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Abstract--Artificial neural network (ANN) has been used for 
many years in sectors and disciplines like medical science, 
defence industry, robotics, electronics, economy, forecasts, etc. 
The learning property of ANN in solving nonlinear and 
complex problems called for its application to forecasting 
problems. This report present the development of an ANN 
based short-term load forecasting model for the 132/33KV sub-
Station, Kano, Nigeria. The recorded daily load profile with a 
lead time of 1-24 hours for the year 2005 was obtained from the 
utility company. The Levenberg-Marquardt optimization 
technique which has one of the best learning rates was used as 
a back propagation algorithm for the Multilayer Feed Forward 
ANN model using MATLAB® R2008b ANN Toolbox. 
Experiences gained during the development of the model 
regarding the selection of the input variables, the ANN 
structure, and the training parameters are described. The 
forecasted next day 24 hourly peak loads are obtained based on 
the stationary output of the ANN with a performance Mean 
Squared Error (MSE) of ૞. ૡ૝ିࢋ૟ and compares favorably 
with the actual Power utility data. The results have shown that 
the proposed technique is robust in forecasting future load 
demands for the daily operational planning of power system 
distribution sub-stations in Nigeria.   

 
Index Terms---Short term load forecasting, artificial neural 

networks based Levenberg-Marquardt back propagation 
algorithm. 

I. INTRODUCTION 
 

Electric load demand is a function of weather variables 
and human social activities, industrial activities as well as 
community developmental level to mention a few [2-7]. 
Statistical techniques and Expert system techniques have 
failed to adequately address this issue [2-10]. The daily 
operation and planning activities of an electric utility 
requires the prediction of electricity demand of its 
customers. In general, the required load forecasts can be 
categorized into short-term, mid-term, and long-term 
forecasts. The short-term forecasts refer to hourly prediction 
of the load for a lead time ranging from one hour to several 
days out. The mid-term forecasts can either be hourly or 
peak load forecasts for a forecast horizon of one to several 
months ahead. Scheduling of fuel purchases, load flow 
studies or contingency analysis, and planning for energy, 
while the long-term forecasts refer to forecasts made for one 
to several years in the future. The quality of short-term 
hourly load forecasts has a significant impact on the 
economic operation of the electric utility since decisions 
such as economic scheduling of generating capacity, 
transactions such as ATC (Available Transmission 
Capacity) are based on these forecasts and they have 
significant economic consequences. 
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The need for accurate load forecasts will increase in the 
future because of the dramatic changes occurring in the 
structure of the utility industry due to deregulation and 
competition. This environment compels the utilities to 
operate at the highest possible efficiency, which, as 
indicated above, requires accurate load forecasts [1].  
For decades the problem of improving the accuracy of load 
forecasts has been an important topic of research. Various 
types of load forecasting methodologies as reported in [1] 
have their own advantages. Load forecasting can be 
performed using many techniques such as regression 
analysis, statistical methods, artificial neural networks, 
genetic algorithm, fuzzy logic etc. Short Term load 
Forecaster (STLF) studies began at early 1960s with one of 
the first studies done by Heinemann et al. in 1966 which 
dealt with the relationship between temperature and load 
[10]. In 1971, a load forecasting system was developed by 
Lijesen and Rosing which used statistical approach [11]. In 
1987, Hagan and Behr forecasted load using a time series 
model [9]. The time series approach assumes that the load of 
at any time depends mainly on previous load patterns. Like 
the autoregressive-moving average models [2] and spectral 
expansion technique [3], the regression method utilizes the 
tendency that the load pattern has a strong correlation to 
weather pattern [4, 5]. The weather sensitive portion of the 
load is arbitrarily extracted and modeled by a predetermined 
functional relationship with weather variables.  The 
statistical methods, such as autoregressive moving average, 
linear regression, stochastic time series, and general 
exponential smoothing involves the use of hard computing 
techniques based on the exact model of the system and 
utilize linear analysis [2]. However, they have limited ability 
to capture non-linear and non-stationary characteristics of 
the hourly load series and are not adaptive to rapid load 
variations.  
From 1990, researchers began to implement different 
approaches for STLF other than statistical approach. The 
emphasis shifted to the application of various AI techniques 
for STLF [7-11]. AI techniques like Neural Network (NN), 
Fuzzy NN (FNN), and Expert Systems [6] have been 
applied to deal with the non-linearity, huge data sets 
requirement in implementing the STLF systems and other 
difficulties in modelling of statistical methods used for 
application of STLF. Among the AI techniques available, 
different models of NNs have received great deal of 
attention by the researchers in the area of STLF due to 
flexibility in data modelling.  In 1991 Park et al. were 
among the first group of researchers who chose to use the 
ANN approach for STLF [12]. Some group of researchers 
implemented STLF systems using hybrid methods. The 
study done by Srinivasan et al. in 1995 was an example of 
this kind of approach which used a model that consisted of 
fuzzy logic and neural network [13]. 
NNs are able to give better performance in dealing with the 
non-linear relationships among the input variables by 



learning from training data set [3-5]. A comprehensive 
review of the literature on the application of NNs to the load 
forecasting was found in [6].Fuzzy Neural Networks (FNN) 
[7] and other techniques applying wavelets with NN [8] 
have also been tested for STLF. Due of the strong 
relationship between outside temperature and electric power 
demand (load), most STLF methods are based, at least in 
part, on temperature [17]. Often the performance of STLFs 
as reported in the literature is evaluated using actual 
temperatures that can only be known after the fact. 
However, when the STLF is actually used at a utility, these 
future temperatures are not known and forecasts have to be 
used instead. Among the ANN-based load forecasters 
discussed in published literature, ANNSTLF-artificial neural 
network short term load forecaster is the only one that is 
implemented at several sites and thoroughly tested under 
various real-world conditions [1]. An important aspect of 
ANNSTLF is that a single architecture with the same input-
output structure can be used for modeling hourly loads of 
various size utilities in different regions of a country. The 
only customization required is the determination of some 
parameters of the ANN models. No other aspects of the 
models need to be altered [1]. 
This work involves the design of an ANNSTLF model for 
the 132/33KV substation Kano in order to obtain accurate 
forecasts of the load for a 24 hour period of the next day in 
advance by training the neural network with previous load 
data and daily average temperatures to produce a 24 hours 
load forecast which is necessary for the operational planning 
of the power system utility company. And in order to 
determine the connection weights between the neurons, the 
Levernberg Marquardt back-propagation algorithm available 
from Matlab-R2008b ANN toolbox was used. The network 
was trained with load data of year 2005 which was obtained 
from the Power utility Kano.  
The paper begins with an introduction to STLF followed by 
a description of the designed neural network model. The 
paper concludes with a discussion of the results and a 
comparison with the actual data obtained from the power 
utility. 
 

II. DESIGN OF THE NEURAL NETWORK MODEL 
 

This section describes the step by step procedures for 
training the neural network to learn from the Year 2005 
hourly load data and average temperatures of Kano (Table 
1), in order to forecast next day's load demand. The Matlab 
ANN toolbox was utilized in designing the network 
architecture. The Multilayer Feedforward Network 
architecture with two layers was designed. The layers 
include the Hidden layer and the output layer. The input 
consists of daily 24 hour load data for 12 months of the year 
2005 and daily average maximum temperature altogether 
making 25 inputs rows by 365 days. The output layer will be 
a day's 24 hours load forecast for the utility company. The 
Target data is the same as the input's daily 24 hours load 
data. The Transfer function used in the two layers is the log-
sigmoid function for the hidden layers and the Purelin 
function at the output layers; this is to enable the network to 
be able to take care of any non-linearities in the input data 
and at the output, to be able to give a wide range of values. 
However, there is no theoretical approach to calculate the 
appropriate number of hidden layer nodes. This number was 
determined using a similar approach for training epochs i. e. 

by examining the Mean squared error (MSE) over a 
validation set for a varying number of hidden layer nodes 
whereupon a number yielding the smallest error was 
selected.  The pattern of connectivity characterizes the 
architecture of the network. A unit in the output layer 
determines its activity by following a two step procedure 
[14]. First, it computes the total weighted input   ௝ܺ, using the 
formula in equation 1. 

௝ܺ ൌ ෍ݕ௜ ௜ܹ௝ ……………ሺ1ሻ

௜

 

 
Where ݕ௜ is the activity level of the ௜ܹ௝ th unit in the 
previous layer and ௜ܹ௝ is the weight of the connection 
between the I th and the jth unit. Next, the unit calculates the 
activity ݕ௝ using some function of the total weighted input. 
Typically we use the sigmoid function in equation 2. 
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Once the activities of all output units have been determined, 
the network computes the error E, which is defined by the 
expression in equation 3. 
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Where ݕ௝  is the activity level of the jth unit in the top layer 
and ௝݀ is the desired output of the jth unit. The Levenberg 
Marquardt (lm) back-propagation algorithm consists of six 
computational steps as described below: 

1. It computes how fast the error changes as the activity of 
an output unit are changed. This error derivative (EA) is the 
difference between the actual and the desired activity 
(equation 4). 

௝ܣܧ ൌ
ܧ߲

௝ݕ߲
ൌ ௝ݕ െ ௝݀ …………… . . ሺ4ሻ 

2. It then computes how fast the error change as the total 
input received by an output unit is changed. This quantity 
(EI) is the answer from step 1 multiplied by the rate at 
which the output of a unit changes as its total input is 
changed (equation 5). 
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3. It then computes how fast the error changes, as a weight 
on the connection into an output unit is changed. This 
quantity (EW) is the answer from step 2 multiplied by the 
activity level of the unit from which the connection 
emanates (equation 6). 
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4. It then computes how fast the error change as the activity 
of a unit in the previous layer is changed. This crucial step 



allows back propagation to be applied to multilayer 
networks. When the activity of a unit in the previous layer 
changes, it affects the activities of all the output units to 
which it is connected. So to compute the overall effect on 
the error, we add together all these separate effects on output 
units. But each effect is simple to calculate. It is the answer 
in step 2 multiplied by the weight on the connection to that 
output unit (equation 7). 
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By using steps 2 and 4, we can convert the EAs of one layer 
of units into EAs for the previous layer. This procedure can 
be repeated to get the EAs for as many previous layers as 
desired. Once the EA of a unit is known, we can use steps 2 
and 3 to compute the EWs on its incoming connections.  

5. It then advances to compute the H matrix (equation 8) and 
the gradient (equation 9). These are necessary in order to 
approach second-order training speed without having to 
compute the Hessian matrix. The performance function has 
the form of a sum of squares (MSE) and as such the Hessian 
matrix can be approximated as given in equation 8  

ܪ ൌ ܬ்ܬ …………………… . ሺ8) 

and then the gradient can be computed using equation 9 as 
follows: 

݃ ൌ ………………………்݁ܬ . ሺ9ሻ 

where J is the Jacobian matrix that contains first derivatives 
of the network errors with respect to the weights and biases, 
and e is a vector of network errors. The Jacobian matrix can 
be computed through a standard back propagation technique 
that is much less complex than computing the Hessian 
matrix.  

6. Finally, the Levenberg Marquadt- lm algorithm uses this 
approximation to the Hessian matrix in the following 
Newton-like update (equation 10).   

௞ାଵݔ ൌ ௞ݔ െ ሾ ܬ்ܬ ൅ ……்݁ܬሿିଵ ܫߤ ሺ10ሻ 

Where ݔ௞ାଵ is the updated value of the network weight or 
bias and ݔ௞ is the current weight or bias value. When the 
scalar µ is zero, this is just Newton's method, using the 
approximate Hessian matrix. When µ is large, this becomes 
gradient descent with a small step size. Newton's method is 
faster and more accurate near an error minimum, so the aim 
is to shift toward Newton's method as quickly as possible. 
Thus, µ is decreased after each successful step (reduction in 
performance function) and is increased only when a 
tentative step would increase the performance function. In 
this way, the performance function will always reduce in 
successive iterations of the algorithm.  

III. THE NEURAL NETWORK TRAINING PROCESS 

The Training goal was set at 0 so as to ensure zero tolerance 
to network computational errors. The transfer functions used 
were the log-sigmoid or tan-sigmoid in the Hidden layer 
neurons while the Purelin function was used in the output 
layer neurons so as not to constrain the output's values. The 
learning function used is the default steepest gradient 
descent method. The Levenberg-Marquardt learning 
function was used as it has a better learning rate compared 
to the other available functions in forecasting problems [18]. 
The training function used was the steepest gradient descent 
function and in some tests the steepest gradient descent 
method with momentum. The maximum number of epochs 
was set to 1000 which is the default value. Finally, the 
learning rate was also set to the default value and left to 
adjust automatically as the training made progress.  
 

IV. DISCUSSION OF TRAINING RESULTS 
 

This section is an explanation of the results obtained from 
the trained ANN model. These include the regression 
analysis plots between the output and target vectors, the 
general network error performance and the training state. 
After the successful completion of the training process three 
plots were made which include:  
 

i. The regression plots 
ii. The performance function Vs epochs plot 

iii. The training state plot 
iv. The Forecast and Actual Data comparison Plot 

 
Basically the input data set was divided into three: 70% was 
used for as training set while 15% each was used for testing 
and validation of the network output results. The training 
data set is necessary for obtaining the neural network's 
weight and bias values during network training. The 
validation data set is used to periodically test the ability of 
the network to generalize. Finally, the test data set is used in 
the evaluation of generalization error (i.e. MSE). Table 1 
shows a sample of the input vectors of the 24 hourly load 
profiles for 365 days. Table 1 also shows a sample of the 
average maximum temperatures of the Kano sub-region.  
 

i. The regression plot consists of four regression 
analysis plots; the first is a plot of the computed 
network output of the training data set Vs the target 
output, the second is that of validation data output 
Vs target output. The third is that of the Test data 
output set against the target output. The final plot is 
that of the overall network output data set Vs the 
target data set. All these plots try to show the co 
relation between the output data and the target data. 
They give an idea on the accuracy of the trained 
network will forecast since they show how well the 
network has learned the complex relationship of the 
input data. 

ii. The Performance function (MSE) Vs number of 
epochs plot describes the plot of the mean squared 
error against the number of training epochs. It also 
shows the learning trend and computational error 
improvement as the number of iterations increases. 
From the plot it can be concluded that the network 
was trained to zero error. Table 1 show that as the 



number of iterations increased (training epochs) so 
did the errors reduces up to a best value of 5.84݁ି଺   
at 1000 Epochs. This shows that the trained neural 
network forecast error is expected to be at about 
5.84݁ି଺  of any input figures. This is obviously 
negligible and the network can be said to have 
successfully learned any complex and non linear 
relationship that was presented by the input data. 

iii. The training state plot will consist of three different 
plots. The first plot is that of learning function Vs 
number of epochs. This shows the trend of the 
gradient values as the number of computational 
iterations increases. This is necessary in monitoring 
the manner in which the training progresses. The 
second plot is that of the learning rate (mu) against 
increasing number of epochs. This plot is essential 
in monitoring the rate at which the computed 
network error reduces during the progress of the 
training.  The final plot here is that of the validation 
checks carried out automatically any time a sudden 
change is observed in the network gradient 
computation is carried out.   

 
Finally, the trained network optimized weights for each of 
the two layers (hidden layer and output layer) and connected 
biases that gave the best network output-target data 
relationship were documented.  
As mentioned earlier the choice of the number of hidden 
layer neurons, layer transfer function(s), training function, 
learning function, network architecture and other network 
and training parameters is a trial and error approach until the 
best set is attained. Table 2 shows a set of trial network 
parameters and their results. The input data used to obtain 
the tabulated results is a two year 24 hourly load data. The 
target data is the same as the input data set but without the 
average maximum daily temperatures. Also Table 2 shows 
that the higher the number of hidden neurons the better the 
MSE performance result. Due to the random nature of the 
input vectors the learning duration was much longer and 
better MSE performance was recorded when the log-
sigmoid function was used in the Hidden layer neurons 
compared to when the tan-sigmoid transfer function was 
used in the network architectures. This may be attributed to 
the output values of the transfer function i. e. it can take on 
any value between plus and minus infinity, and squashes the 
output into the range 0 to 1. It was also observed that the 
network converged faster with better performance whenever 
the training was carried out with a larger data set as shown 
in the Table 2. 
Furthermore, the data set is not pattern oriented because of 
the unavailability of enough power for distribution to 
consumers. The main reason is that the power demand of the 
Kano sub-region far exceeds the supply. The cases of 
special days like public holidays and festivities had little 
impact on the training process because of the peculiarity of 
the pattern of the data set.  

 
V. COMPARISON OF SIMULATED RESULTS 

 
The simulated results of the developed model were found to 
be exactly the same as those obtained from the Power Utility 
with a performance error of5.84݁ି଺, Figure 7 shows the 
Comparison between actual and forecast loads for 1st 
January, 2005 and Table 3 shows a comparison between the 

actual data obtained from Power utility which is very close 
to the results obtained from the trained neural network 
model output data sets.  

VI. CONCLUSIONS 
A load forecasting model was designed using Matlab 
R2008b ANN Toolbox. The implementation of the network 
architecture, training of the Neural Network and simulation 
of test results were all successful with a very high degree of 
accuracy resulting into 24 hourly load output. A set of 
optimized weights and the associated biases after training 
the network from load data obtained from the power utility 
company were also obtained. The accuracy of the forecasts 
was verified by comparing the simulated outputs from the 
network with obtained results from the utility company. 
Several networks architectures were trained and simulated 
before arriving at the best Mean squared error performance 
of 5.84݁ି଺. 
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Table 1: 132/33KV Power Utility Substation, Kano daily 
Load Profile data Set for 2005 

 
January (sample data) 

  Sat Sun Mon Tue Wed Thu Fri 

Time 1st 2nd 3rd 4th 5th 6th 7th 

1:00 AM 160 160 160 158 120 130 130 

2:00 AM 140 160 160 140 126 120 190 

3:00 AM 100 160 160 140 150 130 160 

4:00 AM 170 156 166 156 150 140 120 

5:00 AM 170 168 182 140 160 150 140 

6:00 AM 190 176 180 184 144 140 180 

7:00 AM 170 152 202 160 100 150 126 

8:00 AM 190 180 240 180 136 120 100 

9:00 AM 148 196 160 144 120 130 100 

10:00 AM 160 180 170 126 144 100 100 

11:00 AM 160 180 110 126 160 180 100 

12:00 PM 170 170 150 110 150 0 124 

1:00 PM 144 140 170 130 120 120 124 

2:00 PM 144 160 170 124 120 130 124 

3:00 PM 150 160 150 130 130 180 170 

4:00 PM 150 160 150 130 120 120 126 

5:00 PM 128 168 164 120 130 132 126 

6:00 PM 136 180 140 170 130 128 180 

7:00 PM 148 174 140 156 160 160 80 

8:00 PM 176 180 164 152 160 170 120 

9:00 PM 192 204 174 168 170 166 110 

10:00 PM 200 192 156 156 170 140 150 

11:00 PM 150 180 156 170 130 140 164 

12:00 AM 170 168 152 164 130 126 172 

Average Temp. 18 18 18 18 18 18 18 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: Simulation Results Comparison Table 
 

January Comparison Sample 

Time Sat Sat Sun Sun Mon Mon 

1st 1st 2nd 2nd 3rd 3rd 

1:00 AM 160.00 160.00 160.01 160.00 159.96 160.00 

2:00 AM 140.00 140.00 160.00 160.00 159.96 160.00 

3:00 AM 100.00 100.00 160.00 160.00 159.96 160.00 

4:00 AM 170.00 170.00 156.01 156.00 165.98 166.00 

5:00 AM 170.00 170.00 168.00 168.00 181.99 182.00 

6:00 AM 190.00 190.00 176.00 176.00 179.97 180.00 

7:00 AM 170.00 170.00 152.00 152.00 201.96 202.00 

8:00 AM 190.00 190.00 180.00 180.00 239.95 240.00 

9:00 AM 148.00 148.00 196.00 196.00 159.98 160.00 

10:00 AM 160.00 160.00 180.00 180.00 170.01 170.00 

11:00 AM 160.00 160.00 180.00 180.00 110.02 110.00 

12:00 PM 170.00 170.00 170.00 170.00 149.99 150.00 

1:00 PM 144.00 144.00 140.00 140.00 169.97 170.00 

2:00 PM 144.00 144.00 160.00 160.00 169.98 170.00 

3:00 PM 150.00 150.00 160.00 160.00 149.99 150.00 

4:00 PM 149.99 150.00 160.01 160.00 150.01 150.00 

5:00 PM 128.00 128.00 168.00 168.00 163.96 164.00 

6:00 PM 136.00 136.00 180.00 180.00 139.97 140.00 

7:00 PM 148.00 148.00 174.00 174.00 139.98 140.00 

8:00 PM 176.00 176.00 180.01 180.00 163.95 164.00 

9:00 PM 192.00 192.00 204.00 204.00 173.97 174.00 

10:00 PM 200.00 200.00 192.00 192.00 155.95 156.00 

11:00 PM 150.01 150.00 180.00 180.00 155.96 156.00 

12:00 AM 170.00 170.00 168.00 168.00 151.93 152.00 

 

 
 
 
 
 

 
 
  



Table 2: Training Results Sample (2-layers of Logsig and purelin function neural network) 
 
Data qty Hidden 

Neurons 
learn fnc Training MSE Gradient Learning 

Rate 
Epoch Duration Reason 

1yr * 4 2 learngd trainlm 452 18.5 0.1 49 00:20:00 val stop 

1yr * 4 3 learngd trainlm 455 0.03 0 1000  00:05:35 max epoch 

1yr * 4 4 learngd trainlm 289 0.02 0.01 837 06:00:00 user stop 

1yr * 4 5 learngd trainlm 248 9.04 0.1 22 00:57:00 val stop 

1yr * 4 6 learngd trainlm 209 1.23 100 143 07:41:00 val stop 

1yr * 4 7 learngd trainlm 187 0.03 0.1 463 06:56:00 user stop 

1yr * 4 8 learngd trainlm 159 0.72 10 87 06:43:00 val stop 

1yr * 4 9 learngd trainlm 136 2.02 0.01 112 08:54:00 user stop 

1yr * 4 10 learngd trainlm 120 12.7 0.1 40 02:59:00 val stop 

1yr * 4 12 learngdm trainlm 118 0.21 10 40 00:02:55 val stop 

1yr * 4 13 learngdm trainlm 71.8 1.69 10 130 00:12:41 val stop 

1yr * 4 14 learngdm trainlm 59.5 22.4 0 47 00:04:55 val stop 

1yr * 4 15 learngdm trainlm 48.4 0.11 1 135 00:16:02 user stop 

1yr * 4 16 learngdm trainlm 39.4 0.05 10 74 00:10:26 user stop 

1yr * 4 18 learngdm trainlm 26.4 3.59 1000 54 00:07:59 user stop 

1yr * 4 20 learngdm trainlm 14.4 1.06 100 63 00:14:02 user stop 

1yr * 4 25 learngdm trainlm 0 0 0.01 1000 03:52:38 max epoch 

1yr 25 learngdm trainlm 0 0.03 0.01 714 01:06:44 val stop 

1yr 25 learngdm trainlm 0 0.01 0 1000 01:15:16 max epoch 

 

 

Figure 7: Comparison Plot between actual and forecast loads for 1st January, 2005 
 




