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Speaker Identification in Noisy Environment
with Use of the Precise Model of
the Human Auditory System
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Abstract—This paper discusses an approach for speaker
identification in noisy environment using the multi-dimensional
pulse signals generated from the model of a human peripheral
auditory system. The peripheral auditory model employed here
consists of a basilar membrane, hair cells, and auditory nerves.
The input to this model is a speech signal divided into frames,
and the outputs of which are the multi-dimensional pulse signals
for each framed signal. The feature vectors based on the post-
stimulus time histogram (PSTH) of the pulse signals are used
for the speaker identification. In this paper, we propose to
set adaptively the threshold of the action potential for pulse
generation in the auditory nerve model. In order to verify the
performance of noise immunity for the speaker identification,
the experiments were conducted for each Japanese vowel spoken
by 12 speakers (9 males and 3 females). The effectiveness
of using the peripheral auditory model has been verified
by comparing with the methods using the conventional LPC
spectrum and using the excitation patterns.

Index Terms—Peripheral auditory system, Multi-dimensional
pulse signals, Post-stimulus time histogram, Speaker identifica-
tion, Excitation pattern.

I. INTRODUCTION

HE human auditory system has a high ability to perform

complex signal processing tasks. In general, the speech
signal of conversation is often corrupted by various noises
such as other speech signals, traffic noises, background
noises, and so on. However, the human can communicate
with each other by paying attention only to the necessary
information even under those noises. This is called a cocktail
party effect in speech signal processing field [1].

The speech processing system based on the statistical
model, which is widely used at present, has indeed a high
performance for the normal cases [2]. However, in an ex-
tremely noisy environment, it is fairly inferior to the human
auditory system which flexibly adjusts to the environment.
Therefore, in order to evolve the conventional speech signal
processing system into a more useful human interface, it is
absolutely necessary to refer to the signal processing way of
the human auditory system [3].

In this paper, a precise model of the human peripheral
auditory system is firstly composed by combining several
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Fig. 1. The schematic diagram of the model of the human peripheral
auditory system.

conventional component-models, and secondarily the speaker
identification by vowel in noisy environment is performed by
using the outputs of this model.

In this paper, we propose to set adaptively the threshold
of the action potential for pulse generation in the auditory
nerve model. A time average of membrane potential and
characteristics of the auditory nerve are used.

The effectiveness of the proposed method has been verified
by comparing with the methods using the LPC spectrum
and using the excitation patterns. The excitation pattern
is a spectral information derived by the auditory filter as
a function of the center frequency of the filter bank [4].
Experimental results have shown that the proposed method
using the human peripheral auditory model has high noise
immunity comparing with the other methods.

II. MODEL OF HUMAN PERIPHERAL AUDITORY SYSTEM

The peripheral auditory system for the speaker identifica-
tion is modeled here by cascading the models of a basilar
membrane, hair cells, and auditory nerves. Figure 1 shows
the schematic diagram of this model.

A. Basilar membrane model

The vibration of the basilar membrane is caused by an
acoustic stimulation. This vibration can be interpreted as
a kind of function to map the frequency of the acoustic
stimulation to the position of the basilar membrane.

The frequency characteristics of the basilar membrane
can be realized technologically by the filter bank. In this
paper, the Gammatone filter [5], which is specially designed
to describe the auditory activities of the human basilar
membrane, is used.
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The impulse response of the Gammatone filter is given by:
g(t) = at" ! exp(—27bt) cos(27 fot + ), (1)

where a, b, and n are the parameters which determine
the shape of the impulse response. f. and ¢ are a center
frequency and a phase, respectively. The frequency charac-
teristic of this filter is that the bandwidth becomes wide as
the frequency goes high.

B. Hair cell model

The Meddis inner hair cell model is a neural transduction
model between the hair cell and the auditory nerve, which
are located in the cochlea [6][7]. Comparing with other
hair cell models, the Meddis’ model is described by simple
mathematical expressions, and it can reflect the activities
of the auditory system better than other models, e.g., an
adaptation effect is well embedded in the Meddis’ model.

In this paper, for that reason we employ the Meddis inner
hair cell model. This model consists of three reservoirs and
one factory. Three reservoirs are called free transmitter pool,
synaptic cleft and reprocessing store.

Let ¢(t), ¢(t), w(t) be amounts of transmitters in the
free transmitter pool, the synaptic cleft, and the reprocessing
store, respectively. Figure 2 shows a signal flow of the Med-
dis inner hair cell model. The numbers in Fig.2 correspond
to the numbers of the following explanations of the function
of the Meddis inner hair cell model.

1. The acoustic stimulation S(¢) is applied to the model.

2. The permeability k(t) is determined depending on S(t).

3. The transmitters in the free transmitter pool are released
into the synaptic cleft according to the value of k(¢).

4. The transmitters in the synaptic cleft stimulate the
auditory nerves. In this model, it is assumed that the
firing probability is proportional to c¢(t). h - c(t) is an
output of this model, which is a generation probability
of pulse per second.

5. Some of the transmitters in the synaptic cleft are lost,
and the remainder are collected in the reprocessing
store.

6. The transmitters in the reprocessing store are transferred
to the free transmitter pool after reprocessed.

7. The free transmitter pool is replenished with the trans-
mitters from the factory depending on the amount of
the transmitters lost in the synaptic cleft.

The Meddis inner hair cell model is described by the fol-
lowing three differential equations and by one probabilistic
function:

ko) = { LW for S(t) > —A )
0 for S(t) < —A,

d

5 = v a(0) + () — k((0), )
de =k(t)q(t) — le(t) — re(t), 4
dt

dw

= = rel) —zw(t), ©)
Prob(event) = hc(t). (6)
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Fig. 2. The signal flow of Meddis inner hair cell model.

This model has seven parameters of y, x, [, r, g, A, and B.
— A is the lowest acoustic stimulation at which the transmitter
is released.

The phase-locking model [8] is followed by this Meddis
inner hair cell model, because Meddis’ model doesn’t have
a phase-locking property.

C. Auditory nerve model

The membrane potential of the auditory nerve increases
as the transmitters are released into the synapse between the
inner hair cell and the auditory nerve. The auditory nerve
generates a neural pulse when the potential exceeds a certain
threshold. And after that, this potential decreases with time.
The auditory nerve has a refractory period with a certain
length (about 1ms), incapable of action after the neural pulse
is generated [9].

The above procedures of the membrane potential genera-
tion are realized by the simple functions as follows.

1) Modeling of membrane potential generation: In this
paper, the model proposed by [8] is used as the generation
model of the membrane potential. The generation of the
membrane potential is modeled by the simple function te™¢,

which decreases right after the rapid increase of potential.

2) Modeling of pulse generation of auditory nerve: The
pulse of the auditory nerve is generated when the membrane
potential exceeds a certain threshold, which is not of course
in the refractory period. This process is expressed as follows:

L Vi(t) > U,

and S;(t')=0fort' € [t —t,,t] , (7)
0 otherwise

Sit) =

where V; is a membrane potential at the i-th channel
(auditory nerve), U; is a threshold, and ¢, is a refractory
period. The pulse signal S;(t) expressed by Eq.(7) is the
output of this peripheral auditory model.

The frequency axis is represented by [ERB-number] which
is based on the characteristics of the human auditory system
[10]:

ERB = 24.7(0.00437F + 1.0)[Hz], ®)

[ERB-number] = 21.41log,,(0.00437F + 1.0),  (9)

where F' is a center frequency [Hz]. The channel is
placed between [ERB-number]=3 (87.39 Hz) and [ERB-
number]=41.48 (19,780 Hz) at equal intervals. The number
of the channels is set to 331 in this paper.
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Fig. 3. The proposed threshold obtained from the time-averaged membrane
potential.

D. Post-stimulus time histogram (PSTH)

In the raster display of pulse signals, the time axis is
divided into a short interval with a constant width. The
representative value of the post-stimulus time histogram is
the average of the number of pulses in each interval [11]. It
is generally abbreviated as PSTH, which is a typical statistic
information for pulse signal.

III. PROPOSED SETTING OF THRESHOLD U; USING
MEMBRANE POTENTIAL

The threshold U; of the action potential for the pulse
generation in the auditory nerve model is an important
factor influencing the patterns of the multi-dimensional pulse
signals generated. In this paper, U; is determined by the
following three steps using a time average of the membrane
potential and the characteristics of the auditory nerve.

A. Time average of membrane potential
First, the time average of the membrane potential is cal-
culated for each channel. The following R;, which is mainly

composed of the time average < V;(t) >, is introduced to
determine Uj;:

111
i =— < Vit 2*5 i(t) >,
R <Vi(t) > + C7n/ < Vi(t) >

i=1

(10)

where < > is a time average operator and n is the
number of the channels. C is a constant value, which is set
to 1.2 in this paper. R; has the effect to generate pulses
more frequently at the channel having a large average of the
membrane potential.

B. Lateral inhibition of auditory nerve

The auditory nerve has the characteristics of the lateral
inhibition. The lateral inhibition can be represented by the
DOG (Difference Of two Gaussians) filter defined by the
following equation:

oG — ]' _2;2 _ D ]‘ 672103 (11)
2ro?2 ’

g7

where 0., 04, and D are the parameters of the DOG filter,
whose values are 2.0, 1.60,, and 1.0, respectively. The DOG
filter is used in the determination of U;, which improves the
frequency resolution.
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Fig. 4. Output patterns of Japanese vowel “e” of a certain speaker obtained
from each method under the following noises. (a) White noise. (b) Pink
noise. (c) Blue noise. LPC: LPC spectrum, EP: excitation patterns, and
Proposed: proposed human auditory model.
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C. Suppression of pulse generation in high frequency region

In case of the fixed Uj, it is experimentally confirmed that
the pulse generation in the high frequency region occurs more
frequently than in the low frequency region. The following
W; is then introduced to suppress the pulse generation in the
high frequency region, by using the high order polynomial
with respect to the channel number ::

174\
i — o | = ]-,
w 2<n> "

where a is a constant, which is set to be 6 in this paper. The
threshold U; is finally determined by the following equation:

U; = Wi(R; x gP9%). (13)

K3

12)

Figure 3 shows the threshold obtained from the time-
averaged membrane potential by the above mentioned pro-
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TABLE 1
SPEAKER IDENTIFICATION RATES BY EACH METHOD IN THE LOW
FREQUENCY REGION UNDER WHITE NOISE [%]

LPC EP
(LPC spectrum)
11.3

Proposed
(Excitation patterns)
55.3

(Human auditory model)
75.0

CESss.

IV. EXPERIMENTAL RESULTS

In order to verify the noise immunity of the proposed

method for the speaker identification, we have performed
the experiments using 5 sets of 5 Japanese vowels spoken
by 12 speakers (9 males and 3 females).

The vowels are corrupted by three noises, i.e., white
noise, pink noise, and blue noise. The speaker identification
accuracy is evaluated for each vowel. The subspace method
[12] is used as a pattern recognition method.

For comparisons, the speaker identification by using the
LPC spectrum and by using the excitation patterns are also
performed. Figure 4 shows the output patterns of Japanese
vowel 7e” of a certain speaker obtained from each method
under noises. From those results, it is observed that the
proposed method has a higher noise immunity than the other
methods.

Figure 5 shows the speaker identification rates versus SNR
by each method under noises. In case when the noise level
is low, the human peripheral auditory model has a less
performance than the other methods. However it is better
than the other methods as SNR decreases.

Further from Fig.4, it is observed that the PSTH of the
peripheral auditory model is less affected by noise in the
low frequency region. Thereupon, Table 1 shows the speaker
identification rates using the low frequency region (from
[ERB-number]=3 (87.39 Hz) to [ERB-number]=24.6 (3,015
Hz) when SNR is 0 dB under white noise. It is confirmed
the superiority of the peripheral auditory model.

V. CONCLUSION

In this paper, the approach for the speaker identification
in noisy environment by vowel, using the multi-dimensional
pulse signals generated from the model of the human periph-
eral auditory system, was discussed. The experiments were
conducted for each Japanese vowel spoken by 12 speakers
(9 males and 3 females). The effectiveness of the proposed
method was verified by comparing with the methods using
the LPC spectrum and using the excitation patterns. The
proposed method has a high noise immunity.

The future works are to conduct the experiments using the
actual environmental noises.
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