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Bilevel Linear Programming Problems with
Quadratic Membership Functions of Fuzzy
Parameters
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Abstract—This article considers bilevel linear programming From a viewpoint of ambiguity or fuzziness involved
problems where the coefficients of the objective functions in in human’s judgments, rather than randomness caused by
the problem are given as a possibilistic variable characterized stochastic events, the concept of fuzzy sets [21] was applied

by a quadratic membership function. An extended Stackelberg to decisi Ki bl timizati b d
solution is defined by incorporating the notions of possibility 0 decision making prob'ems or optimization probleéms under

theory into the original concept of Stackelberg solutions. The fuzziness [22], [23], [24], [25] including a bilevel or multi-
characteristic of the proposed model is that the corresponding level problem [26], [27].
Stackelberg problem is exactly solved by using nonlinear bilevel  Under these circumstances, this article firstly tackles a
programming techniques. noncooperative BLPP with possibilistic variables where the
Index Terms—Bilevel linear programming, fuzzy parameters, ambiguity of coefficient values in problems are mutually
po_ssibilisti_c variablc_e, .S_tackelberg solutions, quadratic member- dependent. In particular, we focus on the case where the pos-
ship function, possibility theory. sibilistic variables involved in bilevel problems are assumed
to be characterized as a possibilistic distribution defined
|. INTRODUCTION by a quadratic membership function. In order to consider
mbiguity involved in the bilevel programming problem,
optimization problems in which there exist two decisio € 'consider'the concgpts of .S'tgckelberg.solutions. gnder
makers (DMs) who have different priorities on decision. fuzziness by mcor_poratlng possibility theory into the original
}ackelberg solution concept.

is assumed that the DM at the upper level, who has high Thi . >ed as foll Section 2 |
priority than the other, first specifies a strategy, and then the IS paper Is organized as follows. Section 2 formulates a

DM at the lower level chooses a strategy so as to optimi?é‘PP with possibilistic variables and proposes a decision

its own objective with full knowledge of the action of themaking model L_Js_ing a possibi_lity measure. _In _Section 3
DM at the upper level. we show the original problem involving ambiguity can be

Bilevel or multilevel optimization is closely related to thetransformed into a deterministic nonlinear BLPP which is

economic problem of Stackelberg [1] in the field of gam?xactIy .SOIVEd by nonlinear bileyel programming. techniques.
theory. In conventional bilevel or multilevel mathematical’! Section 4, we conclude this paper and discuss future

programming models employing the solution concept (')SFUd'eS

Stackelberg equilibrium, it is assumed that there is no com-

munication among DMs, or they do not make any binding 1. BILEVEL PROGRAMMING PROBLEMS WITH
agreement even if there exists such communication. Bilevel POSSIBILISTIC VARIABLES

programs were init'ially con;idered by Bragken and McGil Consider the bilevel linear programming problems formu-
[2], [3], [4] as applications in the military fields as well 89ted as

in production and marketing decision making, although they

Bilevel programming problems (BLPPs) are hierarchic}

did not use the termsilevel and multilevel programming mawxli_nmlize z1(x1, 2) = Crixy + Croxs
which were introduced later by Candler and Norton [5]. wherez, solves
_Bllevel or mult|!evel programming modgls hgve peen ap- maximize z(x1, zs) = Corxy + Caoomo
plied to various hierarchical decision making situations such 2 ~ ~ ~
as oligopolistic market supplying a homogeneous product subject to Aix; + Asps SAB“ (1)
[6], principal-agent problem [7], traffic planning [8], pricing Viel ={1,2,...,r}
and fare optimization in the airline industry [9], management a1 + a;pee < by,
of hazardous materials [10], aluminum production process t=r+Lr+2...v
[11], pollution control policy determination [12], tax credits z1 >0, z2 >0,

determination for biofuel producers [13], pricing in COM3here ; is ann, dimensional decision variable column
petitive electricity markets [14], flow shop scheduling [15] ! L

. . . ) Vector for the DM at the upper level (DM, x» is ann
supply chain planning [16], facility location [17], [18], [19], dimensional decision variabFI)g column s/e?cor ?or the D2M at
defense problem [3], [20] and so forth.

the lower level (DM2), and z(x1,x2), [ = 1,2 are the
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membershigfunction [28], [29], [30], [31], [32]: where 4; — (Ail, Aﬂ) andz = (zt, ab)".
c o\ — c Since both sides of the above constraint involves possi-
T, () = Hey, () (e = di) (V7)™ (e “)))’ bilistic variables, the meaning of inequality sign is not

where df; = (dlcjl,dlcﬂ’ N .’d?jn) is the most conceivable uniquely determined, which means that some interpretation

vector forey;, U is ann x n (n = n; + ne) symmetrical of;\he abovfe constrakljrllt IS réecesfsallrty. Is for decisi ki
positive-definite matrix representing the interactions amon S One ofreasonable and usetul tools for decision maxing

the coefficients of théth objective function(Uy)~! is the u dgr ﬂéZZilne_si' possib_ility _thecl)r_y [33] hgsl b_een _vvibc:ely
inverse matrix ofUy. L is a reference or shape function>¢ _qu_ eahwn gonstralnrt]s Invo V|r|19hp055| fl 'SSC "I‘?‘“a ez
which is a nonnegative continuous function satisfying t 0SS! liity theory s a m?‘ ematical t eory for deaiing wit
following condition: certain types of uncertainty. Zadeh [34] firstly introduced
: . . possibility theory in 1978 as an extension of fuzzy sets and
1) L(¢) is nonincreasing for any > 0. .
2 Li0) = 1 fuzzy logic [35].
) L(0) =1. Along the line of possibilistic constraints in the framework
3) L(t) = L(—t) for anyt € R.

4) There exists @t > 0 such thatL(t) — 0 for any ¢ of possibilistic programming [32], we consider the following

constraint:
larger thantf.
Possibilistic variables with quadratic membership func-

tions have been applied to linear regression [28], identifyhere T denotes a possibility measure ahgtt is an aspi-
cation of linear systems [29], evidence theory [30], portfoligation |evel given by a DM. When the membership function
section [32] and so forth. As far as we know, this paper s A,z and B; are given, on the basis of ranking of fuzzy

the first study to consider bilevel linear programming proky,moer using possibility theory [36], the left-hand side of
lem with possibilistic variables characterized by quadrat'tq.—)) is defined as

membership functions. ) A
In problem (1), A, Vi € I, j = 1,2, k = 1,2,...,n; H{Aim < Bi} = sup min {7y , (uf), 75 (b))}, (6)
and B; are possibilistic variables which are expressed ds ug<b

fuzzy numbers and.-R fuzzy numbers characterized by thgyhere T4, (ud) and 7z (b;) are possibilistic distribution

. . . . K3
following membership functions: functions of A;z and B;, respectively.

me — s In general, membership functions can be regarded as possi-
ijk ijk . a
Ly | ——F— it miy > aijk

I {Aiw < Bi} > fest, )

bilistic distribution functions. Through the Zadeh’s extension

a

i (aie) = Yijh principle, the membership functions of possibilistic variables
Augh I aije —me, corresponding tod;z is calculated as
L, -y X if m?]k < Qjjk
ijk
@) maL(uf) = na,(uf)
and miT — uj .
me—b\ .., L, Yt if mlx > uf
L("gt) oz = . ™
pp, (bi) = - ) I, <u—maf) it mox < e
Rb<16b z> if m? < b, Bix

i In order to describe how likely an event occurs, possibility
where L,, L, and R;, are reference functions satisfying theheory deals with not only the possibility of event using
same conditions of. possibility measures but also the necessity of the event using
It should be noted here that problem (1) is an ill-definedecessity measures. Whereas possibility measures are used
problem because neither the meaning of minimizing thg/ optimistic DMs, necessity measures are recommended
objective function nor that of constraints is well defined. Ito pessimistic DMs. Therefore, it is worth introducing the
other words, some interpretation of the problem is needednstraint using a necessity measure because the DM may
so that the original problem can be reformulated as a weflonsider that some of constraints is necessarily satisfied.
defined one. In the following subsection, we shall discughen, we consider the following constraint:
this issue and show how to transform the original problem - - R
into a well-defined one. N {Aim < Bi} > g, (8)

. - ~ t . - .
[1l. POSSIBILISTIC BI-LEVEL PROGRAMMING MODEL where N is a necessity measure ang™ is an aspiration
T . level specified by a DM. For any set or ev: necessit
A. Possibilistic constraint P y y ant y

. . . ~measures are defied by
In this subsection, at the first step to transform the original

problem (1) into a well-defined one, we focus only on the N{U} =1-1{U},

following constraints involving possibilistic variables: whereT’ denoteshe complement of. Hence, the left-hand

Ajxy + Ajpxs < B;, Vi€l side of (8) is defined as
For simplicity, instead of the above constraint, we considery {Aiw < Bi} 2 inf max {1 — 7, (W), T3 (bi>}-
- . ug <b e
AZ‘CL‘ S Bi7 (9)
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By applying the outcomes obtained by previous studies @s the following deterministic nonlinear constraint [31]:
possibilistic programming [32] to the constraints using pos-
sibility and necessity measures, constraint (5) is transformed dix — \/ * (1 _ ilg'bj> ztUrx > fi. (14)
into

mi@ - L () afa < ml+ By (he) 8. (10)

It should be noted here that the maximizationfpouinder
the constraint (14) is equivalent to the maximization of

Similarly, constraint (8) is written as

mia Ly (1-het) Bla > ml—Ij (1-het) ol (1) diz — \/ “(1-h) @Upa.
Therefore,(12) is equivalently transformed into the fol-
B. Possibilistic Stackelberg problem lowing problem:
In the previous subsection, we give an interpretation of b ‘
\/L* (1 — B J) 2tUse

the constraints with possibilistic variables on the basis ofg]%im%fdfw -
possibility theory and transform the original possibilisfiherez, and f, solve
constraints (5) and (8) into deterministic linear constraints .
. e c >
(10) and (11), respectively. maximized,z — \/L* (1 —hy J) z'Ugz
It should be noted here that (1) is still an ill-defined . u v (Gest) a
problem because the objective function of each DM involves>UPiectto mi@ — L; (hi ) X

possibilistic variables. In other words, the Stackelberg solu- <m!+ R; (Egst) b Vi € Lpos
tion of (1) has not been clearly defined yet. .
Therefore, we consider the following Stackelberg problem mix + L} (1 - hfst) Blx
as one of_ th_e reasonable decision making models for BLPP >mb— I (1 B ﬁgst) b Vel
with possibilistic variables. ¢ ' g
maximize fi a1 + appky < by,
hwl’w"”fl’hd | i=r+1,r+2,...,v
Ximize fa (15)
subject to N {C’lw > f1} > hov It should be emphasized that problem (15) is a deterministic
o - problem that is obtained from the original possibilistic BLPP
N {Cgaz > fg} > hgbj (1) through the proposed decision making model expressed
5 . (12) by (12).
i {Azw < Bi} > het, Vi € Lyos
N {Aiw < BZ_} > het, Vi € Tne IV. SOLUTION PROCEDURE
anx1 + apxs < b, For the resulting bilevel programming problem (15) which
i= o+ Lr+2,...,0 has nonlinear objective functions and linear constraints, recall
that DM1 first makes a decisio®;, and then DM2makes a
x; >0, x 20, decisionz, so as to optimize the objective function with
wherel,,, and/,.. are index sets satisfyinf,s Ulpec = 1 full knowledge of decisionz; of DM1. In other words,
and Ips N Iyee = 0. DM2 optimally responses for a given decision of DM1 by

It should be noted here that the Stackelberg problem $6lving the mathematical programming problem for DM2. To
be solved, which is an interpretation of the original illbe more precise, when we consider a Stackelberg problem
defined problem (1), is clearly defined, which means thfr (15), it is assumed that DMselects a decisiom; such
the Stackelberg solution of (1) is defined as the Stackelbdhgt his/her objective function is optimized on the assumption
solution of (12). that DM2 chooses:, as a rational reaction t9,, denoted by

Since we have already obtained (10) and (11), the raz(x1). The solution obtained by such a procedure is called

maining task is to transform the following constraint inté@ Stackelberg solution. It should be noted here #hdtr, ) is
deterministic ones: not always uniquely determined because there may be a lot

- - obj of solutionsx, that optimize the DM2’s objective function
N {Clx = fl} = hi™, for a givenz;.
> 7 obj Now we discuss how to obtain a Stackelberg solution to
N {ng = f2} 2 hy " (15). LetS be a set of feasible solutiorig, z2) of problem
Through the Zadeh's extension principle, the membership5). Also, letZ; (z1, z2) and Zz(z1, z2) be
function of a possibilistic variable corresponding to each of
objective functions;;(z1,z2), [ = 1,2 is given as

. , ué — dfx)? = dcm\/ (1= hSY) wtUsx
T (UF) = He,e (uf) = L ((ll)> (13) ! ( ! ) '

ztUfx
i _ c c o __jobj
Then,we transform the constraint = dnz+dy,T L~ (1 hy )

Zi(x1, z2)

N {C’zx > fz} > ho¥ x\/mgUflml + 22U, @y + @b Uiy (16)
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and
Za(x1,x2)
= dsx — \/ * (1 - flgbj) xtUSx
= dSy@y + Sz — 1 L* (1 - Egbﬂ')
X \/sctlUglacl + 22t US,xo + xhUSs o,  (17)
where
Uy Uy,
Ue 11 12 ) 7
' < (Ufz)t Uts
Us US.
Ue — 21 22 )
? <W@t%

(18) is a strictly convex programming problem, which means
that R(x1) is a singleton for any fixeek;. [ |

Note that the objective function of DM1 defined by (16)
is strictly concave for any fixed rational respon&gx;)
of DM2 that is a singleton. In other words, the upper-
level problem to be solved for DM1 is also a strictly
concave programming problem. From this fact together with
the above theorem, the Stackelberg solution of (15) is
uniquely determined. Thus, the Stackelberg solution of (15)
is exactly obtained by existing computational methods for
obtaining a Stackelberg solution to nonlinear BLPPs [38],
[39]. Edmunds and Bard [40] introduced a solution algorithm
using branch-and-bound techniques which does not guarantee
global optimality but assuresoptimality. Savard and Gauvin
[39] developed a descent direction method for nonlinear

Then, a Stackelberg solution to the bilevel programmirfdLPPs using the property that the steepest descent direction

problem (15) is defined as:

{@.2 Zleren }.
where IR is an inducible region defined by

IR = {(z1,22) | (1,22) € 5, x2 € R(x1)}.

max

T1,T9) € ar
( b 2) g(ml,mz)EIR

Here, R(x;) is a set of rational response of @2Mo a given
x, defined by

R(z,) = {1‘2

and S(x;) is a feasible solution set af, for a fixed ;.
In other words,/ R is obtained by calculating:o of the
following lower-level problem for each of gived;.

To € arg max Zs(x1,xT2)
:cgeS(a;l)

F c _ * __ jobj
ma>§:|2m|zed22w2 L (1 hy )

wlr7e 4 Str7c tr7c
x /2 Us &1 + 22 Usyxo + 2L US, @0

subject tom%zy — L (flf“) QX2
<ml+ R (he) 37

—m& @, + L (ﬁgst) Q& Vi € Ipos

miyas + Ly (1- he*t) B,

>mb - L (1= et ) ab = mé iy

=

7L: (1 - iLSSt) /6?1:%17 Vi € Inec

aigiliggbi—aﬂ.’il, i:T+17T+2,...,U
:1:220

(18)
It is very important to check whether or ndt(x,) is a
singleton for any fixedz;. If R(x;) is not a singleton,
then DM1 has to select one solution R(x;) as a ratio-
nal reaction of DM2 tox;. In this case, the concept of

weak/strong (or optimistic/pessimistic) Stackelberg solutionel
[37] is necessary. Fortunately, we do not need to introduct

weak/strong Stackelberg solution to (15) becaide) is
proved to be a singleton for any fixeg .

Theorem 1:R(x,) is a singleton for any fixeet;.
Proof: SinceU5s is positive definiteg’Us,x is a strictly
convex function. The constraint is linear and then proble
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coincides with the optimal solution of the linear-quadratic

bilevel program. @Gmis and Floudas [38] constructed an

exact solution algorithm for nonlinear BLPPs. Falk and

Liu [41] presented a bundle method using subdifferential
information obtained from the lower-level problem. Colson

et al. [42] developed a trust-region method for solving

nonlinear BLPPs. If readers are interested in various solution
algorithms for BLPPs, refer to bibliography and/or overview

of BLPPs [43], [44], [45].

V. CONCLUSION

In this paper, assuming noncooperative behavior of the two
DMs, we have considered a possibilistic bilevel linear pro-
gramming problem. In order to properly handle possibilistic
information involved in the problem, we have developed a
novel decision making model. Though the proposed decision
making model, we have transformed the original possibilistic
bilevel programming problem into a deterministic nonlinear
bilevel programming problem. Using the convexity property
of the resulting problem, we have shown that the Stackelberg
solution of the problem is obtained by using conventional
nonlinear bilevel programming techniques. In the future, we
will apply the proposed model to real-world hierarchical
decision making problems. Extensions of the proposed model
in this paper to cooperative cases [46] will be considered
elsewhere.
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