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Abstract—The purpose of this paper is to introduce a new
hybrid extragradient iterative method for finding a common
element of the set of points satisfying the Ky Fan inequalities,
variational inequality and the set of fixed points of a strict
pseudocontraction mapping in Hilbert spaces. Consequently,
we obtain the strong convergence of an iterative algorithm
generated by the hybrid extragradient projection method, under
some suitable assumptions the function associated with Ky Fan
inequality is pseudomonotone and weakly continuous.

Index Terms—Extragradient Method, Fixed point problems,
Hybrid projection method,Variational inequality problems,
ξ−strict pseudocontraction, Lipschitz continuity.

I. INTRODUCTION

THROUGHOUT this paper, we always assume that H
be a real Hilbert space, whose inner product and norm

denoted by 〈·, ·〉 and ‖ · ‖, respectively. Let C be a closed
convex subset of H and F : C × C → R, where R denotes
the set of real number, a bifunction. We concider the Ky
Fan inequality which was first introduced by Ky Fan [25] as
follows:

find x ∈ C such that F (x, y) ≥ 0, ∀y ∈ C. (1)

The set of such that x ∈ C is denoted by EP (F ), i.e.,

EP (F ) = {x ∈ C : F (x, y) ≥ 0, ∀y ∈ C}.

Numerous problems in physics, optimization, and economics
reduce to find a solution of (1). Some methods have been
proposed to solve the Ky Fan inequality (or some time
called equilibrium problem, see [1, 3, 8, 14]).

In 2005, Combettes and Hirstoaga [2] introduced an iter-
ative scheme of finding the best approximation to the initial
data when EP (F ) is nonempty and they also proved a strong
convergence theorem. A mapping S : C → C is said to be
nonexpansive if

‖Sx− Sy‖ ≤ ‖x− y‖,

for all x, y ∈ C. We denote by Fix(S) the set of fixed
points of, S i.e., Fix(S) = {x ∈ C : Sx = x}. If C is
bounded closed convex and S is a nonexpansive mapping
of C into itself, then Fix(S) is nonempty (see [6]).
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We write xn → x (xn ⇀ x, resp.) if {xn} converges
(weakly, resp.) to x. A mapping A of C into H is called
monotone if

〈Au−Av, u− v〉 ≥ 0.

The classical variational inequality problem is to find u ∈ C
such that 〈v − u,Au〉 ≥ 0 for all v ∈ C. We denoted by
V I(A,C) the set of solutions of this variational inequality
problem. The variational inequality has been extensively
studied in the literature. See, e.g. [19, 20] and the references
therein. A mapping A of C into H is called α-inverse-
strongly-monotone if there exists a positive real number α
such that

〈Au−Av, u− v〉 ≥ α‖Au−Av‖2, (2)

for all u, v ∈ C. It is obvious that any α -inverse-strongly-
monotone mappings A is monotone and Lipschitz continu-
ous.

In 1953, Mann [7] introduced the iteration as follows: a
sequence {xn} defined by

xn+1 = αnxn + (1− αn)Sxn, (3)

where the initial guess element x0 ∈ C is arbitrary and {αn}
is a real sequence in [0, 1]. The Mann iteration has been
extensively investigated for nonexpansive mappings. One of
the fundamental convergence results is proved by Reich [11].

In an infinite-dimensional Hilbert space, the Mann iter-
ation can conclude only weak convergence [4]. Attempts
to modify the Mann iteration method (3) so that strong
convergence is guaranteed have recently been made. Nakajo
and Takahashi [9] proposed the following modification of the
Mann iteration method (3):

x0 ∈ C is arbitrary,
yn = αnxn + (1− αn)Sxn,

Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qnx0, n = 0, 1, 2 . . . ,

(4)

where PC is metric projection on C.
For finding an element of Fix(S)∩V I(A,C), Takahashi

and Toyoda [18] introduced the following iterative scheme:

xn+1 = αnxn + (1− αn)SPC(xn − λnAxn) (5)

for every n = 0, 1, 2, ..., where PC is the metric projection
on the set C, x0 = x ∈ C, {αn} is a sequence in (0, 1)
and {λn} is a sequence in (0, 2α). They proved a weak
convergence theorem in a Hilbert space.
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On the other hand, for finding an element of Fix(S),
Takahashi et al., [17] introduced the following iteration
procedure which is usually called the shrinking projection
method. Let C be nonempty closed convex subset of a real
Hilbert space H . Let {αn} be a sequence in (0, 1). Let
x0 ∈ H . For C1 = C and x1 = PC1x0, define a sequence
{xn} of C as follows:

yn = (1− αn)xn + αnSnxn,

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1x0, n ≥ 1,

(6)

where PCn
is the metric projection of H onto Cn and {Sn}

is a family of nonexpansive mappings. They proved that the
sequence {xn} generated by (6) converges strongly to z =
PFix(S)x0, where Fix(S) =

⋂∞
n=1 Fix(Sn).

Moreover, in 2012, Phan Tu Vuong, et. al., [26], they con-
sidered the sequences {xn}, {yn}, {zn}, and {tn} generated
by x0 ∈ C and

yn = arg miny∈C{λnF (xn, y) + 1
2‖y − xn‖

2},
zn = arg miny∈C{λnF (yn, y) + 1

2‖y − xn‖
2},

tn = αnxn + (1− αn)[βnzn + (1− βn)Szn],
xn+1 = tn,

(7)

for every n ∈ N, where {αn} ⊂ [0, 1[, {βn} ⊂]0, 1[, and
{λn} ⊂]0, 1].

In this paper, we consider the sequences {xn}, {yn},
{zn}, {wn} and {tn} generated by x0 ∈ H , C1 = C,
x1 = PC1

x0 and

yn = arg miny∈C{λnF (xn, y) + 1
2‖y − xn‖

2},
zn = arg miny∈C{λnF (yn, y) + 1

2‖y − xn‖
2},

wn = PC(zn − λnAzn),
tn = αnxn + (1− αn)[(1− µ)Swn + µPC(1− βn)wn],
Cn+1 = {z ∈ Cn : ‖tn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1

x0,

(8)

for every n ∈ N, where µ be a constant in (0, 1), {αn} ⊂
[0, 1), {βn} ⊂ (0, 1), {λn} ⊂ (0, 1]. We combine the
equations (5), (6) and (7) above for solving the EP (F )
with a fixed point and variational inequality problems.
Consequencely, we obtained the strong convergent theorem
for solving fixed point problems, Ky Fan inequality and
variational inequality problems.

II. PRELIMINARIES

Let C be a closed convex subset of a Hilbert space H .
Then the following hold:y

‖x− y‖2 = ‖x‖2 − ‖y‖2 − 2〈x− y, y〉 (9)

and

‖λx+(1−λ)y‖2 = λ‖x‖2+(1−λ)‖y‖2−λ(1−λ)‖x−y‖2

(10)

for all x, y ∈ H and λ ∈ [0, 1]. It is also known that H
satisfies the Opial’s condition [10], that is, for any sequence
{xn} with xn ⇀ x, the inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖ (11)

holds for every y ∈ H with y 6= x. Also Hilbert space H
satisfies the Kadec-Klee property [5, 15], that is, for any
sequence {xn} with xn ⇀ x and ‖xn‖ → ‖x‖ together
imply ‖xn − x‖ → 0.

Let C be a closed convex subset of H . For every point
x ∈ H , there exists a unique nearest point in C, denoted by
PCx satisfying the property

‖x− PCx‖ ≤ ‖x− y‖. (12)

For a given x ∈ H and z ∈ C,

z = PCx⇔ 〈x− z, z − y〉 ≥ 0, ∀y ∈ C. (13)

It is well known that PC is firmly nonexpansive of H onto
C and satisfies

〈x− y, PCx− PCy〉 ≥ ‖PCx− PCy‖2. (14)

In the context of the variational inequality problem, this
implies that

u ∈ V I(A,C)⇔ u = PC(u− λAu), ∀λ > 0. (15)

We also have that, for all u, v ∈ C and λ > 0,

‖(I − λA)u− (I − λA)v‖2

= ‖(u− v)− λ(Au−Av)‖2

≤ ‖u− v‖2 + λ(λ− 2α)‖Au−Av‖2. (16)

So, if λ ≤ 2α, then I − λA is a nonexpansive mapping
from C to H .

Let us recall that S is a ξ-strict pseudocontraction mapping
if there exists a scalar ξ ∈ [0, 1) such that

‖Sx−Sy‖2 ≤ ‖x−y‖2 + ξ‖(x−Sx)− (y−Sy)‖2 (17)

for every x, y ∈ C. It is easy to see that a nonexpansive
mapping on C is also a 0-strict pseudocontraction mapping.
Furthermore [24], if S is a ξ-strict pseudocontraction
mapping, then the fixed point set Fix(S) is closed and
convex and the mapping I − S is demiclosed at zero, i.e.,
satisfies the property

xn ⇀ x and Sxn − xn → 0⇒ Sx = x.

A set valued mapping T : H → 2H is called monotone if
for all x, y ∈ H, f ∈ Tx and g ∈ Ty imply 〈x−y, f−g〉 ≥ 0.
A monotone mapping T : H → 2H is maximal if the graph
G(T ) of T is not properly contained in the graph of any other
monotone mapping. It known that a monotone mapping T is
maximal if and only if for (x, f) ∈ H×H, 〈x− y, f −h〉 ≥
0 for every (y, g) ∈ G(T ) implies f ∈ Tx. Let A be an
inverse-strongly monotone mapping of C into H and let NCv
be the normal cone to C at v ∈ C, i.e.,

NCv = {w ∈ H : 〈v − u,w〉 ≥ 0,∀u ∈ C}

and define

Tv =

{
Av +NCv, v ∈ C,
∅, v /∈ C.

Then T is maximal monotone and 0 ∈ Tv if and only if
v ∈ V I(A,C); see [12, 13].
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Proposition 1. ([21], Lemma 3.1) For every x∗ ∈ EP (F ),
and every n ∈ N, one has

(i) 〈xn − yn, y − yn〉 ≤ λnF (xn, y)− λnF (xn, yn),
∀y ∈ C;

(ii) ‖zn−x∗‖2 ≤ ‖xn−x∗‖2− (1− 2λnc1)‖yn−xn‖2−
(1− 2λnc2)‖zn − yn‖2.

Lemma 2. [28] Let C be a closed convex subset of H and
let {xn} be a bounded sequence in H . Assume that

1) the weak ω − limit set ωw(xn) ⊂ C,
2) for each z ∈ C, limn→∞ ‖xn − z‖ exists.

Then {xn} is weakly convergent to a point in C.

Proposition 3. [24] Let K be a nonempty closed and convex
subset of H . Let u ∈ H and let {xn} be a sequence in H . If
any weak limit point of {xn} belongs to K, and ‖xn−u‖ ≤
‖u− PKu‖ for all n ∈ N, then xn → PKu.

In order to apply this Proposition, we set K := EP (F )∩
Fix(S) ∩ V I(A,C) and u = x0. Furthermore, we impose
that the sequence {xn} generated by our algorithms satisfies,
for all n ∈ N, ‖xn − x0‖ ≤ ‖xn+1 − x0‖ ≤ ‖x̃0 − x0‖

where x̃0 = PKx0. In that case, the sequence {‖xn−x0‖}
is convergent and the sequence {xn} is bounded. These
properties will be useful to prove that any weak limit point
of {xn} belongs to K.

For solving the Ky Fan inequality or equilibrium problem,
let us assume that the following conditions (A1) - (A5) are
satisfied on the bifunction F : C × C → R.

(A1) F (x, x) = 0 for every x ∈ C;
(A2) F is pseudomonotone on C, i.e.,

F (x, y) ≥ 0⇒ F (y, x) ≤ 0, ∀x, y ∈ C;
(A3) F is jointly weakly continuous on C ×C in the sense

that, if x, y ∈ C and {xn} and {yn} are two sequences
in C converging weakly to x and y, respectively, then
F (xn, yn)→ F (x, y);

(A4) F (x, ·) is convex, lower semicontinuous, and subdif-
ferentiable on C foe very x ∈ C;

(A5) F satisfies the Lipschitz-type condition, there exist
positive integer c1 and c2, for every x, y, z ∈ C,
F (x, y)+F (y, z) ≥ F (x, z)−c1‖y−x‖2−c2‖z−y‖2.

If F satisfies the properties (A1)-(A4), then the set EP (F )
of solutions to the Ky Fan inequality is closed and convex.

Remark 4. A first example of function F satisfying assump-
tion (A5), is given by

F (x, y) = 〈G(x), y − x〉 ∀x, y ∈ C,

where G : C → H is Lipschitz continuous on C (with
constant L > 0) (see[22]). In that example, c1 = c2 = L\2.
Another example, related to the Cournot-Nash equilibrium
model, is described in [23]. The function F : C×C → R is
defined, for every x, y ∈ C, by

F (x, y) = 〈G(x) +Q(y) + q, y − x〉,

with C = {x ∈ Rn : Ax ≤ b}, F : C → Rn, Q ∈ Rn×n,
a symmetric positive semidefinite matrix, and q ∈ R. If F
is Lipschitz continuous on C (with constant L > 0) then
F satisfies (A5) with c1 > 0, c2 > 0 such that 2

√
c1c2 ≥

L+ ‖Q‖.

III. MAIN RESULT

A. An Algorithm

Let C be a nonempty, closed and convex subset of a real
Hilbert space H , let F be a bifunction F : C× C into R
satisfying conditions (A1) − (A5), let A be an α-inverse-
strongly monotone mapping of C into H . Let S be a ξ-strict
pseudocontraction mapping from C to C.

Algorithm 5. Choose the sequences {αn} ⊂ [0, 1), {βn} ⊂
(0, 1), {λn} ⊂ (0, 1] and µ be a constant in (0, 1).

Assume that the following 6 Steps S(1) - S(6)
S(1) Let x0 ∈ H , C1 = C, x1 = PC1x0. Set n = 0.
S(2) Solve successively the strongly convex programs

arg miny∈C{λnF (xn, y) + 1
2‖y − xn‖

2} and
arg miny∈C{λnF (yn, y) + 1

2‖y − xn‖
2} to obtain

the unique optimal solution yn and zn, respectively.
S(3) Compute wn = PC(zn − λnAzn).
S(4) Compute

tn = αnxn+(1−αn)[(1−µ)Swn+µPC(1−βn)wn].
If yn = xn and tn = xn, then STOP:
xn ∈ EP (F )∩Fix(S)∩ V I(A,C). Otherwise, go to
Step 5.

S(5) Compute xn+1 = PCn+1x0,
where Cn+1 = {z ∈ Cn : ‖tn − z‖ ≤ ‖xn − z‖},

S(6) Set n := n+ 1, and go to Step 2.

In the sequel, we also suppose that the sequences of
parameters {αn}, {βn}, {λn}, ξ and µ satisfy the following
conditions: (1) - (4)

(1) {λn} ⊂ [λmin, λmax], where 0 < λmin ≤ λmax <
min

{
1

2c1
, 1

2c2

}
;

(2) {αn} ⊂ [0, c] for some c < 1;
(3) limn→∞ βn = 0 and

∑∞
n=1 βn =∞;

(4) ξ and µ be constant, where 0 ≤ ξ < µ < 1.

Now, let {xn}, {yn}, {zn}, and {wn} be the sequences
generated by combination of the hybrid extragradient
method, variational inequality by projection method and the
fixed point method described at the beginning of this section.

B. A strong convergence theorem

Here we start our main theorem.

Theorem 6. Let C be a nonempty, closed and convex subset
of a real Hilbert space H , let F be a bifunction F : C×
C into R satisfying conditions (A1) − (A5), let A be an
α-inverse-strongly monotone mapping of C into H. Let S
be a ξ-strict pseudocontraction mapping from C to C and
such that Ω := EP (F )∩Fix(S)∩ V I(A,C) 6= ∅. Suppose
that the sequences {αn}, {βn}, {λn} and µ satisfying the
conditions (1)− (4). Then the sequence {xn} generated by
Algorithm 5 converges strongly to the projection of x0 on to
the set Ω.

Proof. Step 1. We show that {xn} is well defined.
First, we show that Cn is closed and convex for each n ≥ 1.
Indeed, it is obvious that C1 = C is closed and convex.
Suppose that Ck is closed and convex for some k ≥ 1.
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Next, we show that Ck+1 is closed and convex for the same
k. Let z1, z2 ∈ Ck+1 and z = tz1 + (1 − t)z2, where t ∈
(0, 1). Notice that ‖tn − z‖ ≤ ‖xn − z‖ is equivalent to

‖tn − xn‖2 + 2〈tn − xn, xn − z〉 ≤ 0

Thus Ck+1 is closed and convex. Then, Cn is closed and
convex for any n ∈ N. This implies that {xn} is well defined.

Step 2. Next, we show by induction that Ω ⊂ Cn for each
n ≥ 1. Let x∗ ∈ Ω. Then x∗ = PC(x∗ − λnAx∗).
Since wn = PC(zn − λnAzn), we consider

‖wn − x∗‖2

= ‖[PC(zn − λnAzn)]− [PC(x∗ − λnAx∗)]‖2

≤ ‖(zn − λnAzn)− (x∗ − λnAx∗)‖2

= ‖zn − x∗‖2 − 2λn〈zn − x∗, Azn −Ax∗〉
+λ2

n‖Azn −Ax∗‖2

≤ ‖zn − x∗‖2 + λn(λn − 2α)‖Azn −Ax∗‖2 (18)
≤ ‖zn − x∗‖2.

By Proposition 1 (ii), we have

‖zn − x∗‖2 ≤ ‖xn − x∗‖2 − (1− 2λnc1)‖yn − xn‖2

−(1− 2λnc2)‖zn − yn‖2 (19)

that is, we obtain ‖zn − x∗‖ ≤ ‖xn − x∗‖
and ‖wn − x∗‖ ≤ ‖xn − x∗‖.
Set un := (1−µ)Swn +µPC(1−βn)wn, for all n ≥ 0.
Then, we have tn = αnxn + (1− αn)un, It follows that

‖un − x∗‖2

= ‖(1− µ)Swn + µPC(1− βn)wn − x∗‖2

≤ ‖(1− µ)(Swn − x∗) + µ
[
(1− βn)wn − x∗

]
‖2

≤ ‖wn − x∗‖2 − (1− µ)(µ− ξ)‖Swn − wn‖2

−βnµ2‖wn‖2 (20)
≤ ‖wn − x∗‖2 ≤ ‖xn − x∗‖2

that is, ‖un − x∗‖ ≤ ‖xn − x∗‖.

Since tn = αnxn + (1 − αn)un for every x∗ ∈ Ω,
we have

‖tn − x∗‖2 = ‖αnxn + (1− αn)un − x∗‖2

= ‖αn(xn − x∗) + (1− αn)(un − x∗)‖2

≤ αn‖xn − x∗‖2 + (1− αn)‖un − x∗‖2

≤ αn‖xn − x∗‖2 + (1− αn)‖xn − x∗‖2

≤ ‖xn − x∗‖2.

Hence ‖tn−x∗‖ ≤ ‖xn−x∗‖. It follows that x∗ ∈ Cn+1.
This implies that

Ω := EP (F ) ∩ Fix(S) ∩ V I(A,C) ⊂ Cn, ∀n ∈ N.

Step 3. Next, we show that limn→∞ ‖xn+1 − xn‖ = 0
and limn→∞ ‖tn − xn‖ = 0.
From xn = PCn

x0, we have

〈x0 − xn, xn − v〉 ≥ 0

for each v ∈ Cn. Using Ω ⊂ Cn for each we also have

〈x0 − xn, xn − z〉 ≥ 0, ∀z ∈ Ω, n ∈ N.

So, for z ∈ Ω, we have

0 ≤ 〈x0 − xn, xn − z〉
= 〈x0 − xn, xn − x0 + x0 − z〉
= −〈x0 − xn, x0 − xn〉+ 〈x0 − xn, x0 − z〉
≤ −‖x0 − xn‖2 + ‖x0 − xn‖‖x0 − z‖.

This implies that

‖x0 − xn‖ ≤ ‖x0 − z‖, ∀z ∈ Ω, n ∈ N.

From xn = PCn
x0 and xn+1 = PCn+1

x0 ∈ Cn+1 ⊂ Cn,
we obtain

〈x0 − xn, xn − xn+1〉 ≥ 0. (21)

From (21), we have, for n ∈ N,

0 ≤ 〈x0 − xn, xn − xn+1〉
= 〈x0 − xn, xn − x0 + x0 − xn+1〉
= −〈x0 − xn, x0 − xn〉+ 〈x0 − xn, x0 − xn+1〉
≤ −‖x0 − xn‖2 + ‖x0 − xn‖‖x0 − xn+1‖.

It follows that

‖x0 − xn‖ ≤ ‖x0 − xn+1‖.

Thus the sequence {‖xn−x0‖} is bounded and nonincreasing
sequence, so limn→∞ ‖xn − x0‖ exists, that is

lim
n→∞

‖xn − x0‖ = m. (22)

Indeed, (21), we get

‖xn − xn+1‖2

= ‖xn − x0 + x0 − xn+1‖2

= ‖xn − x0‖2 + 2〈xn − x0, x0 − xn+1〉
+‖x0 − xn+1‖2

= −‖xn − x0‖2 + 2〈xn − x0, xn − xn+1〉
+‖x0 − xn+1‖2

≤ −‖xn − x0‖2 + ‖x0 − xn+1‖2.

From (22), we obtain

lim
n→∞

‖xn − xn+1‖ = 0. (23)

Since xn+1 ∈ Cn, we have

Cn = {z ∈ C : ‖tn − z‖ ≤ ‖xn − z‖};
‖tn − xn+1‖ ≤ ‖xn − xn+1‖

and

‖xn − tn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − tn‖
≤ 2‖xn − xn+1‖.

By (23), we obtain

lim
n→∞

‖xn − tn‖ = 0. (24)

Step 4. We will show that limn→∞ ‖Swn − wn‖ = 0.
For x∗ ∈ Ω, from (18), (19) and (20), we can choose a
constant M > 0 such that,

sup
n
{‖wn‖2} ≤M.
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We observe that

‖tn − x∗‖2

≤ αn‖xn − x∗‖2 + (1− αn)‖un − x∗‖2

≤ αn‖xn − x∗‖2 + (1− αn)
[
‖wn − x∗‖2

−(1− µ)(µ− ξ)‖Swn − wn‖2 − βnµ2‖wn‖2
]

= ‖xn − x∗‖2 − (1− αn)(1− 2λnc1)‖yn − xn‖2

−(1− αn)(1− 2λnc2)‖zn − yn‖2

+(1− αn)λn(λn − 2α)‖Az −Ax∗‖2

−(1− αn)(1− µ)(µ− ξ)‖Swn − wn‖2

−(1− αn)βnµ
2M.

Therefore, we get

(1− αn)(1− 2λnc1)‖yn − xn‖2

≤ ‖xn − x∗‖2 − ‖tn − x∗‖2 − (1− αn)βnµ
2M

=
[
‖xn − x∗‖+ ‖tn − x∗‖

][
‖xn − tn‖

−(1− αn)βnµ
2M
]
.

Since limn→∞ ‖xn − tn‖ = 0, limn→∞ βn = 0,
1− αn ≥ 1− c > 0, 1− 2λnc1 > 1− 2λmaxc1 > 0
and the sequence {xn}, {tn} are bounded, we get

lim
n→∞

‖yn − xn‖ = 0.

By similar way since limn→∞ βn = 0,
1− αn ≥ 1− c > 0 and 1− 2λnc2 > 1− 2λmaxc2 > 0,
we have

lim
n→∞

‖zn − yn‖ = 0.

Since limn→∞ βn = 0, 1− αn ≥ 1− c > 0
and −λn(λn − 2α) > 0, we obtain

lim
n→∞

‖Az −Ax∗‖ = 0.

By limn→∞ βn = 0, 1− αn ≥ 1− c > 0
and (1− µ)(µ− ξ) > 0, we have

lim
n→∞

‖Swn − wn‖ = 0.

Step 5. We will show that x̃ ∈ Ω.
(5.1). We will show that x̃ ∈ EP (F ). Since {xn} is

bounded, there exists a subsequence {xni
} of {xn} which

xni
⇀ x̃ and limn→∞ ‖xn−yn‖ = 0, we have that yni

⇀ x̃.
On the other hand, by using Proposition 1 (i), we have, for
every y ∈ C and for every i ∈ N, that

〈xni
− yni

, y − yni
〉 ≤ λni

F (xni
, y)− λni

F (xni
, yni

).

Since ‖xni
− yni

‖ → 0 and y− yni
⇀ y− x̃ as i→∞ and

since ∀i ∈ N, 0 < λmin ≤ λni
≤ λmax, as i→∞, we get

F (x̃, y) ≥ 0, ∀y ∈ C.

It means that x̃ ∈ EP (F ).
(5.2). We will show that x̃ ∈ Fix(S). Since {wn}

is bounded then there exists a subsequence {wni} of
{wn} which converges weakly to x̃. Since S is a ξ-strict
pseudocontraction mapping, we know that the mapping
I − S is demiclosed at zero. From ‖Swn − wn‖ → 0 as
n→∞ and {wni

}⇀ x̃. Thus, we obtain that x̃ ∈ Fix(S).

(5.3). Finally, we show that x̃ ∈ V I(A,C). Define

Tv =

{
Av +NCv, v ∈ C,
∅, v /∈ C.

Then, we have that T is maximal monotone operator.
Since w ∈ Tv = Av + NC(v), we get w − Av ∈ NC(v).
From wn ∈ C, we have

〈v − wn, w −Av〉 ≥ 0, (n = 1, 2, 3, ...).

We also have wn = PC(zn − λnAzn) and ∀v ∈ C, we get〈
v − wn,

wn − zn
λn

+Azn
〉
≥ 0.

Therefore, we have

〈v − wni , w〉
≥ 〈v − wni , Av〉

≥ 〈v − wni
, Av〉 −

〈
v − wni

,
wni − zni

λni

+Azni

〉
= 〈v − wni , Av −Awni〉+ 〈v − wni , Awni −Azni〉

−
〈
v − wni ,

wni − zni

λni

〉
.

Using wni → x̃ and ‖wni − zni‖ → 0 which A is Lipshitz
continuous implies that

〈v − x̃, w〉 ≥ 0, as i→∞.
Since T is maximal monotone, we have x̃ ∈ T−1(0), and
hence x̃ ∈ V I(A,C). Thus is clear that x̃ ∈ Ω.

Step 6. Finally, we show that xn → x̃, where x̃ = PΩx0.
Since Ω is nonempty closed convex subset of H , there exists
a unique x∗ ∈ Ω such that x∗ = PΩx0. Since x∗ ∈ Ω ⊂ Cn

and xn = PCn
x0, we have ‖xn − x0‖ ≤ ‖x̃− x0‖.

It follows from x∗ = PΩx0 and the lower semicontinuity of
norm that

‖x∗ − x0‖ ≤ ‖x̃− x0‖ ≤ lim
i→∞

inf ‖xni
− x0‖

≤ lim
i→∞

sup ‖xni
− x0‖ ≤ ‖x∗ − x0‖.

Thus, we obtain that

lim
i→∞

‖xni − x0‖ = ‖x̃− x0‖ = ‖x∗ − x0‖.

Using the Kadec-Klee property of H , we obtain that

lim
i→∞

xni
= x̃ = x∗.

Since {xni
} is an arbitrary subsequence of {xn}, we can

conclude that {xn} converges strongly to PΩx0.

C. Reduced theorem

Corollary 7. Let C be a nonempty, closed and convex subset
of a real Hilbert space H , let F be a bifunction F : C×
C into R satisfying conditions (A1) − (A5), let A be an
α-inverse-strongly monotone mapping of C into H. Let S
be a ξ-strict pseudocontraction mapping from C to C and
such that Ω := EP (F )∩Fix(S)∩ V I(A,C) 6= ∅. Suppose
that the sequences {αn}, {βn}, {λn} and µ satisfying the
condition (i)− (iv). Then the sequences {xn} generated by
Algorithm 5 converges strongly to the projection of x0 on to
the set Ω.

Proof. Setting ξ = 0 in Theorem 6, we obtain the result
directly.
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