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Abstract—To determine the mechanism of molecular evo-
lution, a reconciliation graph is constructed from two het-
erogeneous trees, which are referred to as ordered trees. In
the reconciliation graph, the leaf nodes of the two ordered
trees face each other. Furthermore, leaf nodes with the same
label name are connected to each other by an edge. To
carry out reconciliation work efficiently, it is necessary to find
the state with the minimum number of crossovers of edges
between leaf nodes. Reducing crossovers in a reconciliation
graph is a combinatorial optimization problem. In this paper,
we propose a novel bio-inspired algorithm called distributed
modified extremal optimization (DMEO). This algorithm is
a hybrid of population-based modified extremal optimization
(PMEO) and the distributed genetic algorithm model that is
used for reducing crossovers in a reconciliation graph. We have
evaluated DMEO using actual data sets. DMEO shows better
performance compared with PMEO.

Index Terms—extremal optimization, distributed genetic al-
gorithm, evolutionary computation, reconciliation graph

I. INTRODUCTION

MOLECULAR biologists need to carry out reconcilia-

tion work [1], [2], [3], [4] in order to determine the

mechanism of molecular evolution. In reconciliation work,

the relation between two heterogeneous phylogenetic trees

and the relation between a phylogenetic tree and a taxonomic

tree are compared. To compare two trees, we construct a

graph called a reconciliation graph that consists of two phy-

logenetic trees or a phylogenetic tree and a taxonomic tree.

Phylogenetic trees and taxonomic trees in a reconciliation

graph are referred to as ordered trees. The leaf nodes of these

ordered trees face each other. Moreover, leaf nodes with the

same label name are connected to each other by an edge.

To carry out reconciliation work efficiently, it is necessary

to find the state with the minimum number of crossovers of

edges between leaf nodes in the reconciliation graph.

In Fig. 1, phylogenetic tree 1 and phylogenetic tree 2

are inferred from different molecular sequences with four

identical species “a,” “b,” “c,” and “d.” The leaf nodes of

phylogenetic tree 1 and those of phylogenetic tree 2 face

each other. Leaf nodes representing the same species are

connected to each other. The reconciliation graph shown in

Fig. 1(a) has two crossovers. If we reduce crossovers in the

reconciliation graph, we can obtain the reconciliation graph

shown in Fig. 1(b), which has no crossovers.

Reducing crossovers in a reconciliation graph is a com-

binatorial optimization problem. The number of combina-

tions increases exponentially as the number of leaf nodes

increases. There are some heuristics [5], [6] that can be

used for reducing crossovers in a reconciliation graph, and
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(a) Reconciliation graph with two
crossovers.
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(b) Reconciliation graph with no
crossovers.

Fig. 1. Examples of reconciliation graphs ((a) shows a reconciliation graph
that has two crossovers, and (b) shows a reconciliation graph that has no
crossovers).

they use a genetic algorithm(GA)[7], extremal optimization

(EO) [8], [9], [10], and modified EO (MEO)[11]. In our

previous study[12], we proposed population-based modified

extremal optimization (PMEO), which is a combination of a

population-based approach and MEO.

PMEO shows better performance compared with MEO.

However, it is difficult to maintain diversity at the end

of alternation of generations. To overcome this difficulty,

this paper proposes a novel extremal optimization model

called distributed modified extremal optimization (DMEO)

for reducing crossovers in a reconciliation graph. DMEO

is a hybrid of PMEO and the distributed genetic algorithm

(DGA) model [13], [14]. In the DGA model, we divide

a population into two or more sub-populations and each

sub-population evolves individually. Therefore, DMEO can

maintain diversity at the end of alternation of generations.

The main contributions of this study are as follows:

• Distributed modified extremal optimization (DMEO) is

proposed. DMEO is a hybrid bio-inspired algorithm

that combine PMEO and DGA. Many studies [8], [9],

[10], [15], [16], [17], [18] have applied EO to com-

binatorial optimization problems such as the traveling

salesman problem, graph partitioning problem, and im-

age rasterization. Recently, some studies [19], [20] have

focused on integrating a population-based approach in

EO. To the best of our knowledge, there is no study on

population-based EO involving the use of the distributed

genetic algorithm model.

• To evaluate the proposed DMEO, we implemented
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Fig. 2. Problem definition.

MDEO for reducing crossovers in a reconciliation

graph. Moreover, we evaluated DMEO using two actual

data sets for experiments. Experimental results shows

that DMEO outperforms PMEO.

The rest of the paper is organized as follows. Section II

presents the problem definition. Section III explains PMEO.

Section IV proposes DMEO. Section V presents experimen-

tal results, and Section VI concludes the paper.

II. PROBLEM DEFINITION

A reconciliation graph (RG) consists of two ordered trees,

OT1 = (V1, E1) and OT2 = (V2, E2), where V1 and V2 are

finite sets of nodes and E1 and E2 are finite sets of edges.

A node that has no child nodes is a leaf node. The leaf node

sets of OT1 and OT2 are denoted by L1 ∈ V1 and L2 ∈ V2,

respectively. If the number of species is n, the number of

leaf nodes is n. A leaf node has a label name, which is a

species’ name. The label name set is denoted by Lleaf .

In the reconciliation graph, OT1 and OT2 are located face

to face. If a leaf node of OT1 has the same label name as

that of OT2, then the two leaf nodes are connected to each

other. In Fig.2, phylogenetic tree 1 is OT1 and phylogenetic

tree 2 is OT2. The leaf node set L1 has four nodes, v14, v15,

v16, and v17. Similarly, L2 has four nodes, v24, v25, v26, and

v27. There are four label names in Lleaf , “a,” “b,” “c,” and

“d.” Two leaf nodes v14 and v24 are connected because they

have the same label name “a.”

Let OL1 and OL2 be the order lists of leaf nodes:

OL1 = [ol1,1, ol1,2, · · · , ol1,n](ol1,i ∈ L1,L(ol1,i) ∈ Lleaf ),

OL2 = [ol2,1, ol2,2, · · · , ol2,n](ol2,i ∈ L2,L(ol2,i) ∈ Lleaf ),

where function L returns the label name of an input node.

The function C(M) returns the number of crossovers:

C(M)=
∑

mj,βmk,α[1 ≤ j < k ≤ n, 1 ≤ α < β ≤ n], (1)

where mi,j is (i, j)th-element of the connection matrix M
that is defined as

mi,j =

{

1 if L(ol1,i) = L(ol2,j),
0 otherwise.

(2)

In Fig. 2, OL1 is given by OL1 = [v14, v15, v16, v17].
Similarly, there are four leaf nodes in phylogenetic tree 2,

ol2,1 = v24, ol2,2 = v25, ol2,3 = v26, and ol2,4 = v27.

Therefore OL2 is given by OL2 = [v24, v25, v26, v27]. Fig. 2

also shows M . For example, the (0, 0)th-element m0,0 is 1

because L(v14) equals L(v24). Similarly, the (1, 1)th-element

m1,1 is 0 because L(v15) does not equal L(v25).

The task of reducing crossovers in the reconciliation graph

is defined as follows:

min : C(M),
subject to : (1) M is the connection matrix of the RG,

(2) There are no crossovers on edges

between non-leaf nodes in the RG.

There should be no crossovers on edges between non-leaf

nodes in the reconciliation graph. For this constraint, we

need to change order of leaf nodes by changing the order

of child nodes in intermediate nodes. We cannot change the

order between v15 and v17 (Fig. 2) because it will lead to

the presence of crossovers on edges between non-leaf nodes.

If we want to change the order between v15 and v17, it is

necessary to replace v15 and v13, which are child nodes of

v12. If we replace v15 and v13, the number of crossovers in

the reconciliation graph becomes zero, and OL1 is changed

to OL1 = [v14, v16, v17, v15].

III. POPULATION-BASED MODIFIED EXTREMAL

OPTIMIZATION

EO[8], [9], [10] follows the spirit of the Bak-Sneppen

model, updating variables that have one of the worst values in

a solution and replacing them by random values without ever

explicitly improving them. EO divides an individual I into n
components Oi (1 ≤ i ≤ n). Let λi be the fitness value of Oi.

First, EO selects Oworst, which has the worst fitness value.

Second, the state of component Oworst is changed at random.

Henceforth, selection and change state of a component are

repeated. The component with the worst fitness value has

a high possibility that the fitness value of it will become

better by changing state. Consequently, the fitness value of

the individual also gets better because the fitness value of

the component with worst fitness value gets better.

Modified EO (MEO) [11] generates two or more neighbor

individuals as candidates for the next generation individual.

The best neighbor individual among the candidates is se-

lected as the next generation individual. Moreover, MEO

uses roulette selection to select a component. First, MEO

selects Oselected with roulette selection. The selection rates

of roulette selection are reciprocals of fitness values with

components. Second, MEO generates new individual I ′ from

I by changing the state of Oselected . Third, the generated I ′

is stored into Candidates. Finally, MEO selects the best

individual from Candidates.

Population-based MEO (PMEO) [12] involves a

population-based approach. There are two or more

individuals in a population. Alternation of generation is

repeatedly performed for every individual by using MEO.

To improve the search efficiency, individuals copy a sub-

structure of an individual that has good sub-structures at

each alternation of generations. This operation resembles the

crossover operation in genetic programing (GP). However,

one side only copies a sub-structure of another side.

Copying of good sub-structures leads to a high probability

of generation of a good individual. As a result, efficient

search can be performed by maintaining diversity.

IV. DISTRIBUTED MODIFIED EXTREMAL OPTIMIZATION

This section explains the main concept of DMEO and the

algorithm of DMEO for reducing crossovers in a reconcilia-

tion graph.
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A. Main Concept

DMEO is a hybrid of PMEO and DGA model. DMEO di-

vides the entire population into two or more sub-populations.

A sub-population evolves individually by PMEO. Moreover,

from each sub-population, some individuals are selected

and transferred to another sub-population. In return, the

same number of migrants are received from another sub-

population. DMEO repeats the following two steps:

(1) Sub-populations should be made to evolve through one

or more generations by using PMEO.

(2) Some individuals of a sub-population are migrated to

another sub-population.

Each sub-population evolves individually. Each sub-

population converges to the separate best solution. Therefore,

DMEO can maintain diversity at the end of alternation of

generations.

B. Definition of Individual and Component

A reconciliation graph is defined as an individual. A

component of an individual is defined as a pair of leaf nodes

with the same label name:

Oi = {ol1,i, ol2,δ(i)} (L(ol1,i) = L(ol2,δ(i))). (3)

Let ol1,i be a leaf node of OL1 and ol2,δ(i) be a leaf node of

OL2. The function δ(i) returns the subscript number of an

element of OL2 whose label name is the same as the label

name of ol1,i. To change the state of Oi, it is necessary to

change the order of child nodes of ancestor nodes of ol1,i or

ol2,δ(i). Here, AS(T, lname) is a set of ancestor nodes of a

leaf node in T that has the label name lname.

The number of crossovers between ol1,i and ol2,δ(i) is

denoted by C(M, i). The following are the definitions of

C(M, i) and the fitness value λi of Oi:

λi =
C(M)− C(M, i)

C(M)
, (4)

C(M, i) =

n
∑

l=i+1

δ(i)−1
∑

m=1

ml,m

2
+

i−1
∑

l=1

n
∑

m=δ(i)+1

ml,m

2
.(5)

In Fig. 2, there are four components, O1 = {ol1,1, ol2,1}(=
{v14, v24}), O2 = {ol1,2, ol2,4}(= {v15, v27}), O3 =
{ol1,3, ol2,2}(= {v16, v25}), and O4 = {ol1,4, ol2,3}(=
{v17, v26}), with δ(1) = 1, δ(2) = 4, δ(3) = 2, and

δ(4) = 3. The fitness values of the components are λ1 = 1,

λ2 = 1/2, λ3 = 3/4, and λ4 = 3/4.

C. Algorithm

The algorithm of DMEO for reducing crossovers in a

reconciliation graph consists of two steps: (1) Evolution

Step and (2) Migration Step (Algorithm 1). First, an initial

population divided to p sub-populations (p is the number

of sub-populations). In the Evolution Step (step 5), all

sub-populations are made to evolve through m generations

by using the function PMEO(SubPi,m) (m is migration

interval). In Migration Step (step 6), some individuals of

a sub-population are migrated to another sub-population.

Finally, the best individual from all sub-populations (step

7 and step 8).

Algorithm 1 DMEO

1: Generate initial population Pinit at random.

2: Ibest ← BEST(Pinit)
3: Divide Pinit into p sub-populations SubPi.

4: for i = 1 to max generations/m do

5: (Evolution Step) For all sub-populations, sub-

population SubPi should be made to evolve

through m generations by using the function

PMEO(SubPi,m).
6: (Migration Step) For all sub-populations, migrate

some individuals of a sub-population to another sub-

population.

7: if F(BEST(SubP1∩· · ·∩SubPp)) > F(Ibest) then

8: Ibest ← BEST(SubP1 ∩ · · · ∩ SubPp)
9: end if

10: end for

Algorithm 2 PMEO(P,m)

1: for i = 1 to m do

2: for all I ∈ P do

3: Evaluate fitness value λi of each component Oi of

I .

4: C ← φ
5: n← 0
6: while n < num of candidates do

7: Select Oselected by roulette selection (selection

rates are the reciprocal of fitness values with

components).

8: C ← C ∪GNI(I, Oselected)
9: n← n+ 1

10: end while

11: I ← BEST(C)
12: end for

13: CSS(P )
14: end for

D. Evolution Step

In the Evolution Step, all sub-populations are made to

evolve through m generations by using the function PMEO

(Algorithm 2). First, for each individual, the state of the

individuals in P is changed by using MEO. Second, the

function CSS copies a good sub-structure of an individual

to another individual.

In the MEO steps, for each individual, the following steps

are executed. Initially, the function evaluates the fitness value

λi (step 3). Next, the following three steps are repeated

while n is less than num of candidates. First, component

Oselected in I is selected by using the roulette selection (step

7). Second, the function generates an neighbor individual

from I with the function GNI. The function GNI generates

a neighbor individual by changing the state of component

Oselected . Third, the neighbor individual is stored in C (step

8). Finally, the best individual in C is selected and I is

replaced by it (step 11).

The state of Oselected is changed by changing the order

of child nodes in an intermediate node that is an ances-

tor node of Oselected . The processing steps of GNI are

as follows. First, the outputs of AS(T1,L(Oselected)) or

AS(T2,L(Oselected)) are stored in the set Ancestors. Then,
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TABLE I
DATA SETS

Taxonomic tree Phylogenetic tree
Number of nodes Number of leaf nodes Number of nodes Number of leaf nodes

Housekeeping 241 40 79 40

Moss 290 207 394 207

Algorithm 3 CSS(P)

1: Select individual SI ∈ P by roulette selection (selection

rates are the fitness values of components).

2: for all I ∈ P, I 6= SI do

3: for i = 1 to n do

4: Calculate the difference diffi between the fitness

value of Oi in SI and the fitness value of Oj in I ,

where Oi and Oj have the same label name.

5: end for

6: Select Oselected by roulette selection (selection rates

are diffi).
7: A← AS(T1,L(Oselected)) or AS(T2,L(Oselected))
8: C ← φ
9: for all a ∈ A do

10: Generate a new individual I ′ from I by changing

the order of child nodes in a.

11: C ← C ∪ I ′

12: end for

13: I ← BEST(C)
14: end for

node a is selected at random from A. Finally, the order of

the child nodes in a is changed. Suppose that the selected

component is O2 in Fig. 2. The function AS(T1,L(O2))
returns {v12, v11} and AS(T2,L(L2)) returns {v22, v21}. If

Ancestors = {v12, v11} and v12 is selected as a, the order

of child nodes in v12 is changed. In this case, order of node

v15 and v13 are changed. As a result, a new individual I ′ is

obtained by the change of state.

Algorithm 3 shows the function CSS. At the beginning,

an individual SI in P is selected by roulette selection (step

1). Each individual of P copies a sub-structure of SI by the

following steps. First, the function calculates the difference

diffi between the fitness value of Oi of SI and the fitness

value of Oj of I , where Oi and Oj have the same label

name (steps 3, 4, and 5). Second, Oselected is selected by

roulette selection (step 6). Next, AS(T1,L(Oselected)) or

AS(T2,L(Oselected)) is stored in A (step 7). Then, for all

a ∈ A, a new individual I ′ is generated from I by changing

the order of child nodes in a, and I ′ is stored in C (steps

9, 10, 11, and 12). Finally, the function selects the best

individual from C (step 13).

E. Migration Step

In the Migration Step, some individuals of a sub-

population are migrated to another sub-population. The dis-

tributed genetic algorithm model requires number of sub−
populations, migration rate, migration interval, and

migration model. The first three items are user-

given parameters. The last item consists of two things:

selection method and topology. The method used for

the selection of individuals for migration is referred as

selection method. The structure of the migration of in-

dividuals between sub-populations is referred as topology.

In this study, we use uniform random selection as the

selection method. Moreover, the proposed algorithm uses

the random ring migration topology. The most basic migra-

tion topology is the ring migration topology. In this topology,

individuals are transferred between directionally adjacent

sub-populations. In the random ring migration topology, an

arrival sub-population to which individuals are to be migrated

is decided at random.

V. PERFORMANCE EVALUATION

We performed four experiments for evaluating the perfor-

mance of DMEO. In the experiments, the two data sets listed

in Table I are used. The Housekeeping data set consists of a

phylogenetic tree of the housekeeping gene and its taxonomic

tree. The Moss data set consists of a phylogenetic tree of

the rps4 gene and its taxonomic tree. The number of species

in the Housekeeping data set is 40 and that in the Moss
data set is 207.

Experiment 1 measured the number of crossovers of

the best individual at each generation to compare DMEO

and PMEO. Experiment 2 also measured the number of

crossovers of the best individual at each elapsed time to

compare DMEO and PMEO. Experiment 3 measured fre-

quency of the number of crossovers of best individuals

in fixed generations. Experiment 4 measured the number

of crossovers of the best individual at each generation by

changing the number of sub-populations.

In PMEO and DMEO, the number of individu-

als in the population was set to 100. The user pa-

rameter num of candidates was set to 100 and m
was set to 10000 in PMEO. In DMEO, the user

parameter num of candidates, migration interval(m),
number of sub−populations(p), and migration rate were

set to be 100, 10, 5 and 0.05, respectively. The number

of individuals in a sub-population is 20. The number of

crossovers was the average of three trials.

Experiment 1

In Experiment 1, we measured the number of crossovers

of the best individual in each generation. Figure3(a) and

Figure3(b) show the number of crossovers (vertical axis:

the number of crossovers, horizontal axis: generations). Fig.

3(a) and Fig. 3(b) show that the number of crossovers of

DMEO in each generation was smaller than that in the case

of PMEO. DMEO showed better performance compared with

PMEO.

The number of crossovers in PMEO is converging into

around 300 when we use Moss data set. On the other

hand, in DMEO, the number of crossovers is converging

into around 250. The diversity of PMEO is small, because

the number of sub-populations is one. Therefore, the fitness
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Fig. 3. Experiment 1 ((a) and (b) shows the number of crossovers of the
best individual) .

value of a individual will not be improved in the end of

alternation of generations.

Experiment 2

In Experiment 2, we measured the number of crossovers of

the best individual at different time instants. The computation

time of DMEO was longer than that in the case of PMEO

because the former included the Migration Step. Therefore,

it was necessary to compare the number of crossovers for

the same computation time.

Fig. 4(a) and Fig. 4(b) show the number of crossovers

at different time instants (vertical axis: the number of

crossovers, horizontal axis: processing time). The number of

crossovers of DMEO becomes smaller than that of PMEO

at the end of alternation of generations.

Experiment 3

The number of crossovers of the best individual was

measured 100 times for the 10,000th alternation generation.

Figure5(a) and Figure5(b) show frequency of the number of

crossovers when Housekeeping data set is used. The num-

ber of crossovers of the optimal solution of Housekeeping
data set is 9. Both of them can obtain the best solution by

100%. Fig. 6(a) and Fig. 6(b) show the frequency of the

number of crossovers for the Moss data set. In DMEO, all

the numbers of crossovers of optimal solutions were between

200 and 299. On the other hand, they were distributed

between 200 and 400 for PMEO. Above all, although 90% of

optimal solutions were between 200 and 249 in the case of

DMEO, only a few optimal solutions were obtained between

200 and 249 in the case of MEO.
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Fig. 4. Experiment 2 ((a) and (b) shows the number of crossovers of the
best individual).

Experiment 4

In Experiment 4, we changed the number of sub-

populations in DMEO. Fig. 7 shows the results of Experiment

4 using Moss data set. When the number of sub-populatins

is four, it has fallen into the local optimal solutions. On

the other hand, when the number of sub-pouplations is five

or ten, convergence is not early. Therefore, they can obtain

better solutions.

VI. CONCLUSION

This paper proposes distributed modified extremal opti-

mization (DMEO) for reducing crossovers in a reconciliation

graph. The proposed algorithm is a bio-inspired algorithm

of population-based modified extremal optimization (PMEO)

and the distributed genetic algorithm model. We have evalu-

ated DMEO by using actual data sets. Experimental results

show that DMEO is better performance compared with

PMEO. In the future work, we will develop extended DMEO

for making it applicable to other combination optimization

problems.
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Fig. 5. Experiment 3 (Housekeeping data set).
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Fig. 6. Experiment 3 (Moss data set).
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