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Abstract—This paper studies the chaos suppression of a new 

variable structure chaotic system. A quasi sliding mode control 

(QSMC) scheme is newly presented. The proposed QSMC not 

only prevents chattering phenomenon which frequently appears 

in the conventional sliding mode control systems, but also 

stabilizes and drives the controlled system into an arbitrary and 

predictable neighborhood of zero even when the input 

nonlinearities exist. An example is given to illustrate the 

effectiveness of the proposed controller design. 

 
Index Terms—Quasi sliding mode control; Chaos 

suppression; Chattering 

 

I. INTRODUCTION 

haotic systems exhibit unpredictable behavior, 

sensitivity to initial conditions and irregular dynamics 

and it has been found in many physical systems, such as 

mechanical systems, engineering systems and power 

converters, etc. Consequently, various studies of effective 

control methods have been proposed to achieve stabilization 

of chaotic systems, for instance, optimal control [1], sliding 

method control [2-3], state feedback control [4, 5] and the 

backstepping design technique [6, 7], etc. [8]. In numerous 

control methods, sliding mode control (SMC) is frequently 

adopted because SMC can offer inherent advantages, such as 

fast response, good transient performance and insensitive to 

variation in plant parameters or external disturbances. 

However, in the traditional SMC systems, ideal sliding mode 

only exists for infinite frequency switching operation. 

Consequently, thus control input in actuality is impossible to 

implement and will cause the undesired chattering 

phenomenon [8, 9, 10]. Therefore, various methods for 

suppression of chattering phenomenon have been presented 

such as in [9, 11-14]. However, those controllers in [9, 11-14] 

are all under the assumption of linear input. In practice, due to 

physical limitation, there exist nonlinearities in the control 

input and it must be taken into account when designing and 

implementing a control scheme [15]. Furthermore, as 

mentioned in [16], to directly implement nonlinear chaotic 

systems with electronic circuits, there exists a major 

difficulty, that is, the state variables of system occupy a wide 

dynamic range with values that exceed reasonable power 

supply limits. Inspired by the aforementioned reasons, this 

study first introduces a new design parameter into the chaotic 
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systems such that the structure of systems is variable and the 

dynamic ranges for the system states can be regulated. Then, 

a QSMC scheme for the chaos control of the considered 

system is newly proposed. The QSMC prevents chattering 

phenomenon which frequently appears in the conventional 

sliding mode control systems. Under the proposed QSMC, 

the system states can be stabilized and driven into an arbitrary 

and predictable neighborhood of zero even when the input 

nonlinearities exist. Last, illustrative simulation results are 

presented to demonstrate and verify the effectiveness of the 

proposed QSMC method.  

II. SYSTEM DESCRIPTION AND PROBLEM FORMULATION 

In this section, we mainly consider the chaos suppression 

of a new three-dimensional chaotic system. 

A. A New Three-Dimensional Chaotic System with Varia- 

ble Structure  

Recently, a new three-dimensional chaotic system has 

been introduced as follows [17] 

 

 

�̇� = −𝑎𝑥(𝑡) + 𝑏𝑦(𝑡)                                          

�̇� = 𝑐𝑥(𝑡) − 𝑥(𝑡)𝑧(𝑡) − 𝑑𝑦(𝑡)                        

�̇� = 𝑥(𝑡)𝑦(𝑡) − 𝑒[𝑥(𝑡) + 𝑧(𝑡)]                       

[𝑥(0)  𝑦(0)  𝑧(0)]𝑇 = [𝑥0  𝑦0  𝑧0]
𝑇                 

   (1) 

 

where a, b, c, d, e are parameters of system (1), when a = 25.6, 

b = 66.8, c = 39.22, d = 0.2, e = 4, system (1) displays a 

typical attractor [17],[18]. [𝑥(𝑡) 𝑦(𝑡) 𝑧(𝑡)]     is the state 

vector, [𝑥0  𝑦0  𝑧0]
𝑇 is the initial value vector. However, as 

shown in [17] [18], chaotic system (1) has a wide dynamic 

attractor which results in the problem of power saturation. To 

remove this drawback, we design a variable structure to 

regulate the state amplitude with a parameter  .  The 

parameter   is defined as 

 

  [
𝑥
𝑦
𝑧
] = [

 �̂�
 �̂�
 �̂�

]                (2) 

 

then, we have 

 

 

 �̇̂�(𝑡) = −𝑎 �̂�(𝑡) + 𝑏 �̂�(𝑡)                               

 �̇̂�(𝑡) = 𝑐 �̂�(𝑡) −  �̂�(𝑡) �̂�(𝑡) − 𝑑 �̂�(𝑡)        

 �̇̂�(𝑡) =  �̂�(𝑡) �̂�(𝑡) − 𝑒[ �̂�(𝑡) +  �̂�(𝑡)]       

  (3) 

 

Therefore, the variable structure system with amplitude 

regulation can be expressed as 
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�̇̂�(𝑡) = −𝑎�̂�(𝑡) + 𝑏�̂�(𝑡)                             

�̇̂�(𝑡) = 𝑐�̂�(𝑡) −  ∙ �̂�(𝑡)�̂�(𝑡) − 𝑑�̂�(𝑡)     

�̇̂�(𝑡) =  ∙ �̂�(𝑡)�̂�(𝑡) − 𝑒[�̂�(𝑡) + �̂�(𝑡)]    

[�̂�(0)  �̂�(0)  �̂�(0)]𝑇 = [�̂�0  �̂�0  �̂�0]
𝑇          

    (4) 

 

The chaotic motion of system (4) with  =   is illustrated 

in Fig. 1(a)-(d), where the initial condition of [�̂�0  �̂�0  �̂�0]
𝑇 =

[0    0    0  ]𝑇  and the regulated state �̂�  of system (4) is 

illustrated in Fig. 1(e) with  =   (i.e. the original system 

(1)),  = 0   and  =  . From Fig. 1(e), it reveals the value 

of state �̂� can be regulated as expected. 

B. Problem Formulation  

In this section, to control the chaotic system (4) effectively, 

we introduce a control-input   into the differential equation 

of state �̂�. The controlled system can be written as  

 

 

�̇̂�(𝑡) = −𝑎�̂�(𝑡) + 𝑏�̂�(𝑡)                                                    

�̇̂�(𝑡) = 𝑐�̂�(𝑡) −  ∙ �̂�(𝑡)�̂�(𝑡) − 𝑑�̂�(𝑡) + 𝜙( (𝑡))        

�̇̂�(𝑡) =  ∙ �̂�(𝑡)�̂�(𝑡) − 𝑒[�̂�(𝑡) + �̂�(𝑡)]                            

(5) 

 

where 𝜙( (𝑡))  is a continuous nonlinear function with 

𝜙(0) = 0 , where 𝜙     with the law  (𝑡)  𝜙( (𝑡)) 

and inside sector [      ], i.e. 

 

     
 (𝑡)   (𝑡)𝜙( (𝑡))     

 (𝑡)       (6) 

 

where    and    are nonzero positive constants[15]. This 

study aims to design a QSMC such that the state of chaotic 

system can be driven to predictable and desired bounds even 

with nonlinear input, i.e. 

 

     
   

|�̂�|         
   

|�̂�|         
   

|�̂�|         (7) 

 

where     =       are positive predictable constants 

depending on the parameter chosen in the designed QSMC.  

 

III. SWITCHING SURFACE DESIGN AND DEFINITION OF QUASI 

SLIDING MANIFOLD 

First, a switching surface is selected as 

 

  (𝑡) = �̂�(𝑡) +  �̂�(𝑡)            (8) 

 

where     and   
  

 
 is a designed constant.  

Before continuing to estimate the state bound of
 
�̂�, we give 

the definition of quasi sliding manifold as follows. 

 

Definition 1: The system is said to be in the quasi sliding 

manifold if there exists 𝑡  0  and    0  such that any 

solution of the controlled system (5) satisfies | (𝑡)|     , 

for all 𝑡  𝑡 . 

When the system operates in the quasi sliding manifold, i.e. 

| (𝑡)|     for 𝑡  𝑡 , we have the following quasi sliding 

mode dynamics 

 

 �̇̂�(𝑡) = −  �̂�(𝑡) + 𝑏 (𝑡) where   = 𝑎 + 𝑏    (9) 

 

Solving the differential eqn. (9) for �̂� when 𝑡  𝑡  results 

in: 

 

 �̂�(𝑡) = 𝑒   (    )�̂�(𝑡 ) + ∫ 𝑒   (   )
 

  
∙ 𝑏 ( )𝑑    (10) 

 

Since the system is in the quasi sliding manifold, one has 

| (𝑡)|    . Furthermore, since   is determined to guarantee 

   0, the bound for state �̂� is obtained as 

 

|�̂�(𝑡)| =                                                                       

|𝑒   (    )�̂�(𝑡 ) + ∫ 𝑒   (   )
 

  
∙ 𝑏 ∙  ( )𝑑 |

  𝑒   (    )|�̂�(𝑡 )| + 𝑏 ∙   ∙ 𝑒
    ∫ 𝑒   

 

  
𝑑 

 𝑒   (    )|�̂�(𝑡 )| + 𝑏 ∙   ∙
   

   (    )

  
          

  (11) 

 

Therefore we have 

 

     
   

|�̂�(𝑡)|    =
 

  
             (12) 

 

In addition, by (8), the bound for �̂�(𝑡) can be also obtained 

as 

 

 

    
   

|�̂�(𝑡)| =     
   

| (𝑡) −  �̂�(𝑡)|

     
   

 (𝑡) +     
   

| ||�̂�(𝑡)| 

   = ( +
  

  
)                   

       (13) 

 

 After |�̂�|          |�̂�|     solving the differential 

equation of the controlled system for state �̂� results in 

 

     
   

|�̂�(𝑡)|    =
          

 
         (14) 

 

 Obviously, from (12)-(14), the bounds of     =       

are relative to   . Therefore, how to control the system with a 

smaller value of    is important and the solution is given in 

the following section.  

 

IV. SLIDING MODE CONTROLLER DESIGN FOR QUASI 

SLIDING MANIFOLD  

After establishing an appropriate switching surface and 

estimating the bounds of the system states in the above 

section, it follows to design a quasi sliding mode controller to 

ensure the occurrence of the quasi sliding manifold. The 

continuous controller is proposed as 

 

  (𝑡) = −  
 

| |  
              (15) 

 

where   
 

𝛽 
, δ  0  

and  = |𝑐�̂� − �̂��̂�   − 𝑑�̂� +  (−𝑎�̂� + 𝑏�̂�)| 
Theorem 1: Consider the system (5), if this system is 

controlled by  (𝑡)  in (15). Then the system trajectory 

converges to the quasi sliding manifold with | (𝑡)|    =
𝛽 𝑤 

𝛽 𝑤  
. 

 



 

Proof: Let the Lyapunov function of the system be 𝑉 =
 

 
  , 

then taking the derivative of 𝑉 and introducing (5), one has  

  

�̇� =   ̇  =  (�̇̂� +  �̇̂�)                                                  

=  (𝑐�̂� − �̂��̂�   − 𝑑�̂� + 𝜙( ) +  (−𝑎�̂� + 𝑏�̂�))
 

  | | +  𝜙( )                                                          

 (16) 

 Furthermore, from eqn. (6) and (15), we have 

 

  

 (𝑡) ∙ 𝜙( (𝑡)) = −  
 

| |  
𝜙( (𝑡))     

      

=   (  
 

| |  
)
   (17) 

 

 Thus we have 

 

  (𝑡)𝜙( (𝑡))  −    
  

| |  
         (18) 

 

 By placing (18) into (16), we get 

 

 
�̇�   | | −     

  

| |  
                   

=  | | −     (| | −
| | 

| |  
)

       (19) 

 

Since 
  

| |  
 δ, we have 

 

 
�̇�  ( −    ) | | −            

= ( −    ) (| | −
𝛽 𝑤 

𝛽 𝑤  
)

       (20) 

 

Since       has been chosen in the controller (15), (20) 

implies that �̇� < 0  whenever | (𝑡)|    =
𝛽 𝑤 

𝛽 𝑤  
. 

Therefore, | | will converges to the region of | (𝑡)|    =
𝛽 𝑤 

𝛽 𝑤  
. Thus the proof is achieved completely. 

 

Remark 1: Since the controller in (15) is continuous, 

chattering is eliminated. 

 

Remark 2: In fact, δ is a design parameter, therefore, one 

can select a sufficient small value of δ  to make δ  and 

    =       arbitrarily bounded in the neighborhood of zero. 

 

V. NUMERICAL EXAMPLE 

In this section, we demonstrate the effectiveness of the 

proposed QSMC scheme by simulation results. The system 

parameters are chosen as  =  0, a = 25.6, b = 66.8, c = 

39.22, d = 0.2, e = 4. The initial states are �̂�(0) = 0   �̂�(0) =
0   and �̂�(0) = 0  . For simulation, the nonlinear input is 

defined as 

 

 𝜙( (𝑡)) = [0  + 0  ∙    ( (𝑡))] (𝑡)     (21) 

 

Based on (6),   = 0   and   = 0   can be obtained. 

Then following the steps in Remark 3, we select  =   
  

 
 . 

Therefore, the switching function   is obtained as 

 

  (𝑡) = �̂� + �̂�               (22) 

 

and the quasi sliding mode controller can be obtained as 

 

  (𝑡) = −  
 

| |               (23) 

 

with  =   
 

𝛽 
=

 

0   and δ = 0 0  

  By Theorem 1 and (12)-(14), we can predict that 

| (𝑡)|    = 0 0  and the states are bounded by   =

0 0      = 0 0    and   = 0 0   . The simulation 

results are shown in Figures 3-4 under the proposed QSMC 

(23). Figure 2 and Figure 3 show, respectively, the 

corresponding  (𝑡)  and state responses of the controlled 

system. The continuous QSMC control is shown in Figure 4. 

Surveying the simulation results, the system state can be 

bounded by     =       calculated above, as we predict. In 

particular, chattering does not appear due to the continuous 

control input as shown in Figure 4. 

 

VI. CONCLUSIONS 

In this paper, we have presented a QSMC scheme for 

suppressing chaos of a new three-dimensional chaotic system. 

A design parameter is introduced into the system to regulate 

the dynamic ranges for the system states. The QSMC 

prevents chattering phenomenon which frequently appears in 

the conventional sliding mode control systems. An example 

is included to illustrate the effectiveness of the proposed 

QSMC developed in this paper. 
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Fig. 1. (a) Trajectories of chaotic system (4) (b) Trajectories projected on 

the 𝑥 − �̂�  plane (c) Trajectories projected on the 𝑥 − �̂�  plane (d) 

Trajectories projected on the �̂� − �̂� plane. 

 

 
Fig. 1. (e) The state 𝑥 of system (4) with  =  ,  = 0   and  =  . 

 

 
Fig. 2. The time response of switching function s(t). 

 
 Fig. 3(a). The state response of the controlled system.  

 
Fig. 3(b). The state response of the controlled system. 

 
Fig. 3(c). The state response of the controlled system 

 
Fig. 4. The time response of continuous QSMC (23) 




