹ௝ …… ሺ7ሻ

௝

By using steps 2 and 4, we can convert the EAs of one layer
of units into EAs for the previous layer. This procedure can
be repeated to get the EAs for as many previous layers as
desired. Once the EA of a unit is known, we can use steps 2
and 3 to compute the EWs on its incoming connections.

5. It then advances to compute the H matrix (equation 8) and
the gradient (equation 9). These are necessary in order to
approach second-order training speed without having to
compute the Hessian matrix. The performance function has
the form of a sum of squares (MSE) and as such the Hessian
matrix can be approximated as given in equation 8

ܪ ൌ ܬ்ܬ …………………… . ሺ8)

and then the gradient can be computed using equation 9 as
follows:

݃ ൌ ………………………்݁ܬ . ሺ9ሻ

where J is the Jacobian matrix that contains first derivatives
of the network errors with respect to the weights and biases,
and e is a vector of network errors. The Jacobian matrix can
be computed through a standard back propagation technique
that is much less complex than computing the Hessian
matrix.

6. Finally, the Levenberg Marquadt- lm algorithm uses this
approximation to the Hessian matrix in the following
Newton-like update (equation 10).

௞ାଵݔ ൌ ௞ݔ െ ሾ ܬ்ܬ ൅ ……்݁ܬሿିଵ ܫߤ ሺ10ሻ

Where ݔ௞ାଵ is the updated value of the network weight or
bias and ݔ௞ is the current weight or bias value. When the
scalar µ is zero, this is just Newton's method, using the
approximate Hessian matrix. When µ is large, this becomes
gradient descent with a small step size. Newton's method is
faster and more accurate near an error minimum, so the aim
is to shift toward Newton's method as quickly as possible.
Thus, µ is decreased after each successful step (reduction in
performance function) and is increased only when a
tentative step would increase the performance function. In
this way, the performance function will always reduce in
successive iterations of the algorithm.

III. THE NEURAL NETWORK TRAINING PROCESS

The Training goal was set at 0 so as to ensure zero tolerance
to network computational errors. The transfer functions used
were the log-sigmoid or tan-sigmoid in the Hidden layer
neurons while the Purelin function was used in the output
layer neurons so as not to constrain the output's values. The
learning function used is the default steepest gradient
descent method. The Levenberg-Marquardt learning
function was used as it has a better learning rate compared
to the other available functions in forecasting problems [18].
The training function used was the steepest gradient descent
function and in some tests the steepest gradient descent
method with momentum. The maximum number of epochs
was set to 1000 which is the default value. Finally, the
learning rate was also set to the default value and left to
adjust automatically as the training made progress.

IV. DISCUSSION OF TRAINING RESULTS

This section is an explanation of the results obtained from
the trained ANN model. These include the regression
analysis plots between the output and target vectors, the
general network error performance and the training state.
After the successful completion of the training process three
plots were made which include:

i. The regression plots
ii. The performance function Vs epochs plot

iii. The training state plot
iv. The Forecast and Actual Data comparison Plot

Basically the input data set was divided into three: 70% was
used for as training set while 15% each was used for testing
and validation of the network output results. The training
data set is necessary for obtaining the neural network's
weight and bias values during network training. The
validation data set is used to periodically test the ability of
the network to generalize. Finally, the test data set is used in
the evaluation of generalization error (i.e. MSE). Table 1
shows a sample of the input vectors of the 24 hourly load
profiles for 365 days. Table 1 also shows a sample of the
average maximum temperatures of the Kano sub-region.

i. The regression plot consists of four regression
analysis plots; the first is a plot of the computed
network output of the training data set Vs the target
output, the second is that of validation data output
Vs target output. The third is that of the Test data
output set against the target output. The final plot is
that of the overall network output data set Vs the
target data set. All these plots try to show the co
relation between the output data and the target data.
They give an idea on the accuracy of the trained
network will forecast since they show how well the
network has learned the complex relationship of the
input data.

ii. The Performance function (MSE) Vs number of
epochs plot describes the plot of the mean squared
error against the number of training epochs. It also
shows the learning trend and computational error
improvement as the number of iterations increases.
From the plot it can be concluded that the network
was trained to zero error. Table 1 show that as the

number of iterations increased (training epochs) so
did the errors reduces up to a best value of 5.84݁ି଺
at 1000 Epochs. This shows that the trained neural
network forecast error is expected to be at about
5.84݁ି଺ of any input figures. This is obviously
negligible and the network can be said to have
successfully learned any complex and non linear
relationship that was presented by the input data.

iii. The training state plot will consist of three different
plots. The first plot is that of learning function Vs
number of epochs. This shows the trend of the
gradient values as the number of computational
iterations increases. This is necessary in monitoring
the manner in which the training progresses. The
second plot is that of the learning rate (mu) against
increasing number of epochs. This plot is essential
in monitoring the rate at which the computed
network error reduces during the progress of the
training. The final plot here is that of the validation
checks carried out automatically any time a sudden
change is observed in the network gradient
computation is carried out.

Finally, the trained network optimized weights for each of
the two layers (hidden layer and output layer) and connected
biases that gave the best network output-target data
relationship were documented.
As mentioned earlier the choice of the number of hidden
layer neurons, layer transfer function(s), training function,
learning function, network architecture and other network
and training parameters is a trial and error approach until the
best set is attained. Table 2 shows a set of trial network
parameters and their results. The input data used to obtain
the tabulated results is a two year 24 hourly load data. The
target data is the same as the input data set but without the
average maximum daily temperatures. Also Table 2 shows
that the higher the number of hidden neurons the better the
MSE performance result. Due to the random nature of the
input vectors the learning duration was much longer and
better MSE performance was recorded when the log-
sigmoid function was used in the Hidden layer neurons
compared to when the tan-sigmoid transfer function was
used in the network architectures. This may be attributed to
the output values of the transfer function i. e. it can take on
any value between plus and minus infinity, and squashes the
output into the range 0 to 1. It was also observed that the
network converged faster with better performance whenever
the training was carried out with a larger data set as shown
in the Table 2.
Furthermore, the data set is not pattern oriented because of
the unavailability of enough power for distribution to
consumers. The main reason is that the power demand of the
Kano sub-region far exceeds the supply. The cases of
special days like public holidays and festivities had little
impact on the training process because of the peculiarity of
the pattern of the data set.

V. COMPARISON OF SIMULATED RESULTS

The simulated results of the developed model were found to
be exactly the same as those obtained from the Power Utility
with a performance error of5.84݁ି଺, Figure 7 shows the
Comparison between actual and forecast loads for 1st
January, 2005 and Table 3 shows a comparison between the

actual data obtained from Power utility which is very close
to the results obtained from the trained neural network
model output data sets.

VI. CONCLUSIONS
A load forecasting model was designed using Matlab
R2008b ANN Toolbox. The implementation of the network
architecture, training of the Neural Network and simulation
of test results were all successful with a very high degree of
accuracy resulting into 24 hourly load output. A set of
optimized weights and the associated biases after training
the network from load data obtained from the power utility
company were also obtained. The accuracy of the forecasts
was verified by comparing the simulated outputs from the
network with obtained results from the utility company.
Several networks architectures were trained and simulated
before arriving at the best Mean squared error performance
of 5.84݁ି଺.

REFERENCES

[1] Khotanzad, A., Afkhami-Rohani, R., and Maratukulam, D.,

ANNSTLFArtificial neural network shortterm load forecaster-
generation three, IEEE Trans. on Power Syst., 13, 4, 1413–1422,
November, 1998.

[2] I. Moghram and S. Rahman, “Analysis and evaluation of five short
termload forecasting techniques,” IEEE Trans. Power Syst., vol. 4,
no. 4, pp. 1484–1491, Nov. 1989.

[3] C.N. Lu, H.T. Wu, and S. Vemuri, “Neural network based short term
load forecasting,” IEEE Trans. Power Syst., vol. 8, no. 1, pp. 336–
342, Feb. 1993.

[4] J.W. Taylor and R. Buizza, “Neural network load forecasting with
weather ensemble predictions,” IEEE Trans. Power Syst., vol. 17, no.
3, pp. 626–632, Aug. 2002.

[5] P. Mandal, T. Senjyu, N. Urasaki, and T. Funabashi, “A neural
network based several-hour-ahead electric load forecasting using
similar days approach,” Int. Journal. of Electric Power and Energy
System, vol. 28, no. 6, pp. 367–373, July 2006.

[6] H.S. Hippert, C.E. Pedreira, and R.C. Souza, “Neural networks for
short term load forecasting: A review and evaluation,” IEEE Trans.
Power Syst., vol. 16, no. 1, pp. 44–55, Feb. 2001.

[7] A.G. Bakirtzis, J.B. Theocharis, S.J. Kiartzis, and K.J. Satsois, “Short
term load forecasting using fuzzy neural networks” IEEE Trans.
Power Syst., vol. 10, no. 3, pp. 1518–1524, Aug. 1995.

[8] J. Rocha Reis and A.P. Alves da Silva, “Feature extraction via
multiresolution analysis for short-term load forecasting,” IEEE Trans.
Power Systems, vol. 20, no. 1, pp. 189–198, Feb. 2005.

[9] M. T. Hagan, S. M. Behr. "The time series approach to short term
load forecasting", IEEE Transactions on Power Systems, vol.2, no.3,
pp.785-791, Aug. 1987

[10] G. T. Heinemann, D. A. Nordmian, E. C. Plant. "The relationship
between summer weather and summer loads - a regression analysis",
IEEE Transactions on Power Apparatus and Systems, vol.PAS-85,
no.11, pp.1144-1154, Nov. 1966.

[11] D.P. Lijesen, J. Rosing. "Adaptive forecasting of hourly loads based
on load measurements and weather information'', IEEE Transactions
on Power Apparatus and Systems, vol.PAS-90, no.4, pp.1757-1767,
July 1971

[12] D. C. Park, M. A. El-Sharkawi, R. J. Marks II, L. E. Atlas, M. J.
Damborg. "Electric load forecasting using an artificial neural network
", IEEE Transactions on Power Systems, Vol. 6, no. 2, pp. 442-449,
May 1991.

[13] D. Srinivasan, S. S. Tan, C. S. Cheng, Eng Kiat Chan. ''Parallel neural
network-fuzzy expert system strategy for short-term load forecasting:
system implementation and performance evaluation", IEEE
Transactions on Power Systems, vol.14, no.3, pp.1100-1106, Aug.
1999.

[14] M. Bilgic, C.P. Girep, S.Y. Aslanoglu, M. Aydinalp-Koksal,
''Forecasting Turkey's Short Term Load with Artificial Neural
Networks'', Department of Environmental Engineering, Hacettepe
University, Ankara, Turkey. (e-mail: aydinalp@hacettepe.edu.tr)
2010.

[15] M. Aydinalp-Koksal, A new approach for modeling of residential
energy consumption, VDM Verlag Dr. Muller Aktiengesselschaft &
Co.Kg, Pg 9-19, (2008).

[16] L. V Fausett. Fundamentals of Neural Networks, Prentice-Hall
Englewood Cliffs, (1994)

[17] Khotanzad, A., Davis, M.H., Abaye, A., and Martukulam, D.J., An
artificial neural network hourly temperature forecaster with
applications in load forecasting, IEEE Trans. PWRS, 11, 2, 870-876,
May 1996.

[18] Howard Demuth, Mark Beale, Matlab Neural Network Users Guide 4
[19]''Average monthly Maximum and Minimum temperatures for Kano.”

BBC Weather | Kano Accessed: 26 February 2011.

Table 1: 132/33KV Power Utility Substation, Kano daily
Load Profile data Set for 2005

January (sample data)

 Sat Sun Mon Tue Wed Thu Fri

Time 1st 2nd 3rd 4th 5th 6th 7th

1:00 AM 160 160 160 158 120 130 130

2:00 AM 140 160 160 140 126 120 190

3:00 AM 100 160 160 140 150 130 160

4:00 AM 170 156 166 156 150 140 120

5:00 AM 170 168 182 140 160 150 140

6:00 AM 190 176 180 184 144 140 180

7:00 AM 170 152 202 160 100 150 126

8:00 AM 190 180 240 180 136 120 100

9:00 AM 148 196 160 144 120 130 100

10:00 AM 160 180 170 126 144 100 100

11:00 AM 160 180 110 126 160 180 100

12:00 PM 170 170 150 110 150 0 124

1:00 PM 144 140 170 130 120 120 124

2:00 PM 144 160 170 124 120 130 124

3:00 PM 150 160 150 130 130 180 170

4:00 PM 150 160 150 130 120 120 126

5:00 PM 128 168 164 120 130 132 126

6:00 PM 136 180 140 170 130 128 180

7:00 PM 148 174 140 156 160 160 80

8:00 PM 176 180 164 152 160 170 120

9:00 PM 192 204 174 168 170 166 110

10:00 PM 200 192 156 156 170 140 150

11:00 PM 150 180 156 170 130 140 164

12:00 AM 170 168 152 164 130 126 172

Average Temp. 18 18 18 18 18 18 18

Table 3: Simulation Results Comparison Table

January Comparison Sample

Time Sat Sat Sun Sun Mon Mon

1st 1st 2nd 2nd 3rd 3rd

1:00 AM 160.00 160.00 160.01 160.00 159.96 160.00

2:00 AM 140.00 140.00 160.00 160.00 159.96 160.00

3:00 AM 100.00 100.00 160.00 160.00 159.96 160.00

4:00 AM 170.00 170.00 156.01 156.00 165.98 166.00

5:00 AM 170.00 170.00 168.00 168.00 181.99 182.00

6:00 AM 190.00 190.00 176.00 176.00 179.97 180.00

7:00 AM 170.00 170.00 152.00 152.00 201.96 202.00

8:00 AM 190.00 190.00 180.00 180.00 239.95 240.00

9:00 AM 148.00 148.00 196.00 196.00 159.98 160.00

10:00 AM 160.00 160.00 180.00 180.00 170.01 170.00

11:00 AM 160.00 160.00 180.00 180.00 110.02 110.00

12:00 PM 170.00 170.00 170.00 170.00 149.99 150.00

1:00 PM 144.00 144.00 140.00 140.00 169.97 170.00

2:00 PM 144.00 144.00 160.00 160.00 169.98 170.00

3:00 PM 150.00 150.00 160.00 160.00 149.99 150.00

4:00 PM 149.99 150.00 160.01 160.00 150.01 150.00

5:00 PM 128.00 128.00 168.00 168.00 163.96 164.00

6:00 PM 136.00 136.00 180.00 180.00 139.97 140.00

7:00 PM 148.00 148.00 174.00 174.00 139.98 140.00

8:00 PM 176.00 176.00 180.01 180.00 163.95 164.00

9:00 PM 192.00 192.00 204.00 204.00 173.97 174.00

10:00 PM 200.00 200.00 192.00 192.00 155.95 156.00

11:00 PM 150.01 150.00 180.00 180.00 155.96 156.00

12:00 AM 170.00 170.00 168.00 168.00 151.93 152.00

Table 2: Training Results Sample (2-layers of Logsig and purelin function neural network)

Data qty Hidden

Neurons
learn fnc Training MSE Gradient Learning

Rate
Epoch Duration Reason

1yr * 4 2 learngd trainlm 452 18.5 0.1 49 00:20:00 val stop

1yr * 4 3 learngd trainlm 455 0.03 0 1000 00:05:35 max epoch

1yr * 4 4 learngd trainlm 289 0.02 0.01 837 06:00:00 user stop

1yr * 4 5 learngd trainlm 248 9.04 0.1 22 00:57:00 val stop

1yr * 4 6 learngd trainlm 209 1.23 100 143 07:41:00 val stop

1yr * 4 7 learngd trainlm 187 0.03 0.1 463 06:56:00 user stop

1yr * 4 8 learngd trainlm 159 0.72 10 87 06:43:00 val stop

1yr * 4 9 learngd trainlm 136 2.02 0.01 112 08:54:00 user stop

1yr * 4 10 learngd trainlm 120 12.7 0.1 40 02:59:00 val stop

1yr * 4 12 learngdm trainlm 118 0.21 10 40 00:02:55 val stop

1yr * 4 13 learngdm trainlm 71.8 1.69 10 130 00:12:41 val stop

1yr * 4 14 learngdm trainlm 59.5 22.4 0 47 00:04:55 val stop

1yr * 4 15 learngdm trainlm 48.4 0.11 1 135 00:16:02 user stop

1yr * 4 16 learngdm trainlm 39.4 0.05 10 74 00:10:26 user stop

1yr * 4 18 learngdm trainlm 26.4 3.59 1000 54 00:07:59 user stop

1yr * 4 20 learngdm trainlm 14.4 1.06 100 63 00:14:02 user stop

1yr * 4 25 learngdm trainlm 0 0 0.01 1000 03:52:38 max epoch

1yr 25 learngdm trainlm 0 0.03 0.01 714 01:06:44 val stop

1yr 25 learngdm trainlm 0 0.01 0 1000 01:15:16 max epoch

Figure 7: Comparison Plot between actual and forecast loads for 1st January, 2005

