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Abstract—This article considers bilevel linear programming
problems where the coefficients of the objective functions in
the problem are given as a possibilistic variable characterized
by a quadratic membership function. An extended Stackelberg
solution is defined by incorporating the notions of possibility
theory into the original concept of Stackelberg solutions. The
characteristic of the proposed model is that the corresponding
Stackelberg problem is exactly solved by using nonlinear bilevel
programming techniques.

Index Terms—Bilevel linear programming, fuzzy parameters,
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I. I NTRODUCTION

Bilevel programming problems (BLPPs) are hierarchical
optimization problems in which there exist two decision
makers (DMs) who have different priorities on decision. It
is assumed that the DM at the upper level, who has higher
priority than the other, first specifies a strategy, and then the
DM at the lower level chooses a strategy so as to optimize
its own objective with full knowledge of the action of the
DM at the upper level.

Bilevel or multilevel optimization is closely related to the
economic problem of Stackelberg [1] in the field of game
theory. In conventional bilevel or multilevel mathematical
programming models employing the solution concept of
Stackelberg equilibrium, it is assumed that there is no com-
munication among DMs, or they do not make any binding
agreement even if there exists such communication. Bilevel
programs were initially considered by Bracken and McGill
[2], [3], [4] as applications in the military fields as well as
in production and marketing decision making, although they
did not use the termsbilevel and multilevel programming,
which were introduced later by Candler and Norton [5].

Bilevel or multilevel programming models have been ap-
plied to various hierarchical decision making situations such
as oligopolistic market supplying a homogeneous product
[6], principal-agent problem [7], traffic planning [8], pricing
and fare optimization in the airline industry [9], management
of hazardous materials [10], aluminum production process
[11], pollution control policy determination [12], tax credits
determination for biofuel producers [13], pricing in com-
petitive electricity markets [14], flow shop scheduling [15],
supply chain planning [16], facility location [17], [18], [19],
defense problem [3], [20] and so forth.
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From a viewpoint of ambiguity or fuzziness involved
in human’s judgments, rather than randomness caused by
stochastic events, the concept of fuzzy sets [21] was applied
to decision making problems or optimization problems under
fuzziness [22], [23], [24], [25] including a bilevel or multi-
level problem [26], [27].

Under these circumstances, this article firstly tackles a
noncooperative BLPP with possibilistic variables where the
ambiguity of coefficient values in problems are mutually
dependent. In particular, we focus on the case where the pos-
sibilistic variables involved in bilevel problems are assumed
to be characterized as a possibilistic distribution defined
by a quadratic membership function. In order to consider
ambiguity involved in the bilevel programming problem,
we consider the concepts of Stackelberg solutions under
fuzziness by incorporating possibility theory into the original
Stackelberg solution concept.

This paper is organized as follows. Section 2 formulates a
BLPP with possibilistic variables and proposes a decision
making model using a possibility measure. In Section 3,
we show the original problem involving ambiguity can be
transformed into a deterministic nonlinear BLPP which is
exactly solved by nonlinear bilevel programming techniques.
In Section 4, we conclude this paper and discuss future
studies.

II. B ILEVEL PROGRAMMING PROBLEMS WITH

POSSIBILISTIC VARIABLES

Consider the bilevel linear programming problems formu-
lated as

maximize
x1,x2

z1(x1, x2) = C̃11x1 + C̃12x2

wherex2 solves
maximize

x2
z2(x1,x2) = C̃21x1 + C̃22x2

subject to Ãi1x1 + Ãi2x2 ≤ B̃i,

∀i ∈ I
△
= {1, 2, . . . , r}

ai1x1 + ai2x2 ≤ bi,
i = r + 1, r + 2, . . . , v

x1 ≥ 0, x2 ≥ 0,


(1)

where x1 is an n1 dimensional decision variable column
vector for the DM at the upper level (DM1), x2 is an n2

dimensional decision variable column vector for the DM at
the lower level (DM2), and zl(x1, x2), l = 1, 2 are the
objective functions for DMl, l = 1, 2, respectively.

We assume that each of̃Cljk, k = 1, 2, . . . , nj of C̃lj ,
l = 1, 2, j = 1, 2 is a possibilistic variable characterized as
a possibility distribution defined by the following quadratic
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membershipfunction [28], [29], [30], [31], [32]:

πC̃lj
(clj) = µC̃lj

(clj) = L
(
(clj − dc

lj)(U
c
l )−1(clj − dc

lj)
)
,

(2)
where dc

lj = (dc
lj1, d

c
lj2, . . . , d

c
ljn) is the most conceivable

vector for clj , U c
l is an n × n (n = n1 + n2) symmetrical

positive-definite matrix representing the interactions among
the coefficients of thelth objective function.(U c

l )−1 is the
inverse matrix ofU c

l . L is a reference or shape function
which is a nonnegative continuous function satisfying the
following condition:

1) L(t) is nonincreasing for anyt > 0.
2) L(0) = 1.
3) L(t) = L(−t) for any t ∈ R.
4) There exists atL0 > 0 such thatL(t) = 0 for any t

larger thantL0 .
Possibilistic variables with quadratic membership func-

tions have been applied to linear regression [28], identifi-
cation of linear systems [29], evidence theory [30], portfolio
section [32] and so forth. As far as we know, this paper is
the first study to consider bilevel linear programming prob-
lem with possibilistic variables characterized by quadratic
membership functions.

In problem (1),Ãijk, ∀i ∈ I, j = 1, 2, k = 1, 2, . . . , nj

andB̃i are possibilistic variables which are expressed asL-L
fuzzy numbers andL-R fuzzy numbers characterized by the
following membership functions:

µÃijk
(aijk) =


La

(
ma

ijk − aijk

αa
ijk

)
if ma

ijk ≥ aijk

La

(
aijk − ma

ijk

βa
ijk

)
if ma

ijk < aijk

(3)
and

µB̃i
(bi) =


Lb

(
mb

i − bi

αb
i

)
if mb

i ≥ bi

Rb

(
bi − mb

i

βb
i

)
if mb

i < bi,

(4)

whereLa, Lb andRb are reference functions satisfying the
same conditions ofL.

It should be noted here that problem (1) is an ill-defined
problem because neither the meaning of minimizing the
objective function nor that of constraints is well defined. In
other words, some interpretation of the problem is needed
so that the original problem can be reformulated as a well-
defined one. In the following subsection, we shall discuss
this issue and show how to transform the original problem
into a well-defined one.

III. POSSIBILISTIC BI-LEVEL PROGRAMMING MODEL

A. Possibilistic constraint

In this subsection, at the first step to transform the original
problem (1) into a well-defined one, we focus only on the
following constraints involving possibilistic variables:

Ãi1x1 + Ãi2x2 ≤ B̃i, ∀i ∈ I.

For simplicity, instead of the above constraint, we consider

Ãix ≤ B̃i,

whereÃi =
(
Ãi1, Ãi2

)
andx = (xt

1, xt
2)

t.
Since both sides of the above constraint involves possi-

bilistic variables, the meaning of inequality sign≤ is not
uniquely determined, which means that some interpretation
of the above constraint is necessary.

As one of reasonable and useful tools for decision making
under fuzziness, possibility theory [33] has been widely
used to deal with constraints involving possibilistic variables.
Possibility theory is a mathematical theory for dealing with
certain types of uncertainty. Zadeh [34] firstly introduced
possibility theory in 1978 as an extension of fuzzy sets and
fuzzy logic [35].

Along the line of possibilistic constraints in the framework
of possibilistic programming [32], we consider the following
constraint:

Π
{

Ãix ≤ B̃i

}
≥ ĥcst

i , (5)

whereΠ denotes a possibility measure andĥcst
i is an aspi-

ration level given by a DM. When the membership function
of Ãix and B̃i are given, on the basis of ranking of fuzzy
number using possibility theory [36], the left-hand side of
(5) is defined as

Π
{

Ãix ≤ B̃i

}
△
= sup

ua
i ≤b

min
{
πÃix

(ua
i ) , πB̃i

(bi)
}

, (6)

where πÃix
(ua

i ) and πB̃i
(bi) are possibilistic distribution

functions ofÃix and B̃i, respectively.
In general, membership functions can be regarded as possi-

bilistic distribution functions. Through the Zadeh’s extension
principle, the membership functions of possibilistic variables
corresponding tõAix is calculated as

πÃix
(ua

i ) = µÃix
(ua

i )

=


La

(
ma

i x − ua
i

αa
i x

)
if ma

i x ≥ ua
i

La

(
ua

i − ma
i x

βa
i x

)
if ma

i x < ua
i .

(7)

In order to describe how likely an event occurs, possibility
theory deals with not only the possibility of event using
possibility measures but also the necessity of the event using
necessity measures. Whereas possibility measures are used
by optimistic DMs, necessity measures are recommended
to pessimistic DMs. Therefore, it is worth introducing the
constraint using a necessity measure because the DM may
consider that some of constraints is necessarily satisfied.
Then, we consider the following constraint:

N
{

Ãix ≤ B̃i

}
≥ ĥcst

i , (8)

where N is a necessity measure andĥcst
i is an aspiration

level specified by a DM. For any set or eventU , necessity
measures are defied by

N{U} = 1 − Π{U},

whereU denotesthe complement ofU . Hence, the left-hand
side of (8) is defined as

N
{

Ãix ≤ B̃i

}
△
= inf

ua
i ≤b

max
{
1 − πÃix

(ua
i ) , πB̃i

(bi)
}

.

(9)
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By applying the outcomes obtained by previous studies on
possibilistic programming [32] to the constraints using pos-
sibility and necessity measures, constraint (5) is transformed
into

ma
i x − L∗

a

(
ĥcst

i

)
αa

i x ≤ mb
i + R∗

b

(
ĥcst

i

)
βb

i . (10)

Similarly, constraint (8) is written as

ma
i x+L∗

a

(
1 − ĥcst

i

)
βa

i x ≥ mb
i −L∗

b

(
1 − ĥcst

i

)
αb

i . (11)

B. Possibilistic Stackelberg problem

In the previous subsection, we give an interpretation of
the constraints with possibilistic variables on the basis of
possibility theory and transform the original possibilistic
constraints (5) and (8) into deterministic linear constraints
(10) and (11), respectively.

It should be noted here that (1) is still an ill-defined
problem because the objective function of each DM involves
possibilistic variables. In other words, the Stackelberg solu-
tion of (1) has not been clearly defined yet.

Therefore, we consider the following Stackelberg problem
as one of the reasonable decision making models for BLPP
with possibilistic variables.

maximize
x1,x2,f1,f2

f1

wherex2 andf2 solve
maximize

x2,f2
f2

subject to N
{

C̃1x ≥ f1

}
≥ ĥobj

1

N
{

C̃2x ≥ f2

}
≥ ĥobj

2

Π
{

Ãix ≤ B̃i

}
≥ ĥcst

i , ∀i ∈ Ipos

N
{

Ãix ≤ B̃i

}
≥ ĥcst

i , ∀i ∈ Inec

ai1x1 + ai2x2 ≤ bi,
i = r + 1, r + 2, . . . , v

x1 ≥ 0, x2 ≥ 0,



(12)

whereIpos andInec are index sets satisfyingIpos∪Inec = I
andIpos ∩ Inec = ∅.

It should be noted here that the Stackelberg problem to
be solved, which is an interpretation of the original ill-
defined problem (1), is clearly defined, which means that
the Stackelberg solution of (1) is defined as the Stackelberg
solution of (12).

Since we have already obtained (10) and (11), the re-
maining task is to transform the following constraint into
deterministic ones:

N
{

C̃1x ≥ f1

}
≥ ĥobj

1 ,

N
{

C̃2x ≥ f2

}
≥ ĥobj

2 .

Through the Zadeh’s extension principle, the membership
function of a possibilistic variable corresponding to each of
objective functionszl(x1, x2), l = 1, 2 is given as

πC̃lx
(uc

l ) = µC̃lx
(uc

l ) = L

(
(uc

l − dc
l x)2

xtU c
l x

)
. (13)

Then,we transform the constraint

N
{

C̃lx ≥ fl

}
≥ ĥobj

l

as the following deterministic nonlinear constraint [31]:

dc
l x −

√
L∗

(
1 − ĥobj

l

)
xtU c

l x ≥ fl. (14)

It should be noted here that the maximization offl under
the constraint (14) is equivalent to the maximization of

dc
l x −

√
L∗

(
1 − ĥobj

l

)
xtU c

l x.

Therefore,(12) is equivalently transformed into the fol-
lowing problem:

maximize
x1,x2,f1,f2

dc
1x −

√
L∗

(
1 − ĥobj

1

)
xtU c

1x

wherex2 andf2 solve

maximize
x2,f2

dc
2x −

√
L∗

(
1 − ĥobj

2

)
xtU c

2x

subjectto ma
i x − L∗

a

(
ĥcst

i

)
αa

i x

≤ mb
i + R∗

b

(
ĥcst

i

)
βb

i , ∀i ∈ Ipos

ma
i x + L∗

a

(
1 − ĥcst

i

)
βa

i x

≥ mb
i − L∗

b

(
1 − ĥcst

i

)
αb

i , ∀i ∈ Inec

ai1x1 + ai2x2 ≤ bi,
i = r + 1, r + 2, . . . , v

x1 ≥ 0 , x2 ≥ 0.


(15)

It should be emphasized that problem (15) is a deterministic
problem that is obtained from the original possibilistic BLPP
(1) through the proposed decision making model expressed
by (12).

IV. SOLUTION PROCEDURE

For the resulting bilevel programming problem (15) which
has nonlinear objective functions and linear constraints, recall
that DM1 first makes a decisionx1, and then DM2makes a
decisionx2 so as to optimize the objective function with
full knowledge of decisionx1 of DM1. In other words,
DM2 optimally responses for a given decision of DM1 by
solving the mathematical programming problem for DM2. To
be more precise, when we consider a Stackelberg problem
for (15), it is assumed that DM1 selects a decisionx1 such
that his/her objective function is optimized on the assumption
that DM2 choosesx2 as a rational reaction tox1, denoted by
x2(x1). The solution obtained by such a procedure is called
a Stackelberg solution. It should be noted here thatx2(x1) is
not always uniquely determined because there may be a lot
of solutionsx2 that optimize the DM2’s objective function
for a givenx1.

Now we discuss how to obtain a Stackelberg solution to
(15). LetS be a set of feasible solutions(x1, x2) of problem
(15). Also, letZ1(x1, x2) andZ2(x1, x2) be

Z1(x1,x2)

= dc
1x −

√
L∗

(
1 − ĥobj

1

)
xtU c

1x

= dc
11x1 + dc

12x2 −
√

L∗
(
1 − ĥobj

1

)
×

√
xt

1U
c
11x1 + 2xt

1U
c
12x2 + xt

2U
c
13x2 (16)
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and

Z2(x1, x2)

= dc
2x −

√
L∗

(
1 − ĥobj

2

)
xtU c

2x

= dc
21x1 + dc

22x2 −
√

L∗
(
1 − ĥobj

2

)
×

√
xt

1U
c
21x1 + 2xt

1U
c
22x2 + xt

2U
c
23x2, (17)

where

U c
1 =

(
U c

11 U c
12

(U c
12)

t
U c

13

)
,

U c
2 =

(
U c

21 U c
22

(U c
22)

t
U c

23

)
.

Then, a Stackelberg solution to the bilevel programming
problem (15) is defined as:{

(x1, x2)
∣∣∣∣ (x1, x2) ∈ arg max

(x1,x2)∈IR
Z1(x1, x2)

}
,

whereIR is an inducible region defined by

IR = {(x1, x2) | (x1, x2) ∈ S, x2 ∈ R(x1)}.

Here,R(x1) is a set of rational response of DM2 to a given
x1, defined by

R(x1) =
{

x2

∣∣∣∣ x2 ∈ arg max
x2∈S(x1)

Z2(x1,x2)
}

andS(x1) is a feasible solution set ofx2 for a fixedx1.
In other words,IR is obtained by calculatingx2 of the

following lower-level problem for each of giveňx1.

maximize
x2

dc
22x2 −

√
L∗

(
1 − ĥobj

2

)
×

√
x̌t

1U
c
21x̌1 + 2x̌t

1U
c
22x2 + xt

2U
c
23x2

subject toma
i2x2 − L∗

a

(
ĥcst

i

)
αa

i2x2

≤ mb
i + R∗

b

(
ĥcst

i

)
βb

i

−ma
i1x̌1 + L∗

a

(
ĥcst

i

)
αa

i1x̌1, ∀i ∈ Ipos

ma
i2x2 + L∗

a

(
1 − ĥcst

i

)
βa

i2x2

≥ mb
i − L∗

a

(
1 − ĥcst

i

)
αb

i − ma
i1x̌1

−L∗
a

(
1 − ĥcst

i

)
βa

i1x̌1, ∀i ∈ Inec

ai2x2 ≤ bi − ai1x̌1, i = r + 1, r + 2, . . . , v
x2 ≥ 0.


(18)

It is very important to check whether or notR(x1) is a
singleton for any fixedx1. If R(x1) is not a singleton,
then DM1 has to select one solution inR(x1) as a ratio-
nal reaction of DM2 tox1. In this case, the concept of
weak/strong (or optimistic/pessimistic) Stackelberg solution
[37] is necessary. Fortunately, we do not need to introduce
weak/strong Stackelberg solution to (15) becauseR(x1) is
proved to be a singleton for any fixedx1.

Theorem 1:R(x1) is a singleton for any fixedx1.

Proof: SinceU c
2 is positive definite,xt

2U
c
23x is a strictly

convex function. The constraint is linear and then problem

(18) is a strictly convex programming problem, which means
that R(x1) is a singleton for any fixedx1.

Note that the objective function of DM1 defined by (16)
is strictly concave for any fixed rational responseR(x1)
of DM2 that is a singleton. In other words, the upper-
level problem to be solved for DM1 is also a strictly
concave programming problem. From this fact together with
the above theorem, the Stackelberg solution of (15) is
uniquely determined. Thus, the Stackelberg solution of (15)
is exactly obtained by existing computational methods for
obtaining a Stackelberg solution to nonlinear BLPPs [38],
[39]. Edmunds and Bard [40] introduced a solution algorithm
using branch-and-bound techniques which does not guarantee
global optimality but assuresϵ-optimality. Savard and Gauvin
[39] developed a descent direction method for nonlinear
BLPPs using the property that the steepest descent direction
coincides with the optimal solution of the linear-quadratic
bilevel program. G̈umüs and Floudas [38] constructed an
exact solution algorithm for nonlinear BLPPs. Falk and
Liu [41] presented a bundle method using subdifferential
information obtained from the lower-level problem. Colson
et al. [42] developed a trust-region method for solving
nonlinear BLPPs. If readers are interested in various solution
algorithms for BLPPs, refer to bibliography and/or overview
of BLPPs [43], [44], [45].

V. CONCLUSION

In this paper, assuming noncooperative behavior of the two
DMs, we have considered a possibilistic bilevel linear pro-
gramming problem. In order to properly handle possibilistic
information involved in the problem, we have developed a
novel decision making model. Though the proposed decision
making model, we have transformed the original possibilistic
bilevel programming problem into a deterministic nonlinear
bilevel programming problem. Using the convexity property
of the resulting problem, we have shown that the Stackelberg
solution of the problem is obtained by using conventional
nonlinear bilevel programming techniques. In the future, we
will apply the proposed model to real-world hierarchical
decision making problems. Extensions of the proposed model
in this paper to cooperative cases [46] will be considered
elsewhere.
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